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In recent years, there is increasing enthusiasm in the healthcare research community for artificial intelligence to provide big data
analytics and augment decision making. One of the prime reasons for this is the enormous impact of deep learning for utilization of
complex healthcare big data. Although deep learning is a powerful analytic tool for the complex data contained in electronic health
records (EHRs), there are also limitations which can make the choice of deep learning inferior in some healthcare applications. In
this paper, we give a brief overview of the limitations of deep learning illustrated through case studies done over the years aiming
to promote the consideration of alternative analytic strategies for healthcare.
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INTRODUCTION
Conventional machine learning (ML) has been applied to clinical
decision support and medical discovery since the outset of the AI
revolution.1,2 However, it is only in recent years with the advent of
powerful computational tools, cheap electronic storage, and wide
implementation of electronic health records (EHRs) that ML
methods found themselves becoming accepted in mainstream
medicine. Building upon conventional ML, “deep learning”
methods promise another layer of the ability to automate difficult
cognitive tasks, this time using “big data”.
One of the major limitations of conventional ML techniques is

the requirement of sometimes complex processing (feature
engineering) to extract the requisite discriminative features.3

Therefore, significant domain knowledge and data processing
expertise were required to train non-deep learning models.
Deep learning, however, is adept at learning abstract features
directly from the raw data. Different layers of the network
automatically learn abstract features representative of the data.
A single well-designed and well-trained network can yield state-
of-the-art results across many applications, without the need for
significant domain knowledge.4 Many cognitive tasks previously
thought to be limited to human operation due to the complexity
of the data are now being automated by deep learning. Deep
learning has made the prospect of self-driving vehicles feasible;
beaten professionals in the game of Go, a board game with a
huge scope of possible moves; achieved record accuracy in
machine translation.5–7 It is no surprise that deep learning
applications related to healthcare research has seen an
explosive rise in the number of publications in the past several
years.8 Correspondingly, there have been amazing accomplish-
ments in the fields of medical image analysis, computational
genomics, physiological signal analysis, medical data represen-
tation, and disease prediction due to the utilization of deep
learing.9–13

It is clear that deep learning is an extremely powerful tool for
learning complex, cognitive problems.9,14 However, it is not a
comprehensive tool for all healthcare analytics applications.
Several past commentaries on deep learning for clinical
applications touch on how data issues such as low volume,
high sparsity, and poor quality can limit the efficacy of deep
learning methods.15–19 We concur with these ideas, and go a
step further in focusing on the temporal aspect of healthcare
data. We find that conventional ML tools can achieve compar-
able, if not better performance in this context despite the
complex nature of the data. We present a wide range of
representative use cases of ML solving clinical problems. We
hope to demonstrate that although deep learning can be
applied to many of these fairly standard problems, conventional
ML methods may provide simpler, cheaper, and more useful
method for data modeling.

Clinical contexts
We review several limitations of deep learning tools illustrated
with specific examples from prior work: prediction of post-
operative bleeding following colorectal surgery (CRS-POB),20

prediction of childhood asthma diagnosis, remission, and reoccur-
ance (A-DRR),21 prediction of time to first treatment for patients
diagnosed with chronic lymphocytic leukemia (CLL-TFT),22 pre-
diction of ICU mortality (ICU-M) using a publically available
dataset,21,23 and finally prediction of opioid mis-use (Opioid).24

Each study was approved by Mayo Clinic’s Institutional Review
Board. All patients in the CRS-POB, A-DRR, CLL-TFT, and Opioid
datasets consented to use of their medical records for research
purposes. The data used for these projects are summarized in
Table 1. The data range from retrospective data extracted from
Mayo Clinic Clinical Data Warehouse, a longitudinal regional
clinical dataset, and a publically available dataset.23,25 Each dataset
is complex and time-varying, making each problem ideal
candidates for a data-driven ML approach. In each case we
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compare several traditional ML techniques such as logistic
regression (LR), Bayesian network (BN), support vector machine
(SVM), random forest (RF), and gradient boosting machine (GBM),
with deep neural networks, including multi-layer perceptron (MLP)
and long short term memory (LSTM), to predict clinically
important events.
The methodology for modeling each clinical problem was fairly

