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Abstract

Cognitive control, with a limited capacity, is a core process in human cognition for the 

coordination of thoughts and actions. Although the regions involved in cognitive control have been 

identified as the cognitive control network (CCN), it is still unclear whether a specific region of 
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the CCN serves as a bottleneck limiting the capacity of cognitive control (CCC). Here, we used a 

perceptual decision-making task with conditions of high cognitive load to challenge the CCN and 

to assess the CCC in a functional magnetic resonance imaging (fMRI) study. We found that the 

activation of the right anterior insular cortex (AIC) of the CCN increased monotonically as a 

function of cognitive load and showed a significant correlation to the CCC. In a subsequent study 

of patients with unilateral lesions of the AIC, we found that lesions of the AIC were associated 

with a significant impairment of the CCC. Simulated lesions of the AIC resulted in a reduction of 

the global efficiency of the CCN in a network analysis. Altogether, these findings suggest that the 

AIC, as a critical hub in the CCN, is a bottleneck of cognitive control.

Keywords

anterior cingulate cortex; anterior insular cortex; cognitive control; cognitive control capacity; 
cognitive control network

Introduction

Cognitive control, which coordinates mental operations under conditions of uncertainty at 

perceptual or higher levels so that decisions can be made (Fan et al., 2014), is supported by 

the cognitive control network (CCN) in the brain (Fan et al., 2014; Niendam et al., 2012; Wu 

et al., 2018). The CCN is a large-scale network composed of two sub-networks: (1) the 

frontoparietal network (FPN), including the frontal eye field (FEF) and supplementary eye 

field, mid frontal gyrus (MFG), areas near and along the intraparietal sulcus (IPS) and 

superior parietal lobule (Corbetta, 1998; Fan et al., 2014); (2) the cingulo-opercular network 

(CON), including the anterior cingulate cortex (ACC) and anterior insular cortex (AIC) 

(Dosenbach et al., 2008; Dosenbach et al., 2007); and subcortical structures, including the 

thalamus and basal ganglia (Fan et al., 2014; Koziol, 2014; Rossi et al., 2009). It is known 

that the cognitive control system has a severely low upper limit (Posner and Snyder, 1975). 

According to the information theory (Shannon and Weaver, 1949), this upper limit can be 

quantified as the capacity of an information processing channel, i.e., the maximal amount of 

information that can be processed during a certain period of time. Under this framework, we 

have recently quantified the capacity of cognitive control (CCC) as approximately 3 to 4 bits 

per second (bps) (Fan, 2014; Wu et al., 2016). However, the neural mechanisms limiting the 

CCC remain unclear.

A potential mechanism of this capacity limit could be the existence of a single bottleneck 

region/sub-network of the CCN exerting a heavy working load due to its concurrent 

involvement in multiple processes during cognitive control (i.e., an integrative hub) (De 

Baar, 1994; Gorban et al., 2011; Watanabe and Funahashi, 2014). The AIC appears to be 

best candidate for a bottleneck region that determines the CCC. It receives information from 

multiple modalities (e.g., visual, auditory, somatosensory, motor, and autonomic nervous 

systems) and domains (e.g., cognitive control, interoception, emotion, and language) 

(Ackermann and Riecker, 2004; Augustine, 1996; Bamiou et al., 2003; Chang et al., 2012; 

Critchley et al., 2004), and re-represents the vast information to generate higher-level 

abstract and subjective information that are considered as “thoughts”, “feelings”, and 
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“awareness” (Brass and Haggard, 2010; Craig, 2009, 2011; Gu et al., 2013; Nelson et al., 

2010; Singer et al., 2009). The AIC has abundant anatomical connections with diverse parts 

of the brain (Augustine, 1996; Cauda et al., 2012; Cauda et al., 2011; Cauda and Vercelli, 

2012; Eckert et al., 2009; Flynn, 1999; Kelly et al., 2012; Spagna et al., 2018a), which may 

support dynamic coordination among information processes in different large-scale brain 

networks (Cocchi et al., 2013; Menon and Uddin, 2010; Sridharan et al., 2008). Each of the 

functions of the AIC (e.g., encoding, integrating, switching, and controlling) requires and 

competes for the limited neural resources of this region. Inefficient information processing 

in such a brain hub should significantly impair global communication (Albert et al., 2000; 

Power et al., 2013), and consequently, damage of the AIC may significantly impact the 

CCC.

Here we employed a perceptual decision-making task, the backward masking majority 

function task (MFT-M) (Wu et al., 2016), to challenge cognitive control by manipulating 

both information amount (measured as information entropy), which depends on both 

uncertainty of inputs at perceptual level and higher-level mental algorithms to make the 

decision, and the exposure time (ET) of the stimuli so that the amount of to-be-controlled 

information during a unit of time (i.e., information rate, referred as cognitive load in this 

study) could be varied within a wide range, and therefore the CCC of each participant could 

be estimated based on the relationship between cognitive load and response accuracy. We 

tested the role of the AIC as a bottleneck of cognitive control by examining (1) the 

relationship between its activity and the cognitive load and the relationship between its 

activity and CCC in a functional magnetic resonance imaging (fMRI) study, and (2) the 

necessity of the AIC in supporting the CCC in a human lesion study. The mechanism of the 

AIC, in comparison to the ACC, in relation to the CCC was further explored by combining 

complex network analyses with lesion simulations.

Materials and Methods

Participants

Adults with no history of head injury, psychiatric, and neurological disorders (n = 32) 

participated in the fMRI study. All participants were right-handed and had normal or 

corrected-to-normal vision. We excluded one participant for poor image quality and an 

additional four participants because of high percentage (> 5%) of missing responses. The 

final sample size was 27 (15 females and 12 males; mean ± standard deviation [SD] age, 

25.6 ± 4.6 years). The Institutional Review Boards (IRB) of The City University of New 

York (CUNY) and of the Icahn School of Medicine at Mount Sinai (ISMMS) approved the 

protocol and written informed consent was obtained from each participant before 

participation.

In the lesion study, we recruited patients with a focal lesion of the AIC (AIC group, n = 8), 

patients with a focal lesion of the ACC (ACC group, n = 7), and patients with a focal lesion 

outside the CCN regions as brain damage controls (BDC group, n = 9, eight with a lesion in 

the temporal pole, and one with a lesion in the frontal pole) from the Patient’s Registry of 

Tiantan Hospital, Beijing, China. All lesions were unilateral. We also recruited participants 

with no history of head injury, psychiatric, and neurological disorders as neurologically 
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intact controls (NIC group, n = 27) from local Beijing communities. All participants were 

right-handed and had normal or corrected-to-normal vision. The demographic information 

(including gender, age, and education) was matched across groups. All participants 

completed the Mini-Mental State Examination (MMSE) (Cockrell and Folstein, 2002) and 

the Beck Depression Inventory (BDI) (Schwab et al., 1967) questionnaires for assessment of 

cognitive ability and mood state, respectively (see Supplementary Material and 

Supplementary Table 1 for details). One patient in the ACC group and one patient in the 

BDC group were excluded from further analyses because they did not follow the instruction 

to make a response in at least 95% of the trials. The IRB of Tiantan Hospital of the Capital 

Medical University in Beijing approved the protocol and written informed consent was 

obtained from each participant.

The backward masking majority function task

To make a decision under conditions of uncertainty at either perceptual or higher-levels, 

cognitive control is employed to coordinate the mental operations needed for the decision-

making. The majority function task (MFT) requires participants to indicate the direction 

majority of a set of left and right-pointing arrows displayed on the screen (e.g., with 2 left-

pointing arrows and 3 right-pointing arrows). In our previous studies using the MFT, we 

have demonstrated that a sophisticated algorithm that consists of a series of binary decision-

making processes has to be adopted to reach the final decision of the majority (which is 

right-pointing for this case) (Fan et al., 2008; Wang et al., 2011). The information amount, 

determined by both inputs (the ratio of left- and right-pointing arrows and the set size) and 

mental algorithms, estimated under the framework of information theory as information 

entropy in unit of bit, varied from 0 to 4.91 bits. This range is much wider than in the flanker 

task (Eriksen and Eriksen, 1974) and the color-word Stroop task (Stroop, 1935), which are 

classical cognitive control tasks that only require a single binary decision-making process 

that ranges from 0 to less than or equal to 1 bit in terms of information entropy (Fan, 2014; 

Mackie et al., 2013).Therefore, cognitive control will be more challenged in the MFT, 

compared to in the flanker task.

According to the information theory (Shannon and Weaver, 1949), when the amount of 

information to-be-processed during a unit of time (information rate in bps) exceeds capacity, 

the communication accuracy starts to reduce and eventually reaches the chance level when 

the information rate is too high. In the MFT, the exposure time (ET) of the arrow sets was 

fixed to 2500 ms and a relative high accuracy (about 75%, much higher than chance level of 

50%), was observed under the condition with the highest cognitive load (Fan 2008; Mackie 

et al., 2013), indicating that the cognitive load in this task was not high enough to challenge 

the CCC. To further challenge cognitive control, we additionally manipulated the ET using a 

backward masking approach (i.e., following the presentation of a target set for a duration of 

time, which is the ET, a mask set was displayed to prevent further visual processing of the 

target) so that the time given for cognitive control in a trial was constrained from long to 

short. The cognitive load in this MFT-M task varied between 0.79 and 19.64 bps (see 

below). When the cognitive load is higher than the capacity (i.e., the CCC), it would lead to 

a drop in response accuracy (Wu et al., 2016). This relationship can be used to estimate the 
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CCC of each participant (also see below). The MFT-M has a test-retest reliability of 0.86 in 

assessing participants’ CCC (Wu et al., 2016).

To increase both detection and estimation power for this fMRI study, the task was modified 

by reducing the number of task conditions with increased number of trials in each task 

condition, and by adding null trials with no visual stimuli presented (see below for details). 

Other parameters were identical to the full version of the MFT-M (Wu et al., 2016) (see Fig. 

1a for an illustration of this task). At the beginning of each trial, there was a fixation period 

for 0 to 500 ms, followed by five arrows presented simultaneously lasting for a variable ET. 

Each arrow pointed either to the left or to the right. The length of each arrow was 0.37° of 

visual angle. These arrows were randomly presented at eight possible locations arranged as 

an octagon that subtended approximately 1.5° from the fixation cross. Following this arrow 

set, a mask consisting of eight diamond shapes at the same eight positions was presented for 

500 ms, and was replaced by a fixation period of 0 to 1750 ms. The diameter of each 

diamond shape was identical to the length of each arrow. Participants were required to 

indicate the direction in which the majority of the arrows pointed by pressing a 

corresponding button as accurately and quickly as possible. Response accuracy was 

emphasized over RT. Responses had to be made within a 2500 ms window starting from the 

onset of the arrow set. Participants were instructed to make a response in every trial and to 

guess when they failed to find the majority direction. Participants with a response rate lower 

than 95% were excluded from analyses. Following the 2500 ms trial period, a feedback was 

presented for 750 ms to inform the participants whether their response in the current trial 

was correct. At the end of each trial, there was a variable post-feedback fixation period for 

1250 to 1750 ms. Each trial was 5000 ms in duration. This trial structure ended with a 2500 

ms jittered design for stimulus onset with a range of 3250 to 5750 ms, in addition to null 

trials (see below).

The cognitive load (in information rate) of each condition was manipulated by varying both 

congruency and ET in a 3 (congruency) × 4 (ET) factorial design. The congruency refers to 

the ratio between the majority and minority direction of arrows, which could be 5:0 (5 left or 

5 right), 4:1 (4 left with 1 right or 4 right with 1 left), or 3:2 (3 left with 2 right or 3 right 

with 2 left). The ET could be 250, 500, 1000, or 2000 ms. Table 1 provides the estimates of 

information amount (measured as information entropy), the reciprocal of ET (i.e., 1/ET), and 

cognitive load (measures as information rate, which can be computed as entropy/ET) in each 

task condition. Fig. 1b and 1c show the information entropy in each congruency condition 

and the information rate in each task condition, respectively. The information rate increases 

as a function of both information entropy and the reciprocal of ET with a super-additive 

effect. In the fMRI study, there were 12 null trials as a 5000-ms fixation period, in addition 

to 36 test trials in each run. The congruency was varied within each run with 12 trials under 

each congruency condition. The ET was varied between runs with three runs for each ET, 

and there were 12 runs in total. For each participant, the presentation of the trials within each 

run was in a random order across all levels of congruency, and the presentation of runs was 

also in a random order across all ETs. The exposure time was manipulated between blocks 

to avoid speed-accuracy trade-off, and the congruency was manipulated within block to keep 

participants’ attention on the task. At the beginning and end of each run, there was a 30 s 

fixation period in the fMRI study and a 3 s fixation period in the lesion study. In the fMRI 
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study, each run was composed by 48 trials (36 task trials and 12 null trials) and lasted 300 s. 

In total, 432 task trials were presented, and the task took approximately 68 minutes to be 

completed. In the lesion study, each run was composed by 36 task trials without any null 

trial and lasted 213 s. In total, there were 432 task trials presented and the task took 

approximately 43 minutes. Additional information about the testing procedure can be found 

in the Supplementary Methods.

Estimation of the capacity of cognitive control

For each participant, response accuracy was used to estimate the CCC (Wu et al., 2016). 

According to the definition of the capacity of a channel (Shannon and Weaver, 1949), we 

assumed that the probability of obtaining a correct response (equivalent to response 

accuracy) was determined by the difference between the amount of to-be-processed 

information and the amount that can be processed, i.e., the CCC. When the cognitive load is 

increased but is still lower than the CCC, the responses should be accurate. However, when 

the cognitive load exceeds the CCC, there should be the drop in response accuracy. The 

cognitive load was calculated using the congruency and ET in a grouping search model 

demonstrated in our previous studies (Fan et al., 2008; Wang et al., 2011; Wu et al., 2016). 

In this model, participants keep randomly drawing a subset of stimuli from the given stimuli 

set, with the sample size as the majority size (Nmaj, which is 3 for the set size of 5), until a 

congruent sample (i.e., all arrows pointing to same direction) is obtained. The arrow 

direction in this congruent sample is then returned as the final response. The estimated 

amount of to-be-processed information (information entropy) can be estimated as the log2 

transformation of the averaged number of to-be-processed arrows to reach a congruent 

sample. Each participant’s CCC limits the amount of can-be-processed information under 

each ET. A correct response would be made if a congruent sample can be obtained within 

the ET, otherwise a random guessing response would be made. Therefore, the expected 

response accuracy (E[accuracy]) is as:

E accuracy = Pcongruent × p0 + 1 − Pcongruent × pguess

in which p0 is the baseline response accuracy when a congruent sample is obtained, pguess is 

the chance level of accuracy for guessing (50%), and Pcongruent is the probability that at least 

one congruent sample can be obtained within a given ET. The Pcongruent can be calculated as 

100% minus the probability of obtaining no congruent sample within the ET, which is 

Pmiss  
ns, with Pmiss as the probability of obtaining an incongruent sample by one attempt of 

search and ns as the number of attempts. The Pmiss is determined by the congruency of an 

arrow set (see Supplementary Materials for details), while ns is determined by the amount of 

information that can be processed within a unit of time (parameter C), Nmaj, and ET, 

expressed as ns = 2C × ET / Nmaj. The final equation is
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E accuracy = 1 − Pmiss  

2C × ET
Nma j × p0 + Pmiss  

2C × ET
Nma j × pguess .

The estimated CCC is the value of C that provides the best global fitting of the predicted 

response accuracy to the empirical response of each participant across all conditions. A high 

CCC indicates that more information (in bps) can be accurately processed during a given 

period, leading to high response accuracy in task conditions with high information rate (as 

the index of cognitive load). See Supplementary Methods for details of the estimation of the 

CCC, as well as the computation of the mean response accuracy and reaction time (RT) in 

each condition. The RT was not included in the model for the estimation of the CCC. In our 

previous study for the task development and CCC estimation (Wu et al., 2016), we found 

that although including the RT had a weak improvement in model fitting compared to the 

model used in the current study, the reliability of the estimation was impaired.