consistent across each project. A time-varying and corresponding
single-time point dataset was created for each project. The single-
time point dataset was created by taking maximum, minimum,
mean, as well as maximum, minimum, and mean change in time
for each time-varying variable. Following standard data cleaning,
several ML algorithms were used to predict the outcomes of
interest. The hyperparameters of each ML model were tuned using
cross-validation. Specific to MLP models, we tuned the number of
hidden layers, and varied the number of nodes in each hidden
layer. For both MLP and LSTM models, we further tuned learning
rate, drop out, activation function, loss function, and number of
training epochs. The search grid can be found in the supplemen-
tary materials. The optimization metric for the MLP and LSTM
models was accuracy. Areas under the receiver operating curve
(AUROC) were used to assess the performance of the different
models.

Patient volume
Despite the enormous steps forward which deep learning has
taken many cognitive tasks, deep learning has its own set of
drawbacks. It is widely accepted that deep learning generally
requires large volumes of data to accurately train the model.26,27

Applications for which deep learning has arguably provided the
most benefit such as web search have access to large databases
from which to learn from.28 Healthcare data however, is often
highly limited in volume and quality due to sparsity of patient
contact, variability in medical care, and privacy concerns.29

The need for data is reflected in the performance of the various
models as shown in Table 2. In most cases, we found that
conventional ML methods yielded better performance compared
to the deep learning alternatives. We attribute this to the relatively
small volume of training data. When the volume of training data is
increased (such as in the CRS-PSC which has 3 times more data
compared to other cases), deep learning methods become more
competitive. Only in the large Opioid dataset (~ 100,000 cases)
does deep learning alternative compare favorably to the
conventional alternative, and even then cannot decisively out-
perform conventional methods. This is further demonstrated in
Table 3, which shows comparison of model performance with
different amounts of data on the CRS-PSC. Conventional ML
methods also appear to have an upper limit in terms of accuracy
whereas the LSTM model appears capable of further improving
performance with increasing data.

Table 1. Measures of dataset size, number of variables, and percentage of missing values

Dataset # of cases # of variables Median # of time points Median % Missing/variable Max % Missing/variable

Time-varying Tabular Time-varying Tabular

CRS-PSC 13399 117 71 21.3 99.9 100 49.6

A-DR* 4013 51 83 0 0 0 0

CLL-TFT 737 31 6 0 0 89.6 29.9

ICU-M 4000 41 24 21.6 24.0 95.7 94.9

Opioid‡ 142377 836 32 0 0 0 0

Percentage of missing values are split between time-varying data and the condensed tabular data
*Features from clinical notes, no mentions considered negative result
‡No codes considered negative result

Table 2. Predictive power of each model and their associated
training time

App Model AUROC Training time (s)

CRS-PSC LR 0.735 ± 0.004 5.3

BN 0.765 ± 0.004 48.6

SVM 0.781 ± 0.003 33.1

RF 0.812 ± 0.002 9.8

GBM 0.822 ± 0.001 13.8

MLP 0.795 ± 0.003 219

LSTM 0.805 ± 0.004 703

A-DRR LR 0.875 ± 0.044 5.3

SVM 0.884 ± 0.011 23.1

RF 0.947 ± 0.012 10.8

GBM 0.945 ± 0.011 23.8

LSTM 0.845 ± 0.034 301.4

CLL-TFT LR 0.795 ± 0.038 2.3

SVM 0.843 ± 0.036 5.7

RF 0.924 ± 0.004 3.3

GBM 0.817 ± 0.009 5.4

LSTM 0.805 ± 0.017 46.5

ICU-M LR 0.476 ± 0.074 4.3

SVM 0.556 ± 0.051 12.7

RF 0.618 ± 0.048 9.8

GBM 0.681 ± 0.037 16.4

LSTM 0.646 ± 0.043 243.5

Opioid LR 0.907 ± 0.002 NA

SVM 0.904 ± 0.002 NA

RF 0.875 ± 0.003 NA

MLP 0.909 ± 0.002 NA

LSTM 0.909 ± 0.002 NA

Bolded values indicate best achieved metric for each project. Training
times were not measured during the Opioid project

Table 3. Predictive power of each model based on percentage of data
used to train

% of Data (N) LR BN SVM RF GBM MLP

10 (1340) 0.728 0.748 0.731 0.776 0.804 0.742

20 (2680) 0.727 0.749 0.758 0.797 0.811 0.762

40 (5360) 0.730 0.753 0.773 0.798 0.809 0.778

60 (8039) 0.732 0.759 0.772 0.801 0.812 0.786

80 (10,719) 0.731 0.764 0.779 0.808 0.818 0.791

100 (13,399) 0.735 0.765 0.781 0.812 0.822 0.795
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Patient variability
A large part of the appeal of EHRs is that the high variability of
disease trajectories and patient care can be successfully captured
and modeled. Despite the continual push to standardize patient
care, there will always be a high level of variability between
patients due to natural differences in disease presentation (e.g.,
location of cancer), variability in provider protocols (e.g., timing of
laboratory tests), and even variability in desired outcomes (e.g.,
choice between attempting to treat terminal cancer or hospice
care). All these sources of variability in disease progression greatly
enlarges the search space which longitudinal models need to
traverse. As seen in the CRS-PSC work, despite using a dataset
which is fairly large for a healthcare related problem, the deep
learning method could not achieve a better result compared to
other ML methods.
The variability in patient data is further compounded by the use

cases of clinical decision support tools. Due to the specialization of
clinical practice, decision support models need to be limited in
scope.30 For example, a general mortality prediction model built
from all patients in multiple specialties would be difficult to
evaluate by specific sub-populations, with no guarantee that the
model would perform well on any specific sub-populations.
However, limiting data from subspecialties may not yield enough
data to train from, as exemplified in the CLL-TFT work.
Therefore, the vast majority of problems in healthcare which

may benefit from ML contain significantly less data than
appropriate for deep learning methodologies. The lack of relevant
training data can be particularly true of smaller community
institutions which do not have sufficient patient volume nor the
resources to manually annotate data. One possible technique to
address the lack of data is transfer learning.31,32 Transfer learning
utilizes the architecture and weights of well-validated models as a
starting point in training a new model for either a different task or
different institution.33 Instead of building a model from scratch,
and thereby requiring the acquisition and annotation of a
completely new dataset, a smaller dataset can be used to
efficiently update the weights in an existing model. This can
greatly reduce the cost and effort required to build a dataset and
retrain the model.31

Data sparsity
In addition to the general lack of patient volume, many time-
varying problems run into the issue of data sparsity. In the real
world, providers often do not have a complete picture of a
patient’s physiologic condition at any single time point, much less
on a continuous basis. This tends not to be a problem for a
human, as clinicians often can consciously or subconsciously
impute patient status through other information. Harutyunyan
et al. have argued that recurrent neural networks (RNN) can
similarly utilize missing values.34 However, it is not clear that RNN
models impute missing values in the same way that clinicians can.
Che et al. directly incorporated a new parameter for missingness,
therefore allowing the model to learn potential importance of the
missing values.35

The other major strategy for dealing with missing values is
imputation, but risks biasing the data (e.g., mean imputation) or is
highly computational intensive (e.g., random forest model based).
Che et al. shows the limitation of time-series imputation as certain
methods such as cubic spline imputation may greatly reduce
predictive accuracy.35

With low volumes of data, feature engineering used alongside
conventional ML can provide a layer of denoising to improve
information density and improve model performance. Although
Wu et al. demonstrated that relative time between events can add
predictive value for RNNs, we found that simple static classifica-
tion can achieve better predictive results (as shown in Table 2).21

Asynchronous data collected over multiple hours can be compiled

into a discrete measures, reducing the rate of missingness at each
evaluated time point. Expert designed signal processing methods
can also be utilized to identify previously known informative
events, allowing for creation of highly specific data representa-
tions. Discretizing longitudinal data minimizes the number of
parameters needed to model the data, therefore greatly reduce
the amount of data needed for training, and greatly reducing the
computational cost.