Intelligence quotient (IQ) measurement

For the fMRI study, the IQ of each participant was measured using a short form of the 

Wechsler Adult Intelligence Scale – Fourth Edition (WAIS-IV), which included three 

subtests: Symbol Search, Vocabulary, and Figure Weight. This combination is one of the 

best three-subtest short-form combinations, with high reliability (.935) and validity (.915) 

coefficients (Sattler and Ryan, 2009). The raw score of each subtest was converted to the 

scaled score for the individual’s age group. The total scaled score across the three subtests 

was then converted to the estimated FSIQ following the Tellegen and Briggs (Tellegen and 

Briggs, 1967) procedure.

fMRI data acquisition

MRI acquisitions were obtained at ISMMS on a 3T Siemens Magnetom Skyra scanner with 

a 16-channel phase-array coil. Each scan session lasted about 1.5 hours. All images were 

acquired along axial planes parallel to the anterior commissure-posterior commissure (AC-

PC) plane. Twelve runs of T2*-weighted images for fMRI were acquired with a gradient-

echo planar imaging (GE-EPI) sequence with the following parameters: 40 axial slices of 4 

mm thick, interleaved, skip = 0 mm, TR = 2000 ms, TE = 27 ms, flip angle = 77°, FOV = 

240 mm, matrix size = 64 × 64, voxel size = 3.8 × 3.8 × 4 mm. Each run began with two 

dummy volumes before the onset of the task to allow for equilibration of T1 saturation 

effects, followed by the acquisition of 150 volumes. A high-resolution T1-weighted 

anatomical volume of the whole brain was also acquired with a magnetization-prepared 

rapid gradient-echo (MPRAGE) sequence with the following parameters: 176 axial slices of 

0.9 mm thick, skip = 0 mm, TR = 2200 ms, TE = 2.51 ms, flip angle = 8°, FOV = 240 mm, 

matrix size = 256 × 256, voxel size = 0.9 × 0.9 × 0.9 mm.
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fMRI data analysis

Image preprocessing.—Event-related fMRI data analysis was conducted using the 

Statistical Parametric Mapping package (SPM 12, RRID: SCR_007037; Welcome Trust 

Centre for Neuroimaging, London, UK). The T1 image and all EPI images were manually 

adjusted to align the AC-PC plane. For each participant, each EPI image volume was 

realigned to the first volume and then slice timing corrected using the first slice as the 

reference. The T1 image was then coregistered to the mean EPI image using normalized 

mutual information. The coregistered T1 image was segmented into grey matter, white 

matter, cerebrospinal fluid, bone, soft tissue, and air/background according to the SPM 

tissue probability map (Mazziotta et al., 1995), with affine regularization as ICBM space 

template – European brains. Realigned EPI images were then spatially normalized using the 

forward deformation field estimated in segmentation, resampled to a voxel size of 2 × 2 × 2 

mm. Normalized EPI images were then spatially smoothed with a Gaussian kernel of 8 mm 

full-width half-maximum.

General linear modeling.—If a brain region is associated with the CCC, it should show 

the following two properties. First, the activation of this region should match the pattern of 

information rate (Fig. 1c). This property was examined by the conjunction of a main effect 

of information entropy, a main effect of the reciprocal of ET, and the super-additive 

interaction effect. Second, this super-additive activation should be positively correlated to 

the CCC across participants, because a greater super-additive interaction effect in activation 

of this region indicates a better response to the demand of an increase in information rate, 

which determines the CCC.

First-level (single-subject level) statistical analyses of the event-related BOLD signal of each 

participant were conducted to identify the significant relationship between the hemodynamic 

responses in brain regions and task events (Friston et al., 1994). For each run, three 

regressors were constructed based on the onset vectors of arrow sets corresponding to the 

three congruency conditions under each ET in trials with correct responses in each run. An 

additional nuisance regressor was constructed for each condition based on the onset vectors 

of the arrow set for trial(s) with incorrect responses in this condition if there was any 

(minimum 0 and maximum 3 nuisance regressors in each run). The duration of these vectors 

were set as the ET in the corresponding condition for the regressors mentioned above. To 

model out the feedback-related responses, two additional regressors were constructed for 

each run based on the onset vectors of feedback, with one for positive feedbacks and the 

other one for negative feedbacks. The durations of these vectors of feedbacks were set as 0. 

All of the above mentioned vectors were convolved with a standard hemodynamic response 

function (HRF) (Friston et al., 1998). The six motion parameters generated during 

realignment and sessions were entered into the model as additional nuisance covariates for 

each run. A high-pass filter with a 128-s cutoff was used to remove low-frequency signal 

drift, and serial correlation was estimated using an autoregressive AR(1) model (also for the 

following first-level GLM analyses). The GLM was estimated and the image of parameter 

estimate (β) for each regressor was obtained. For the arrow set-related regressors, the brain 

response to an event was modeled as the convolution of a standard HRF and a rectangular 

function with the ET as the duration. The parameter estimate of each regressor (i.e., the β 
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value) represents the change of HRF amplitude, while the convoluted hemodynamic 

response curve represents the cumulated BOLD responses across the duration. The area 

under a response curve depends on two factors: HRF amplitude and duration (ET). By 

manipulating the information entropy and ET, we can disassociate the contributions of 

information rate and processing time to BOLD responses. The estimated HRF amplitude is 

the brain response as a function of information rate. For a given value of information 

entropy, a large change of HRF amplitude could be associated with a high information rate 

due to a short ET.

For the first-level analysis, a contrast image of all conditions versus baseline was generated 

by averaging the β values across the regressors for trials with correct responses. The linear 

main effect of information entropy was examined using the orthogonal polynomial contrast 

of entropy for 5:0, 4:1, and 3:2 congruency conditions, regardless of the ET, based on the 

information entropy estimation of each congruency condition, and this contrast vector was 

demeaned to remove the zero-order term and by normalizing to an absolute maximum value. 

The linear main effect of the reciprocal of ET was examined using the contrast based on the 

demeaned and normalized reciprocal of ET regardless of congruency. The information 

entropy × reciprocal of ET interaction was examined using the contrast as the scalar product 

between the contrast vectors of information entropy and the reciprocal of ET. The positive 

interaction effect indicates a super-additive effect between the entropy and reciprocal of ET, 

with stronger activation increase as entropy increases under conditions with shorter ET than 

under conditions with longer ET. It is worth noting that this interaction effect is statistically 

independent of the information rate because both entropy and the reciprocal of ET were 

demeaned when computing the interaction. These contrast vectors are summarized in Table 

1.

Second-level group analyses were conducted to identify regions with significant activation 

changes across participants associated with each effect, including single condition versus 

baseline, all condition versus baseline (All-minus-Baseline), the main effects of information 

entropy and reciprocal of ET, and the information entropy × reciprocal of ET interaction. For 

each effect, the corresponding contrast image for each participant was entered in a random-

effects statistical model that accounts for inter-subject variability and permits population-

based inferences. One-sample t-test was performed for each voxel. The conjunction of the 

two main effects and their interaction was examined. A positive effect in this conjunction 

indicates that the pattern of brain activation across task conditions matches the information 

rate as a function of information entropy, the reciprocal of ET, and their interaction. A 

significance level for the height of each voxel of p < .001 (uncorrected) was used, together 

with a contiguous-voxel extent threshold (estimated based on the random field theory) to 

correct for multiple voxel comparisons resulting in cluster-level p < .05. This thresholding 

approach was also applied for the whole brain analyses described below.

A whole-brain voxel-wise second-level regression analysis was conducted to identify the 

super-additive activation regions that predict the CCC across participants. Contrast images 

of the information entropy × reciprocal of ET interaction effect were entered in a random-

effects model, with the CCC values of participants as the regressor, to conduct a voxel-wise 

regression analysis between the super-additive activation and CCC.
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Examination of the relationship between the neural involvement and cognitive 
load.—To illustrate the regional activation in each task condition, we conducted regions of 

interest (ROI) analyses for regions that revealed a positive effect in the conjunction analysis. 

Their coordinates were defined as the corresponding positive local peaks in the second-level 

interaction contrast image (left AIC: [−32, 22, 0], right AIC: [32, 26, −8], left ACC: [−2, 18, 

50], right ACC: [8, 28, 38]), which is statistically independent to the models in following 

ROI analysis. For each ROI, the first eigenvariate of the β value was extracted across all 

voxels within a sphere with 6 mm radius around the peak, from the first-level single-

condition-versus-baseline contrast map of each condition of each participant. The 

hemodynamic response curve within a 12 scans (24 s) window after the onset of arrows was 

reconstructed for each of these ROI using the MarsBaR toolbox (RRID: SCR_009605) 

(Brett et al., 2002).