Computational costs
Another significant disadvantage of deep learning is the
associated data storage and computational infrastructure required
to efficiently learn models. Longitudinal models such as RNNs
have a large number of hyperparameters compared to even
convolutional neural networks. This is further exacerbated by the
sequential nature of RNNs and its inability to parallelize.
Furthermore, as models become more complex to incorporate
information such as relative time between events and data
missingness, the need for data and computational power grows
rather than shrinks. Parameters for relative time or missingness
indicators represent a 1:1 increase in the number of parameters
needed to be learned, both increasing the width of a model and
also increasing the data required to sufficiently train the model.
Newer models such as transformer may be more parameter and
computationally efficient, but likely run into the same data
complexity problems as conventional RNNs.36

Despite the large increases in computational capabilities and
decreases in costs, it can still be financially oppressive to develop
and maintain the computational infrastructure required to train
deep models.
Most of this work (excluding the Opioid project) was completed

on a single desktop equipped with a relatively inexpensive Intel
Core i5-4570s CPU, and 8 GB of memory. The Opioid project was
completed on a desktop equipped with an i5-4590S CPU and
16 GB of memory. As shown in Table 2, the deep learning method
had the longest training time by far. Although we did not
specifically benchmark the training time of the Opioid project, the
deep learning models did take several hours to train on the CPU
limited workstation. Although GPUs do greatly accelerate model
development,37 GPUs enabled computing infrastructures are a
significant expense, particularly for small healthcare organizations.

Model interpretation
Healthcare models also require a degree of interpretability.
Knowing the specific features driving a prediction can be
important for clinical decision making and clear communication
between patient and physician. Other ML methods can produce
more interpretable models. For example, RF have specific
measures of variable importance, allowing users to understand
the relative contributions of variables to the overall prediction
similar to the weights and p-values in LR. Although improving
deep learning interpretability is an ongoing and prominent area of
research, as of now deep learning models still tend to be black
boxes.38

Model evaluation and implementation
Another major criticism for research into applying ML in
healthcare applications is that many techniques are not properly
compared with clinical practice. Recently, several articles have
shown comparable performance of certain medical tasks including
prediction of all-cause mortality of patients admitted to intensive
care unit, and diagnosis of pneumonia using chest X-rays.14,39

Despite the outsized claims often made, it is not yet evident that
these advances in deep learning have (1) produced predictive
performance similar to a human physician or (2) that deep
learning is indisputably the ML method of choice. With respect to
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expert performance, Rajpurkar et al. compared a deep convolu-
tional neural network against expert radiologist annotation of
chest X-rays. The results showed that the model outperformed
physicians in a blind read, where the radiologists were not given
patient clinical background prior to reading the images. Although
an impressive achievement, the direct applicability to practice is
unclear as having patient history and other clinical data greatly
increases diagnostic performance.
In addition to overselling the practicability of methods, the

superiority of deep learning methods (or even a specific deep
learning architecture) are often oversold as well. In the fore-
mentioned case of automated diagnosis of pulmonary patholo-
gies using chest X-rays, no comparison to other image learning
architectures were made. Obviously, training of deep neural
networks is computational expensive. However, this limits our
understanding what is the state-of-the-art. In other cases such as
predicting future mortality, baseline comparisons with competing
models can be hidden or not well trained. The difference in model
performance is typically small, so it is not at all apparent that using
neural networks is worth the extra time and cost of training.

DISCUSSION
In taking these considerations into account, the choice of ML
algorithm is highly important to achieve the most optimal (what is
optimal can also vary between problems) results. It is sometimes
easy to confuse the generalizability of deep learning methods for
a catch-all data analytic technique. However, other ML methods
can be much more computationally efficient, provide more
interpretable models, and in the end prove to be more accurate.
There is real clinical and scientific benefit to performing a
thorough assessment of these conventional models, and should
be included in academic publications.
Many of these problems originate from the disconnect which

exists between data scientists and clinicians. Unlike purely
cognitive applications such as driving or image search, healthcare
is a patchwork of highly specialized processes and knowledge
bases. Therefore, the desire to generate large, comprehensive
models, using large comprehensive patient databases without
fully understanding the final use case can lead to poor
performance in practice. Unlike other industries were data
scientists can work somewhat in isolation, data science in
healthcare explicitly requires the cooperation of healthcare
practitioners, informatics specialists, and data scientists. In-depth
knowledge of current clinical workflow is needed such that
models pull from relevant data sources, be trained on relevant
patient cohort, and be applied at a relevant point during the
clinical workflow.
We recognize that our perspectives are limited in several ways.

For one, we included only a limited number of datasets. However,
what we are advocating is not particularly bold, rather it is prudent
to follow standard data science practice. Second, the deep
learning models used here are not state-of-the-art and do not
utilize methods such as bagging or boosting to improve
performance. Although these methods can boost performance,
the effect is generally marginal and does not significantly change
our recommendations.40–42 Regardless of technique, comparison
with established, popular techniques allow the ML and clinical
communities properly assess the contribution of the methods.

CONCLUSIONS
In conclusion, healthcare researchers should not be overly
enthralled by the promises of deep learning. Although highly
useful for certain tasks such as classifying medical images, deep
learning is not suitable for all clinical data problems. In our
experience across several clinical problems, conventional, off-the-
shelf ML methods can be trained faster and have overall better

performance when compared to deep neural networks. Unbridled
excitement and confidence for deep learning can lead to
unrealistic expectations, inappropriate applications, and ignorance
of other more appropriate ML tools. Over confidence in deep
learning without comparison with other methods can be
detrimental to the progress of AI in clinical settings.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The CRS-PSC, A-DRR, CLL-TFT, and Opioid datasets utilized during this study are not
publicly available due to privacy and security concerns. The data is not easily
redistributable to researchers other than those engaged in the Institutional Review
Board-approved research collaborations with Mayo Clinic. The ICU-M dataset is
available for download at https://physionet.org/challenge/2012/.

CODE AVAILABILITY
The code used for this study can be found at www.github.com/davidchenatmayo/
ForPubDM.

ACKNOWLEDGEMENTS
This work was supported in part by the National Institute of Biomedical Imaging and
Bioengineering grant R01EB19403.

AUTHOR CONTRIBUTIONS
D.C. drafted the manuscript. S.L., P.K., S.S., C.S., and H.L. assisted in formulation and
significant editing of the manuscript. D.C., S.L., E.H., and S.S. collected the data. D.C.
trained and evaluated the model. D.L. provided clinical perspectives. S.S. and H.L.
directed the work.

ADDITIONAL INFORMATION
Supplementary information accompanies the paper on the npj Digital Medicine
website (https://doi.org/10.1038/s41746-019-0122-0).

Competing interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

REFERENCES
1. Kononenko, I. Inductive and Bayesian learning in medical diagnosis. Appl. Artif.

Intell. Int. J. 7, 317–337 (1993).
2. Pirnat, V., Kononenko, I., Janc, T. & Bratko, I. Medical analysis of automatically

induced diagnostic rules. In Proc. 2nd Euro. Conf. Artificial Intelligence in Med.
24–36 (Springer, Berlin, 1989).

3. Li, Q. et al. Medical image classification with convolutional neural network. in 13th
International Conference on Informatics in Control Automation Robotics & Vision
(ICARCV), 2014 844–848 (IEEE, Singapore, 2014).

4. Iandola, F. et al. Densenet: implementing efficient convnet descriptor pyramids.
arXiv:1404.1869 (2014).

5. Bojarski, M. et al. End to end learning for self-driving cars. arXiv:1604.07316
(2016).

6. Silver, D. et al. Mastering the game of Go with deep neural networks and tree
search. nature 529, 484 (2016).

7. Wu, Y. et al. Google’s neural machine translation system: Bridging the gap
between human and machine translation. arXiv:1609.08144 (2016).