Based on our previous studies (Wu et al., 2016), the activity of an information processing 

entity increases as a function of the rate of information input, and this increase is 

approximately linear when the information rate is lower than the capacity. The increase 

would start to slow down when the information rate exceeds the capacity until an activity 

plateau is reached (Buschman et al., 2011; Moreno-Bote et al., 2014). To test this pattern in 

the ROIs defined above, we adopted a non-linear capacity-limited model to fit the 

relationship between the regional activation (Y) of each ROI and cognitive load (i.e., 

information rate, I) as a logistic function: Y = Y0 + S * (1 – e−K * I), which is a typical 

function to describe a growth with plateau. Here Y0 denotes the baseline activation when I is 

0 bps, S denotes the span of the activity change when I rises from 0 to infinite, and K is the 

rate constant. The half-time of activity increase can be calculated as ln(2) / K, and the 

plateau of activity increase can be calculated as S + Y0. This model was compared to a 

simpler linear function: Y = Y0’ + K’ * I, where Y0’ denotes the baseline activation and K’ 
denotes the rate of information processing, which indicates that no activation plateau is 

shown within the range of information rate in this study.

A mixed effect model with Y0, S, and K as both fixed and random effects, and participant as 

the random effect was adopted to estimate parameters for each model, in which the restricted 

likelihood of the linear mixed-effect model (RELME) was used. The Bayesian information 

criterion (BIC) of each fitted mixed effect model, which takes likelihood, sample size, and 

number of free parameters into account, was used for the group-level model selection. For 

model comparison (∆BIC = BIC linear –BIC logistic), a ∆BIC > 2 indicates positive evidence 

against the model with higher BIC (∆BIC = 2–6: positive; 6–10: strong; >10: very strong). 

The estimated model parameters and other statistics of model fitting (e.g., log likelihood, 

Akaike information criterion, and root mean squared residual) were also computed.

For the regions with the logistic function as the optimal model (i.e., left and right AIC, see 

Results), we compared the estimated parameters (i.e., Y0, S, and half-time) between these 

two regions, using one-tailed pair-wise t-tests. Each index was calculated as the sum 

between the estimated fixed effect as a constant across participants and the random effect 

varying across participants. To examine how the activation changes in the right AIC 

determine the CCC, a Pearson correlation analysis was conducted between the CCC and 

each index (i.e., Y0, S, and half-time).
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Examination of the mediative role of AIC activation for the relationship 
between CCC and IQ.—The relationship among the super-additive activation in the right 

AIC, CCC, and IQ was examined using mediation analyses (Baron and Kenny, 1986), with 

the CCC as the predictor (X), super-additive activation in the right AIC as the mediator (M), 

and IQ as the target variable (Y). We first examined the predictive effect of X to Y (path c: Y 
= b10 + b11 ∙ X) and the predictive effect of X to M (path a: Y = b20 + b21 ∙ X). Then a 

regression model with both X and M as predictors (Y = b30 + b31 ∙ X + b32 ∙ M) was 

estimated if both paths a and c were significant. If the b32 (path b) is significant and b31 is 

smaller than b11, M is a mediator between X and Y, with a non-significant b31 indicating a 

full-mediation effect and a significant b31 indicating a partial mediation effect. This analysis 

was conducted for the FSIQ and each subscale of the IQ (i.e., Symbol Search sub-index, 

Vocabulary sub-index, scaled Vocabulary sub-index, and Figure Weight sub-index).

Comparison of the CCC across groups in the lesion study

Justification of the inclusion of groups.—The design of the lesion study followed the 

logic used in our previous study (Gu et al., 2012). To examine whether a lesion in the AIC, 

but not in the ACC, would lead to an impaired CCC, we included patients with a unilateral 

focal lesion of the AIC (the AIC group) and patients with a unilateral focal lesion in the 

ACC (the ACC group). The ACC group also served as an active control group to test 

whether a lesion in any region of the CON would lead to a reduced CCC. We included a 

matched sample of neurologically intact controls (the NIC group) as a baseline reference of 

normal CCC. An additional group of patients with a lesion outside the CCN regions (brain 

damage controls, the BDC group) was recruited to exclude the potential explanation that the 

impaired CCC is due to brain surgery procedures per se, rather than the AIC or ACC lesion.

Lesion reconstruction.—For each patient, the brain regions with the lesion were 

identified and plotted onto an anatomical template of a normal control (ch2.nii, provided by 

MRIcron: RRID: SCR_002403, http://www.cabiatl.com/mricro/mricro/index.html) by a 

neurosurgeon (X. W.). A group overlap of multiple lesions was created for each group using 

the MRIcron, with all lesions mapped on the right hemisphere.

Comparison of the CCC among groups.—The estimated CCC values were compared 

among groups. If a region is necessary for cognitive control, the CCC in patients with a 

lesion in this region should be significantly lower than in both NIC and BDC groups. In 

addition, BDC patients should not be significantly different from the NIC participants, to 

demonstrate that the impaired CCC is not due to the surgery procedure per se. Therefore, for 

each of the AIC and ACC, we conducted three planned comparisons with Bonferroni 

correction applied.

For each comparison, the non-parametric bootstrapping method (Hasson et al., 2003; 

Mooney and Duval, 1993) was used to assess the probability of observing a between-group 

difference, because the current data set with a small sample size in each lesion group did not 

meet the assumptions of parametric statistics. This procedure was conducted with 10,000 

iterations for each effect (e.g., the comparison between 8 AIC patients and 27 NIC 

participants). In each iteration: (i) a whole sample with all of the 35 participants from both 

Wu et al. Page 11

Neuroimage. Author manuscript; available in PMC 2020 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cabiatl.com/mricro/mricro/index.html


AIC and NIC groups was created; (ii) 27 participants were randomly selected from the 

whole sample as the surrogate NIC sample; (iii) 8 participants were selected randomly from 

the whole sample as the surrogate AIC group; and (iv) the t-value (one-tailed, AIC < NIC) of 

the difference between the two surrogate groups was calculated. After the 10,000 iterations, 

the distribution of the t-values was obtained. The observed t-value of the CCC difference 

between the original AIC and NIC groups was calculated and compared along this t 
distribution. If the probability of obtaining the observed t-value along the permutated 

distribution of t-values was less than 5% (one-tailed), we considered the difference between 

the patient and control groups as significant.

Network analyses of the CCN

Single-trial brain response extraction.—To estimate the task-evoked brain 

connectivity, we first extract whole-brain single-trial brain responses using an “extract-one-

trial-out” approach, as utilized in previous studies (Choi et al., 2012; Kinnison et al., 2012; 

Rissman et al., 2004; Wu et al., 2018). The single-trial responses (in β values) represent the 

change of brain activation associated with a specific event. Specifically, for each participant, 

a first-level GLM was constructed for each trial, which included (1) all regressors of the 

first-level GLM described in the above “General linear modeling” section for the onsets all 

corresponding events for each regressor convoluted with the HRF, as well as the nuisance 

regressors, with the onset of the event of the trial to be modeled excluded in its 

corresponding regressor, and (2) the regressor for this single trial to be modeled, which is the 

convolution of its onset vector with the HRF. The estimation of the GLM was looped trial-

by-trial across all trials. The single-trial brain response is the estimated β image of the single 

trial modeled. The detection and estimation power of this single-trial extraction approach 

has been demonstrated in our previous study (Wu et al., 2018).

Bayesian network construction.—ROI-based Bayesian network analyses (Wu et al., 

2018) were conducted to investigate the effective connectivity between regions of the CCN, 

and between the CCN and sensory regions (i.e., visual areas) for the event-related single-

trial responses. Here the estimated effective connectivity can be considered as the 

dependence of response changes (the single-trial β values) across trials between ROIs, which 

reflects the modulation effects of the task on the intrinsic connectivity driven by task-

irrelevant BOLD signal fluctuation across time. Although the network structure can also 

been discovered by the stochastic Dynamic Causal Modeling (DCM) (Friston et al., 2011), 

which is a more classical approach to estimate the effective connectivity, the set of our ROIs 

(n = 14, see below) is too large to be handled by DCM. Compared to the DCM, our 

Bayesian network analyses have advantages in computational efficiency.