8. Ravı, D. et al. Deep learning for health informatics. IEEE J. Biomed. health Inform.
21, 4–21 (2017).

9. De Fauw, J. et al. Clinically applicable deep learning for diagnosis and referral in
retinal disease. Nat. Med. 24, 1342–1350 (2018).

10. Chang, Y. et al. Cancer drug response profile scan (CDRscan): a deep learning
model that predicts drug effectiveness from cancer genomic signature. Sci. Rep.
8, 8857 (2018).

D. Chen et al.

4

npj Digital Medicine (2019)    43 Scripps Research Translational Institute

https://physionet.org/challenge/2012/
http://www.github.com/davidchenatmayo/
https://doi.org/10.1038/s41746-019-0122-0


11. Attia, Z. I. et al. Noninvasive assessment of dofetilide plasma concentration using
a deep learning (neural network) analysis of the surface electrocardiogram: a
proof of concept study. PloS ONE 13, e0201059 (2018).

12. Miotto, R., Li, L., Kidd, B. A. & Dudley, J. T. Deep patient: an unsupervised repre-
sentation to predict the future of patients from the electronic health records. Sci.
Rep. 6, 26094 (2016).

13. Lee, C. K., Hofer, I., Gabel, E., Baldi, P. & Cannesson, M. Development and vali-
dation of a deep neural network model for prediction of postoperative in-
hospital mortality. Anesthesiol.: J. Am. Soc. Anesthesiol. 129, 649–662 (2018).

14. Rajpurkar, P. et al. Chexnet: Radiologist-level pneumonia detection on chest x-
rays with deep learning. arXiv:1711.05225 (2017).

15. Wang, F., Casalino, L. P. & Khullar, D. Deep learning in medicine—promise, pro-
gress, and challenges. JAMA Intern. Med. 179(3), 293–294, https://doi.org/
10.1001/jamainternmed.2018.7117 (2019).

16. Xiao, C., Choi, E. & Sun, J. Opportunities and challenges in developing deep
learning models using electronic health records data: a systematic review. J. Am.
Med. Inform. Assoc. 25, 1419–1428 (2018).

17. Shameer, K., Johnson, K. W., Glicksberg, B. S., Dudley, J. T. & Sengupta, P. P.
Machine learning in cardiovascular medicine: are we there yet? Heart 104,
1156–1164 (2018).

18. Wiens, J. & Shenoy, E. S. Machine learning for healthcare: on the verge of a major
shift in healthcare epidemiology. Clin. Infect. Dis. 66, 149–153 (2017).

19. Miotto, R., Wang, F., Wang, S., Jiang, X. & Dudley, J. T. Deep learning for health-
care: review, opportunities and challenges. Brief. Bioinforma. 19, 1236–1246
(2017).

20. Chen, D. et al. Postoperative bleeding risk prediction for patients undergoing
colorectal surgery. Surgery 164, 1209–1216 (2018).

21. Wu, S. et al. Modeling Asynchronous Event Sequences with RNNs. J. Biomed.
Inform. 83, 167–177 (2018).

22. Chen, D., Goyal, G., Go, R., Parikh, S. & Ngufor, C. Predicting time to first treatment
in chronic lymphocytic leukemia using machine learning survival and classifica-
tion methods. in 2018 IEEE International Conference on Healthcare Informatics
(ICHI) 407–408 (IEEE, New York, 2018).

23. Silva, I., Moody, G., Scott, D. J., Celi, L. A. & Mark, R. G. Predicting in-hospital
mortality of icu patients: the physionet/computing in cardiology challenge 2012.
in 2012 Computing in Cardiology 245–248 (IEEE, Krakow, 2012).

24. Che, Z., Sauver, J. S., Liu, H. & Liu, Y. Deep Learning Solutions for Classifying
Patients on Opioid Use. in AMIA Annual Symposium Proceedings, Vol. 2017, 525
(American Medical Informatics Association, Washington, 2017).