The nodes of the networks were defined based on the conjunction between the main effect of 

information entropy and the main effect of the reciprocal of ET, as clusters that passed the 

threshold of cluster-level p < .05 for this conjunction (i.e., the height threshold p < .001 with 

the extent threshold k > 185, estimated based on the random field theory). Fourteen nodes 

were included: four CON regions (left and right AIC, left and right ACC), four FPN regions 

(left and right FEF, left and right IPS), four subcortical regions (left and right thalamus, left 

and right caudate nucleus), and left and right visual areas. For each node, the first 
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eigenvariate β value was extracted across all voxels in the corresponding cluster of each 

single-trial β image. Then for each node, its trial-by-trial first eigenvariate β values were 

extracted for each participant with all task trials included.

At first-level (single-subject level), the connectivity between nodes was estimated, using the 

max-min hill-climbing (MMHC) Bayesian structure learning algorithm (Tsamardinos et al., 

2006). In this algorithm, the skeleton of the network (i.e., an undirected network consisting 

of the connections between nodes without their directions) is first learned by the Max-Min 

Parents & Children (MMPC) algorithm. After the MMPC procedure, the direction of each 

connection in the skeleton is estimated using the hill-climbing (HC) algorithm, which is a 

local search method. A bootstrapping strategy was used to identify the global fitting 

structure (Friedman et al., 1999), in which we generated 200 random datasets with each 

dataset containing 432 trials randomly sampled form the original task trials with 

replacement, and then one MMHC learned network was contrasted for each random dataset. 

The bnlearn package (http://www.bnlearn.com) (Schwarz, 1978; Scutari and Nagarajan, 

2011) was used to implement the MMHC algorithm. The outputs of the MMHC include the 

estimated strength and direction of each connection. For a connection between nodes i and j, 
the strength value is the frequency of the bootstrapped samples showing this connection, 

while the direction value is the probability of the connection from i to j. Both strength and 

direction values range from 0 and 1. For a pair of forward and backward connections 

between i and j (i.e., from i to j vs. from j to i), the strength values are identical, and the sum 

of the direction values is 1 if the strength value is greater than 0. The direction value is 0 if 

the strength value is 0. A 14 × 14 weighted directed connectivity matrix was constructed, 

with the connectivity value (i, j; i ≠ j) as the product of the strength value and the direction 

value. The values on the diagonal of this matrix were set as 0 as required by the complex 

network analyses.

After constructing the networks for each participant, we examined the significance of the 

network connections at the group level. A pairwise t-test (two-tailed) was conducted 

between the empirical connectivity and the baseline connectivity for each connection across 

participants. A significance level of p < .001 (uncorrected) was adopted. Here the baseline 

connectivity was estimated by 1000 permutations for each participant. In each permutation, 

the values within each ROI were shuffled so that the correlation between each pair of nodes 

would be random. Then the corresponding connectivity matrix was constructed using the 

same Bayesian network construction procedure described above. The 1000 connection 

matrixes were averaged as the baseline connection matrix for each participant.

Graph analysis.—To characterize the structure of the learned Bayesian networks, we 

conducted complex network analysis that measured topological properties of the networks 

using the Brain Connectivity Toolbox (RRID: SCR_004841; brain-connectivity-toolbox.net) 

(Rubinov and Sporns, 2010). The community structure of the network was constructed by 

subdividing it into non-overlapping groups of nodes in a data-driven manner, i.e., by 

maximizing the possible numbers of within-group connections and minimizing the number 

of between-group connections. This estimated community structure was applied to all 

participants in the following estimations of the functional segregation and integration, which 

assumes that the brain networks of all participants share a common community structure.
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For each participant, we examined whether the right AIC played a more important role as a 

connector hub for intermodular connections compared to the ACC in the estimated network 

by comparing their participation coefficients, which is a measurement of the centrality of 

nodes that quantifies the diversity of intermodular interconnections of each node. A node 

with a 0% participation coefficient indicates that it connects only with regions in its own 

module, while a participation coefficient of 100% indicates that it evenly connects with 

regions in all modules. A higher value indicates the greater importance of a node in 

facilitating global intermodular integration. Compared to the degree-based measures of 

centrality (i.e., the strength and betweenness centrality), the measure of the participation 

coefficient is more appropriate in identifying the hubs of brain networks that are critical to 

the communication among multiple systems (sub-networks) (Power et al., 2013). The 

participation coefficients for the inward connections (i.e., connections from other nodes to a 

given node) and the outward connections (i.e., connections from a given node to other 

nodes) were measured respectively. Pairwise t-tests (one-tailed) were conducted to test 

whether the participation coefficient of the right AIC was significantly higher than the 

participation coefficients of other regions, i.e., left AIC, left ACC, and right ACC. For the 

outward connections, because the left ACC had the highest participation coefficient across 

regions of the CON, we compared its participation coefficient to other regions in the CON 

using pairwise t-tests (two-tailed). Bonferroni correction was applied as multiple comparison 

correction for each test. The computation of participation coefficient was based on the 

unthresholded connectivity matrix to avoid the influence of thresholding on network 

sparsity. The correlations between participation coefficient and the CCC across participants 

were examined.

Lesion simulation.—Changes in network properties and connections after simulated 

lesion of 14 nodes were examined with the focus on the AIC lesion. We simulated the lesion 

of a node by setting the trial-by-trial β values of this node as zero, and the corresponding 

Bayesian network was learned for each participant. Because the global fit of the network to 

the empirical data has been taken into consideration in the MMHC, the simulated lesion 

would not only set the connections of that lesioned node as 0 but also impact the overall 

connectivity pattern. To quantify the influence of the simulated lesion on the global 

communication across regions in the network, the global efficiency (Eglobal) of each of the 

14 lesioned networks was compared to the global efficiency of the non-lesioned network 

using a pairwise t-test (two-tailed), with Bonferroni correction applied. To compare the 

influence on global efficiency caused by an AIC and ACC lesion, we conducted a 2 (Region: 

AIC, ACC) × 2 (Lateral: left, right) repeated measures ANOVA on the change of global 

efficiency [∆Eglobal = Eglobal (non-lesioned) - Eglobal (lesioned)]. We also explored the 

connections showing significant changes after simulated lesion (see Supplementary 

Materials for details).

Data and code availability

All of the behavioral and imaging data used in this study cannot be shared because of the 

lack of approval by the IRBs of a data-sharing agreement. E-Prime programs were 

developed for the task presentation, which are available on the authors’ personal GitHub 

(https://github.com/TingtingWu222/CCC). The Matlab scripts related to the estimation of 
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CCC from behavioral data are also available in the same GitHub repository. Other Matlab, 

Python, and R scripts for image preprocessing and fMRI modeling, non-parametrical 

bootstrapping, and Bayesian network analyses are available upon request, and will be also 

released via our GitHub repository as soon as we have all the codes documented and 

organized.

Results

Results of the fMRI study

The accuracy of behavioral responses was close to 100% in the easiest condition 

(congruency of 5:0 and 0.25/s of reciprocal of ET, 1/ET), and declined as a function of both 

information entropy and the reciprocal of ET until reaching chance level (Fig. 2a and 

Supplementary Table 2; see Supplementary Materials for statistic details). These results 

indicate that the input information could be processed accurately in conditions with low 

information rate, but the information processing became less accurate when the information 

rate was increased. For each participant, the CCC was estimated based on the response 

accuracy, and the group mean ± standard deviation (SD) of the CCC was 4.08 ± 0.67 bps 

(range: 2.81 to 5.38 bps; Supplementary Fig. 1). In addition, an increase in RT was 

associated with an increase of both information entropy and ET, indicating that the RT 

increase as a monotonic function of the information entropy was constrained by ET (Fig. 2b 

and Supplementary Table 3; see Supplementary Materials for the statistic details).

The significant positive main effects of information entropy (Fig. 3a and Supplementary 

Table 3) and reciprocal of ET (Fig. 3b and Supplementary Table 4) in terms of activation 

(i.e., the HRF amplitude rather than the convoluted hemodynamic response) were found in 

all core regions of the CCN and visual areas, while the significant negative main effects 

were observed in regions of the default mode network (DMN) (Raichle et al., 2001) (see 

Supplementary Materials for details). The significant positive information entropy × 

reciprocal of ET interaction effect was found in the left and right AIC, the left and right 

dorsal ACC extending to the supplementary motor area (SMA), and the left anterior IPS 

(Fig. 3c and Supplementary Table 5), while there was no region showing a significant 

negative interaction effect. The positive interaction indicates a super-additive activation in 

these regions of the CCN when information entropy and the reciprocal of ET were increased 

synergistically. The significant positive effect of the conjunction of the two main effects and 

their interaction effect was found in the left and right AIC, and in the left and right ACC, 

with no significant negative effect found (Fig. 3d and Table 2). Fig. 4a shows the pattern of 

the super-additive effect in terms of estimated HRF amplitude change in these regions. It is 

worth noting that while both RT and HRF amplitude increased as a function of information 

entropy, there was a dissociation of the impact of ET on RT and on HRF amplitude: the RT 

increased but the HRF amplitude decreased as a function of ET. Supplementary Fig. 2 shows 

the cumulative hemodynamic responses (not HRF) in each task condition, revealing that the 

area under these curves increased as a function of information entropy for all ETs.

The fitted curves for the direct relationship between information rate and activation in the 

AIC and ACC were shown in Fig. 4b. The capacity-limited model (logistic function) fitted 

the relationship between regional activation (i.e., the HRF amplitude) and the information 
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rate better than a simpler linear model for left AIC (∆BIC = BIC linear – BIC logistic = 11.3) 

and right AIC (∆BIC = 10.0), indicating that although there was a super-additive activation 

in these region, the increase of activation was slower in the high information rate conditions 

compared to the low rate conditions. Moreover, the right AIC revealed a significantly shorter 

half-time (mean: 7.70) than that of the left AIC (mean ± standard errors: 8.66 ± 0.01; t(26) = 

9.47, p < .001), indicating that the right AIC reached its activation plateau faster. It should be 

noted that the standard errors (SE) were not reported for the right AIC because the random 

effects (which represents the between-subjects difference) were not significant. The linear 

model was preferred for the right ACC (∆BIC = −83.0), and the fitness of capacity-limited 

model and of the linear model for the left ACC were not significantly different (∆BIC = 0.9 

< 2), indicating that the activation increased as a linear function of information rate in the 

left and right ACC. Details of each fitted model are provided in the Supplementary 

Materials.

The estimates of the CCC were positively correlated to the coefficients of the information 

entropy × reciprocal of ET interaction contrast only in the right AIC (coordinates of the local 

peak: x = 30, y = 20, z = −4; T = 5.33, Z = 4.32, cluster size = 105, corrected cluster level p 
= 0.029; Fig. 5a), as shown by the whole-brain voxel-wise regression analysis of individual 

difference in CCC. No significant negative correlationeffect was found in any other voxel or 

region. The patterns of the super-additive activation in the right AIC separately for the 

median-split low CCC and high CCC participants are illustrated in Fig. 5b, which shows that 

the right AIC reached a higher activation in high cognitive load conditions for the high CCC 

participants compared to the low CCC participants. Other properties of the right AIC (i.e., 

parameter estimates of the capacity-limited model and the grey matter volume) were not 

significantly correlated to the CCC (see Supplementary Materials for details).

Both super-additive activation in the right AIC and CCC significantly predicted individual’s 

FSIQ (super-additive activation in right AIC: R2 = .37, F1, 25 = 14.89, B = 2.71, p = .001; 

CCC: R2 = .30, F1, 25 = 10.73, B = 10.45, p = .003, path c). In the mediation model with the 

CCC as the predictor variable, the super-additive activation in the right AIC as the mediator, 

and FSIQ as the target variable (Fig. 6), the coefficient of the super-additive activation (path 

b) in the right AIC was significant (B = 1.97, p = .023), while the coefficient of the CCC 

(path c’) was not significant (B = 5.79 < 10.45, p = .110). The regression model with CCC 

as the predictor controlling for the super-additive activation in right AIC (path a) was 

significant (R2 = .44, F2, 26 = 9.34, p = .001).These results indicate that the relationship 

between the CCC and the FSIQ was fully mediated by the super-additive activation in the 

right AIC. This mediation effect was not significant for any sub-indices of the IQ (see 

Supplementary Results).

Results of the lesion study

Lesion reconstruction for the AIC group and the ACC group (i.e., patients with unilateral 

focal lesion in the AIC and ACC, respectively) were shown in Fig. 7a and 7b. The CCC in 

the AIC group (3.11 bps; 95% CI: 3.10 to 3.12 bps; range: 2.20 to 3.89 bps; pink bars in Fig. 

7c) was significantly lower than in the BDC group (i.e., patients with lesion in a region 

outside the CCN; 3.98 bps; 95% CI: 3.97 to 4.01 bps; range: 2.71 to 4.83 bps; p = .018; the 
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light gray bar in Fig. 7c,), and in the NIC group (3.64 bps; 95% CI: 3.63 to 3.65 bps, range: 

2.45 to 4.77 bps; p = .036; the dark gray bar in Fig. 7c). The difference in CCC between the 

BDC and NIC groups was also not significant (p = .346). These findings indicate a reduction 

of the CCC in the AIC group, which was not due to the surgery procedure per se. In contrast, 

the CCC of the ACC group (3.72 bps, 95% CI: 3.71 to 3.73 bps, range: 3.34 to 3.93 bps; 

light pink bars in Fig. 7c) was not significantly different from the BDC group (p = .405) and 

the NIC group (p = .693). These findings indicate that lesions in the ACC were not 

associated with any reduction in the CCC. The group-mean accuracy and RT in each 

condition for each group are illustrated in Supplementary Fig. 3.

Result of network analyses

The connectivity across the regions defined by the conjunction between the main effects of 

entropy and the reciprocal of ET (Fig. 8a) is shown in Fig. 8b (thresholded) and 

Supplementary Fig. 4 (unthresholded). The estimated community structure of this network 

revealed four modules: Module 1, including left and right AIC together with left and right 

ACC; Module 2, including left and right FEF together with left and right IPS; Module 3, 

including left and right thalamus together with left and right caudate nuclei; and Module 4, 

including left and right visual areas. This data-driven structure subdivision was consistent 

with our definition of the sub-networks of the CCN, with Model 1 to 3 corresponding to the 

CON, FPN, and subcortical network, respectively.

Across regions of the CCN, the right AIC showed the highest participation coefficient in 

terms of the inward connections (i.e., connections from other regions to a given region; 

Supplementary Fig. 5a). Within the CON, the participation coefficient of the right AIC (63.6 

± 1.5%) was significantly higher than the left AIC (51.1 ± 2.3%, t26 = 4.61, p < .001) and 

the left ACC (59.7 ± 1.5%, t26 = 2.34, p = .041), but not significantly higher than the right 

AIC (59.7 ± 2.0%, t26 = 1.92, p = .096; left panel of Fig. 8c). Across regions of the CCN, the 

left ACC showed the highest participation coefficients in terms of the outward connections 

(i.e., connections from a given region to other regions; Supplementary Fig. 5b). Within the 

CON, the participation coefficient of the left ACC (63.6 ± 1.5%) was significantly higher 

than the left AIC (51.1 ± 2.3%, t26 = 4.51, p < .001), the right AIC (59.7 ± 1.5%, t26 = 3.22, 

p = .006), and the right ACC (59.7 ± 2.0%, t26 = 3.59, p < .001; right panel of Fig. 8c). The 

correlation between participation coefficient of the right AIC and CCC was not significant 

for the outward connections (r = −.01, p = .95) and the inward connections (r = −.28, p = .

15).

Networks with a simulated unilateral lesion of the AIC and ACC showed decreased global 

efficiency compared to the non-lesioned network (Fig. 8d and Supplementary Table 6). The 

decrease in global efficiency due to the simulated lesion of the AIC (0.025 ± 0.001) was 

significantly greater than the decrease due to the simulated lesion of the ACC (0.019 

± 0.001), F1, 26 = 16.77, p < .001. The main effect of laterality and the interaction between 

laterality and brain region were not significant (laterality: F1, 26 < 1; interaction: F1, 26 = 

2.05, p = .164). Decreased global efficiency was also found in networks with a simulated 

lesion of other regions of the CCN (Supplementary Fig. 7). The connections showing 
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significant changes in connectivity after unilateral lesion of the AIC are shown in 

Supplementary Fig. 7 (also see Supplementary Materials for details).

Discussion

The activation of the AIC is associated with information rate

The super-additive pattern of the AIC activation demonstrates that the AIC is associated with 

the rate of information processing. In previous studies, we have demonstrated that the 

activation of regions in the CCN increases as a linear function of the information entropy, 

not information rate, when cognitive control is not overloaded (Fan et al., 2014; Wu et al., 

2018). Regional brain response is related to the amount of information being processed (Fan 

et al., 2014; Harrison et al., 2006; Strange et al., 2005; Wu et al., 2018) and information is 

encoded by means of neural spikes of defined populations of neurons (Averbeck et al., 2006; 

Borst and Theunissen, 1999). If each bit of information requires a constant number of spikes 

to be represented, an increase in the amount of the to-be-processed information should be 

associated with a linear increase of neural activation. If a brain region responses to the rate 

of information processing, its activation should increase monotonically as a function of 

information rate, shown as a super-additive effect with both information entropy and ET as 

factors. In this study, the main effects and the super-additive activation found in both AIC 

and ACC indicates that these two regions are the entities responding to not only the 

information entropy, but also the rate of information processing under time constrain.

When a region is overloaded by the amount of information to be processed in a given period 

of time, the resource in terms of neural spikes saturates resulting in information loss 

(Buschman et al., 2011; Marois and Ivanoff, 2005; Moreno-Bote et al., 2014; Rolls et al., 

1997; Todd and Marois, 2004; Watanabe and Funahashi, 2014). Therefore, the activation 

plateau of a region indicates that the information to be processed exceeds the maximal 

amount of information that can be accurately processed in that region in a period of time. 

Although both of AIC and ACC showed a monotonic activation increase as a function of the 

information rate, only the left and right AIC showed the activation plateau, suggesting that 

the bilateral AIC, but not the ACC, have a limited resource for cognitive control at least in 

the range of cognitive load tested in this study. In addition, the right AIC reached its 

activation plateau earlier than the left AIC, which may suggest that this region is most 

responsible in limiting the CCC.

The relationship between the cognitive load (measured as information rate in bps) and 

activation in the AIC and ACC was not confounded by the effect of RT on brain activation: 

the cognitive load, rather than the RT, is associated with the amplitude changes of HRF in 

these regions. An increase in information amount (measured as information entropy in unit 

of bit) is usually accompanied by prolonged RT (Attneave, 1959; Hick, 1952; Hyman, 

1953). However, RT also depends on processing rate, making it difficult to dissociate the 

contribution of information entropy and information rate to the RT and to the brain 

activation when only the information entropy is manipulated (Fan et al., 2014; Wu et al., 

2018). In this study, we manipulated information entropy via the congruency and 

manipulated information rate via the variation of both information entropy and ET. We 

showed that the RT decreased and the HRF amplitude in the AIC and ACC increased as a 
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function of ET decrease (an increase in information rate) regardless of information entropy. 

These results suggest that the information rate is reflected by the HRF amplitude, whereas 

the information entropy is reflected by the area under the cumulative hemodynamic response 

curves, which can be modeled as the convolution between the HRF with estimated amplitude 

and the rectangular function with the ET as the duration representing the processing time. It 

is worth noting that these findings were obtained only when response accuracy was 

emphasized over RT. Participants may employ a different mental processing strategy if 

response speed is emphasized, which may be associated with different brain dynamics.

The activation of the AIC is associated with the CCC

The bottleneck role of the AIC in cognitive control is further supported by its association 

with individual differences in terms of CCC. Examining the association between neural 

responses and task manipulations is a typical approach in cognitive neuroscience to test the 

involvement of a specific brain region in a cognitive process. Beyond this approach, testing 

of the association between neural responses and behavioral outputs across individuals 

provides additional constraints to the model (Vogel and Awh, 2008). In this study, although 

both AIC and ACC were associated with information rate, the right AIC was the only region 

revealing a significant positive correlation between the super-additive effect and the CCC, 

suggesting that a person’s CCC may be determined by the AIC. The neural efficiency theory 

proposes that for complex tasks with a large amount of information to be processed, high 

cognitive ability is accompanied by greater neuronal involvement (Neubauer and Fink, 

2009). We found that the activation of the AIC reached a higher level in individuals with 

high CCC when the information rate is high, which may indicate that individuals with high 

CCC have more neuronal resources to recruit from the right AIC under high cognitive load.

The AIC is necessary for cognitive control

Although the AIC and ACC constitute the CON, a sub-network of the CCN, and usually co-

activate (Dosenbach et al., 2006; Medford and Critchley, 2010), the necessity of the AIC, but 

not the ACC, for cognitive control was demonstrated by the evidence that only the lesion of 

the AIC resulted in a significant reduction of CCC. Beyond demonstrating a region’s 

involvement in a cognitive process using fMRI, investigating whether this cognitive process 

is impaired in patients with a lesion in that region can inform us about its necessity (Fellows 

and Farah, 2005; Swick and Jovanovic, 2002). Impaired CCC in patients with an AIC lesion 

suggests that without the support from one lateral of this critical region, the neural resource 

in the contra-lesional AIC was not enough to support efficient cognitive control under high 

information rate. The negative finding in patients with a lesion of the ACC is consistent with 

previous that did not find a signficant deficit in conflict processing in patients with an ACC 

lesion (Fellows and Farah, 2005; Gu et al., 2012; Gu et al., 2013; Ochsner et al., 2001; 

Swick and Jovanovic, 2002), suggesting that the ACC may not be a critical region in 

supporting cognitive control. Significant reduction of CCC in patients with an AIC lesion 

may also suggest that other regions in the CCN cannot replace the functional role of the 

AIC, whereas the role of the ACC in cognitive control may be compensated by other regions 

of the CCN, such as the AIC and the FEF.
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The AIC as a hub of the CCN

The role of the AIC as a bottleneck of cognitive control may also be related to its role as a 

hub of the CCN as indicated by our network analysis. The capacity of a high-level cognitive 

process may not only be limited by activity plateau in crucial regions (Fukuda et al., 2010), 

but also by the connectivity among brain regions and networks involved in this process 

(Gulbinaite et al., 2014; Palva et al., 2010). The “brain hubs”, which are the regions that 

participate in multiple modules (i.e., sub-networks), have significant contributions in 

facilitating network traffic (Newman, 2010; Power et al., 2013; van den Heuvel et al., 2012) 

and support functional integration across modules (Sporns, 2013), and may be easily 

overloaded (Avena-Koenigsberger et al., 2017; Misic et al., 2014). The AIC has been 

identified as a network hub during resting state (Power et al., 2013; Sporns, 2013; van den 

Heuvel and Sporns, 2011, 2013) and cognitive control (Eckert et al., 2009; Gratton et al., 

2017). In addition, the AIC, especially the right AIC, plays a critical role in switching 

between the CON and other large-scale networks (e.g., FPN, DMN, and sensory cortices) to 

facilitate the access of task-relevant and salient information (Menon and Uddin, 2010; 

Sridharan et al., 2008). In this study, we showed that the right AIC had the highest 

participation coefficient across regions of the CCN for the inward connections. If the right 

AIC plays a central role in receiving and integrating information from other regions/sub-

networks of the CCN and coordinates information from multiple regions/sub-networks 

simultaneously, it can be overloaded and becomes the bottleneck. The left ACC showed a 

higher participation coefficient compared to the AIC for the outward connections, which 

may suggest that the left ACC plays an important role in distributing information from the 

CON to the other sub-networks of the CCN. Although we found evidence suggesting that 

the AIC plays a role as a hub of the CCN, we did not find a significant association between 

the participation coefficient of the AIC and the CCC.

The simulated lesion of the AIC significantly impaired the functional integration of the 

CCN, indicated by the reduced network global efficiency. Global efficiency, also called 

“routing efficiency”, reflects the global capacity of a network to transmit information 

through all possible routes (Avena-Koenigsberger et al., 2017). In a network with abundant 

parallel pathways, a hub is the key node for a great number of shortest paths between nodes 

in different modules. The loss of a hub would lead to detours of information transmission 

between numerous pairs of nodes, and therefore has a global impact on communication in 

the network (Albert et al., 2000; Jeong et al., 2000; Power et al., 2013). In our simulation, 

we found that compared to lesions of the ACC, lesions of the AIC led to a greater reduction 

of the global efficiency, suggesting that the capacity of information transmission in the CCN 

is reduced more after the AIC lesion. These results might provide an insight to the 

mechanism responsible for the reduction of CCC in patients with an AIC lesion.

The functional role of the AIC in higher-level cognition

Taken together, the activation of the AIC as a function of information rate, the early plateau 

in responding to the high information rate, the positive correlation between the AIC 

activation and the CCC, the impaired CCC in patients with AIC lesion, and the role of the 

AIC in the CCN support the hypothesis that the AIC is a bottleneck of cognitive control. 

Although the AIC has been identified in this study as a bottleneck using a visual perceptual 
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decision-making task, it may be a unified bottleneck of cognitive control in other sensory 

modalities (i.e., supramodal) (Spagna et al., 2018b; Spagna et al., 2015) and cognitive 

domains. The homeostatic model suggests that the insular cortex serves as a modality-

general integrative hub that is crucial for generating all human feelings (Craig, 2011). The 

AIC has also been identified as one of the unified bottleneck regions based on its 

involvement in limiting speeded dual-task performance in both visual and auditory 

modalities (Tombu et al., 2011), indicating that information received concurrently from 

multiple sensory modality competes for resources in the AIC. Beyond receiving and 

integrating information inputs, the AIC, especially the right AIC, also serves as a 

coordinator that links the inputs to the subsequent domain-specific control processes. Studies 

support this proposal by showing that the right AIC plays an important role in coordinating 

the inputs from sensory regions and the implementation of inhibition control in domain-

specific regions (Cai et al., 2017; Cai et al., 2014; Hu et al., 2015). A meta-analysis also 

demonstrated that the dorsal anterior part of the insular cortex is involved in more general 

cognitive processing rather than modality- and domain-specific processing (Chang et al., 

2012).

In addition, the AIC may also play an important role in supporting human intelligence. In 

this study, we found that the CCC was positively correlated to an individual’s FSIQ, which 

has been replicated in a study with a larger sample of participants (Chen et al., In press), 

supporting a cognitive model of human intelligence. The result that the relationship between 

CCC and IQ was fully mediated by the super-additive effect in the right AIC suggests that 

the AIC is a core structure underlying the intellectual activity.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The backward masking majority function task (MFT-M).
(a) Schematic of the MFT-M. Participants were required to report the majority of arrow 

directions in each trial. Upper right panel: possible congruency ratios (majority : minority) 

of arrow sets. Lower left panel: timeline of the stimuli in one trial under different stimulus 

exposure time (ET, in ms) conditions. Events in a trial of sequence are indicated by the 

color-coded blocks. Duration of each stimulus is illustrated by the length of each color bar. 

Responses had to be made with the 2500 ms response window and the total length of each 

trial was 5000 ms. (b) Information entropy as an index of information amount in each 

congruency condition, regardless of the ET. (c) Information rate as an index of cognitive 

load in each task condition. The information rate increases as a function of both information 

entropy and the reciprocal of ET (1/ET), and shows a super-additive interaction between 

information entropy and 1/ET.
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Figure 2. Behavioral performance in the fMRI study.
(a) Response accuracy and (b) Reaction time (RT) in each condition. Error bars indicate 

standard error (SE) for within-subject design.
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Figure 3. Main effects of general linear modeling.
Brain regions with significantly increased (red) or decreased (blue) activation as a linear 

function of information entropy (a) and the reciprocal of ET (b). (c) Regions with significant 

positive information entropy by the reciprocal of ET interaction (super-additive effect). (d) 

Regions with a positive effect in the conjunction of the two main effects and the interaction 

effect.
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Figure 4. Activation in the anterior insular cortex (AIC) and the anterior cingulate cortex 
(ACC).
(a) Illustration of the super-additive activation in these regions. (b) Fitted curves (black lines) 

for the relationship between information rate and activation in these regions. For the left and 

right AIC, the horizontal dashed line and the vertical solid lines indicate the estimated 

plateau and half-time of the fitted logistic function, respectively. L: left, R: right.
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Figure 5. Correlation between brain activation and the CCC.
(a) The brain region showing significant positive correlation between the super-additive 

effect and the CCC. Areas in the pink outlines are the regions showing a significant effect in 

the conjunction analysis of Fig. 3d. (b) Illustration of the activation in the right AIC in the 

median-split low and high CCC groups.
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Figure 6. AIC as a mediator between the CCC and IQ.
The super-additive activation in right AIC as a mediator (M) between the CCC (X) and Full-

Scale IQ (FSIQ) (Y). In the scatter plot for the relationship between CCC and FSIQ, the 

solid black line and the dashed grey line represent the path c (correlation between X and Y) 

and path c’ (correlation between X and Y controlling M), respectively.
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Figure 7. Impaired CCC in patients with lesions in the AIC.
Lesion reconstruction for patients with unilateral lesion in anterior insular cortex (AIC 

group) and (b) patients with unilateral lesion in anterior cingulate cortex (ACC group). All 

lesions were mapped on right hemisphere. Colors indicate the percentage of the overlap of 

lesions across patients. (c) Estimated CCC of participants in different groups. NIC (dark 

grey bar): neurological intact control. BDC (light grey bar): brain damage control, referring 

to patients with lesion in regions outside the cognitive control network. Error bars indicate 

the standard deviation. Pink bar: each patient in the AIC group (left AIC lesion: 2 and 7; 

right AIC lesion: AIC 1, 3, 4, 5, 6, and 8). Light pink bar: each patient in the ACC group 

(left ACC lesion: ACC 3, 5, and 6; right ACC lesion: ACC 1, 2, and 4). *: p < .05.
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Figure 8. Network analysis results.
(a) Regions of interest (ROI) definition. CON: cingulo-opercular network. FPN: 

frontoparietal network. (b) Group-averaged Bayesian network. Circles represent nodes, with 

their colors indicating the module they belong to. Arrows represent directional connections 

between nodes with their strength (indicated by the thickness of the arrow shaft) 

significantly higher than baseline. FEF: frontal eye field. IPS: areas around and along the 

intra-parietal sulcus. TH: thalamus. CdN: caudate nucleus. V: visual areas. Regions in the 

left and right hemisphere are presented at the left and right sides, respectively. Gray dashed 

arrows: intra-module connections. Black arrows: inter-module connections. (c) Participation 

coefficient of the inward (P in; upper-panel) and outward (P out; lower-panel) connections of 

the AIC and ACC. (d) Global efficiency (Eglobal) of networks with simulated unilateral 

lesion of the AIC and ACC, compared to the non-lesioned network. The grey line represents 

the mean (solid line) and standard error (dashed lines) of the Eglobal of the non-lesioned 

network. *: p < .05, **: p < .01, ***: p < .001. Error bars indicate the standard error for 

within-subject design.

Wu et al. Page 34

Neuroimage. Author manuscript; available in PMC 2020 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wu et al. Page 35

Table 1.

Estimates of information amount and information rate in each task condition, and the contrast vectors of each 

effect.

ET (ms)

Congruency 250 500 1000 2000

Estimates

Information entropy (bit) 5:0 1.58 1.58 1.58 1.58

4:1 2.91 2.91 2.91 2.91

3:2 4.91 4.91 4.91 4.91

1/ET (1/s) 5:0 4 2 1 0.5

4:1 4 2 1 0.5

3:2 4 2 1 0.5

Information rate (bps) 5:0 6.32 3.16 1.58 0.79

4:1 11.64 5.82 2.91 1.46

3:2 19.64 9.82 4.91 2.46

Contrast vectors 5:0 −0.87 −0.87 −0.87 −0.87

Information entropy 4:1 −0.13 −0.13 −0.13 −0.13

3:2 1.00 1.00 1.00 1.00

1/ET 5:0 1 0.06 −0.41 −0.65

4:1 1 0.06 −0.41 −0.65

3:2 1 0.06 −0.41 −0.65

Interaction 5:0 −0.87 −0.05 0.36 0.57

4:1 −0.13 −0.01 0.05 0.08

3:2 1 0.06 −0.41 −0.65

Note: ET refers to exposure time. Information entropy is a measure of information amount in each congruency condition. Information rate is a 
measure of cognitive load, as a joint effect of both congruency and ET (information rate = entropy/ET).
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Table 2.

Brain regions that showed positive effect for the conjunction the entropy by reciprocal of ET interaction.

Regions L/R BA x y z T Z K

Anterior insular cortex R 32 26 −6 6.55 5.83 411

Anterior cingulate cortex R 32 4 24 42 6.32 5.66 650

Anterior insular cortex L −32 22 0 6.19 4.81 442

Note: The threshold was p < 0.001 (T > 3.20) for the height and p < 0.008 (k > 185 of 2 × 2 × 2 mm voxels) for the extent, resulting in a corrected 
threshold of cluster level p < 0.05.

a
Extending to left anterior cingulate cortex.
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