25. Katusic, S. K. et al. What can large population-based birth cohort study ask about
past, present and future of children with disorders of development, learning and
behaviour? J. Epidemiol. Community Health 71, 410–416 (2017).

26. Chartrand, G. et al. Deep learning: a primer for radiologists. Radiographics 37,
2113–2131 (2017).

27. Hu, G., Peng, X., Yang, Y., Hospedales, T. M. & Verbeek, J. Frankenstein: Learning
deep face representations using small data. IEEE Trans. Image Process. 27,
293–303 (2018).

28. Kuznetsova, A. et al. The open images dataset v4: Unified image classification,
object detection, and visual relationship detection at scale. arXiv:1811.00982
(2018).

29. Cowie, M. R. et al. Electronic health records to facilitate clinical research. Clin. Res.
Cardiol. 106, 1–9 (2017).

30. Ward, B. W., Schiller, J. S. & Goodman, R. A. Peer reviewed: multiple chronic
conditions among us adults: a 2012 update. Prevent. Chronic Dis. 11, E62, https://
doi.org/10.5888/pcd11.130389 (2014).

31. Kim, D. H. & MacKinnon, T. Artificial intelligence in fracture detection: transfer
learning from deep convolutional neural networks. Clin. Radiol. 73, 439–445
(2018).

32. Desautels, T. et al. Using transfer learning for improved mortality prediction in a
data-scarce hospital setting. Biomed. Inform. insights 9, 1178222617712994
(2017).

33. Pan, S. J. & Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. data Eng. 22,
1345–1359 (2010).

34. Harutyunyan, H., Khachatrian, H., Kale, D. C. & Galstyan, A. Multitask learning and
benchmarking with clinical time series data. arXiv:1703.07771 (2017).

35. Che, Z., Purushotham, S., Cho, K., Sontag, D. & Liu, Y. Recurrent neural networks
for multivariate time series with missing values. Sci. Rep. 8, 6085 (2018).

36. Vaswani, A. et al. Attention Is All You Need. arXiv:1706.03762 (2017).
37. Shi, S., Wang, Q., Xu, P. & Chu, X. Benchmarking state-of-the-art deep learning

software tools. in 2016 7th International Conference on Cloud Computing and Big
Data (CCBD) 99–104 (IEEE, Macau, 2016).

38. Montavon, G., Samek, W. & Müller, K.-R. Methods for interpreting and under-
standing deep neural networks. Digit. Signal Process. 73, 1–15 (2018).

39. Rajkomar, A. et al. Scalable and accurate deep learning with electronic health
records. npj Digit. Med. 1, 18 (2018).

40. Yin, Z., Zhao, M., Wang, Y., Yang, J. & Zhang, J. Recognition of emotions using
multimodal physiological signals and an ensemble deep learning model. Comput.
methods Prog. Biomed. 140, 93–110 (2017).

41. Deng, L. & Platt, J. C. Ensemble deep learning for speech recognition. in 15th
Annual Conference of the International Speech Communication Association (ISCA,
Singapore, 2014).

42. Qiu, X., Zhang, L., Ren, Y., Suganthan, P. N. & Amaratunga, G. Ensemble deep
learning for regression and time series forecasting. in 2014 IEEE Symposium on
Computational Intelligence in Ensemble Learning (CIEL) 1–6 (IEEE, Orlando, 2014).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2019

D. Chen et al.

5

Scripps Research Translational Institute npj Digital Medicine (2019)    43 

https://doi.org/10.1001/jamainternmed.2018.7117
https://doi.org/10.1001/jamainternmed.2018.7117
https://doi.org/10.5888/pcd11.130389
https://doi.org/10.5888/pcd11.130389
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Deep learning and alternative learning strategies for retrospective real-world clinical data
	Introduction
	Clinical contexts
	Patient volume
	Patient variability
	Data sparsity
	Computational costs
	Model interpretation
	Model evaluation and implementation

	Discussion
	Conclusions
	Reporting summary

	Supplementary information
	Supplementary information
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGMENTS




