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Abstract
Background: High-density oligonucleotide arrays have become a valuable tool for high-
throughput gene expression profiling. Increasing the array information density and improving the
analysis algorithms are two important computational research topics.

Results: A new algorithm, Match-Only Integral Distribution (MOID), was developed to analyze
high-density oligonucleotide arrays. Using known data from both spiking experiments and no-
change experiments performed with Affymetrix GeneChip® arrays, MOID and the Affymetrix
algorithm implemented in Microarray Suite 4.0 (MAS4) were compared. While MOID gave similar
performance to MAS4 in the spiking experiments, better performance was observed in the no-
change experiments.

MOID also provides a set of alternative statistical analysis tools to MAS4. There are two main
features that distinguish MOID from MAS4. First, MOID uses continuous P values for the likelihood
of gene presence, while MAS4 resorts to discrete absolute calls. Secondly, MOID uses heuristic
confidence intervals for both gene expression levels and fold change values, while MAS4 categorizes
the significance of gene expression level changes into discrete fold change calls.

Conclusions: The results show that by using MOID, Affymetrix GeneChip® arrays may need as
little as ten probes per gene without compromising analysis accuracy.

Background
Genomics sequencing projects have rapidly generated tre-
mendous amount of information. At the time of writing,
the NCBI UniGene database [1] [http://www.nc-
bi.nlm.nih.gov/UniGene]  contained 96,109 Homo sapi-
ens clusters and 85,047 Mus musculus clusters.
Predictions from the Human Genome Project [2] and Cel-
era Genomics [3] suggest there are about 26,000–40,000
human genes. Other recent studies suggest that these
numbers may be an underestimation and that the human

genome appears more complicated [4]. Understanding
the functions of such a large number of genes has been an
unprecedented challenge for functional genomics re-
search. As the array of hope in recent years, gene expres-
sion array technology has quickly grown into a powerful
tool to chart a gene atlas in various biological sources and
under various conditions in a massively parallel manner
[5–7]. Facing the challenge of annotating such a huge
amount of genomic data, increasing array information
density and improving analysis algorithms have become
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two critical research areas to ensure that gene expression
profiling proceeds in an efficient and cost effective man-
ner.

Take an Affymetrix high-density oligonucleotide Gene-
Chip  [http://www.affymetrix.com]  for example. Firstly,
its human U95 series chip consists of 5 chip types with
12,000 coding clusters each, which makes it expensive to
profile all the human genes in samples of interest. Can a
gene chip take more genes? Comparing its U95 chip and
Human 6800 chip, Affymetrix has already increased chip
information density by 20% by reducing the number of
probe pairs per gene from 20 to 16. Since demand for
higher information density has still not been met, it is of
interest to study the probe number effect in detail. Sec-
ondly, most optional research efforts focus on the down-
stream statistical and clustering analysis. However, on the
upstream side, Affymetrix chip users are still dependent
on the Microarray Suite® software that comes with the
measurement system to interpret raw data. The Affymetrix
algorithm implemented in its Microarray Suite 4.0 pack-
age (referred hereafter as MAS4) uses empirical rules de-
rived from its internal research data to assign absolute
calls for the significance of gene presence and assign fold
change calls for the significance of expression variations.
Such discrete categorizations are not the most appropriate
language to describe quantities of continuous nature. Al-
though it is well known that fold change numbers have
defined behaviors of uncertainty, there are very few stud-
ies in this area. How does one assign statistical signifi-
cance to expression analysis results? This work presents
our preliminary research results for the two questions
raised above.

The Affymetrix gene chip layout used in this study con-
tains the same number of perfect match (PM) probes and
mismatch (MM) probes. MAS4 uses differences between
these two types of probes for gene expression signals. The
primary goal of Match-Only Integral Distribution
(MOID) algorithm is to discard mismatch information,
which allows immediate doubling of the chip informa-
tion density. In this study, the performance of both algo-
rithms were benchmarked using 366 known fold change
values derived from 34 spiking experiments. Their false
positive tendencies were assessed by no-change expres-
sion experiments. Computer simulations were used to
study their noise tolerances, and to determine the mini-
mum number of probes required for chip analysis.

The idea of using PM-only information is based on the
following observations: MAS4 essentially discards the
one-one correspondence between a PM and its MM part-
ner (for details, see materials and methods on MAS4 algo-
rithm for absolute analysis) and still gives satisfactory
interpretation, which suggests the contribution of MM

probes might be approximated in a nonspecific manner
overall. After we designed the first mismatch-free gene
chip (GNF-HS1) in July 1999, the match-only expression
analysis idea was proposed in other independent studies
as well. Li (submitted, 2001) adjusted their previous mod-
el-based analysis of oligonucleotide arrays [8] to PM-only
calculations and found their results correlate well with
that of using PM and MM information. In addition, the
idea is endorsed by recent studies of Naef et al[9] and Iri-
zarry et al (2002, in prepare)  [http://biosun01.biostat.jh-
sph.edu/~ririzarr/papers/] .

One difficulty in comparing algorithms for gene expres-
sion analysis is the lack of "known" results. Here we over-
come the problem by resorting to a spiking set and set of
no-change experiments, where results are unambiguous.
Model-based methods [8] generally require a reasonable
numbers of training experiments of the same chip type,
among which probes under study give significantly large
signals in at least some experiments. Considering the fact
that the 34 spiking experiments used were obtained by
three different chip types, and in addition some experi-
ments are replicates under different concentrations and
hybridization conditions, it is impractical to sufficiently
train model-based algorithms in this study. We limit our
study to MOID and MAS4, where training is not required.

In the materials and methods section, we summarize Af-
fymetrix chip technologies and describe the MOID algo-
rithms in detail. MAS4 algorithms for both absolute
expression analysis and comparison analysis are included
afterwards. The benchmarks used for algorithm compari-
son were explained and comparison results were shown in
the results session. Issues such as noise-tolerance of both
algorithms and further reduction of the probe set size are
also included. We discuss generalization of the normaliza-
tion algorithm, which may be of interest to other research-
ers. Finally, the main differences between MAS4 and
MOID are summarized in a tabular form as conclusions.

Results and Discussion
Spiking experiments
Spiking experiments were done by adding to tissue sam-
ples a certain number of control genes with known con-
centrations. Since signal intensity is not exactly
proportional to gene concentration across different probe
sets, only the fold change values of each gene between
comparisons are considered reliable and used to bench-
mark both algorithms. We are fortunate to have access to
34 spiking experiments done previously in GNF for a hy-
bridization protocol study, where 366 independent
known fold change numbers were derived. These experi-
ments covered three Affymetrix chip types: Hu35kSubA,
Hu6800, and Mu11kSubA. True experimental fold change
values, fexp, range from 1.0 to 10.0. The raw data (34 CEL
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files) and experimental fold change values are available
from  [http://carrier.gnf.org/publications/MOID] .

We applied both algorithms to these array data and the
fold change numbers calculated were compared to known
experimental values. Because of the way we defined the
base and experiment, fexp are always no less than 1.0. For
MAS4, we used all the default parameters used by the
Microarray Suite 4.0 program in the calculation. For
MOID, we found using 70 percentile for both pct and pctf
(defined in materials and methods) gave optimal per-
formance. Figure 1 shows the comparison results (data
available from  [http://carrier.gnf.org/publications/
MOID] ). Two algorithms give virtually similar perform-
ance.

In the comparison, we defined relative error, Rerr, as the
following to benchmark each algorithm,

Rerr1 = <|(fcalc - fexp>)/fexp|>all pairs,

Rerr2 = <|(1/fcalc - 1)/fexp) · fexp|>all pairs,

and

Rerr = <|(fexp/fcalc - fcalc/fexp)|>all pairs.

Where fexp and fcalc are fold change values from experi-
ment and calculation, respectively. Rerr1 and Rerr2 are de-
fined symmetrically for relative errors of fexp and 1/fexp,
reflecting the fact that base and experiment can be defined
arbitrarily, and the final Rerr is defined as the average of

Figure 1
Calculated fold change values for 366 known spiking data. MAS4 and MOID calculations are in blue and red open cir-
cles, respectively. The brightness of the circles corresponds to LogP, assigned by MOID. The darker the symbol, the better the
data quality. For plotting purpose, values for MAS4 and MOID are slightly jittered horizontally to the left and the right, respec-
tively, to avoid overlapping. The green line shows where calculation meets the experiment. Notice the scale for both coordi-
nates are Log2 based. The relative errors of fold change numbers, 30% for MAS4 and 28% for MOID, show similar
performance for both algorithms.
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the two. Each relative error number is an average over all
the 366 data points.

It seems the two algorithms have very close performance
Table 1. They all have greater error margins for calculating
down-regulated fold changes (captured by Rerr2) than up-
regulated ones (captured by Rerr1). MAS4 is more asym-
metric than MOID in this aspect.

No-Change experiments
Another set of experiments used for benchmarking algo-
rithms is the comparison between two experiments where
mRNA prepared from the same tissue sample was hybrid-
ized twice under slightly different conditions. Those fold
change numbers that deviate largely from 1.0 are consid-
ered to be false positives. When we applied the algorithms
to ten experiments done with either human brain or hu-
man lung replicate samples (same mRNA, slightly differ-
ent hybridization conditions), the results were all similar.
Figure 2 shows one of the typical comparison results.
When only "Present" genes (defined by MAS4) were taken
into account, 80% of fold change numbers were spread
across 0.54 for MAS4 and only 0.30 for MOID. Clearly
MOID assigns much less false positive fold changes than
MAS4 does in this comparison. If all the genes were count-
ed, the spreads of MAS4 and MOID results would be 0.89
and 0.29 for the same data sets. This test suggests MOID is
more robust than MAS4.

Reduced Probe Set Simulation
In the studies above, we demonstrated the feasibility of a
match-only gene chip design based on the MOID algo-
rithm. In order to further increase chip information den-
sity, it is of common interest to understand how many
probes are sufficient for expression analysis and push for
the lower limit of the size of a probe set. This is done via
computer simulations.

In the simulation, for each probe set, a subset of nr probes
were randomly chosen to be used in the calculation. Both
the spiking and no-change calculations presented above
were repeated with the selected subset, as we gradually re-
duced nr. Figure 3 and figure 4 show the results for the

spiking calculation and no-change calculation, respective-
ly. As the graph suggested, accuracy of MOID is essentially
unaffected while reducing the number of probes down to
ten. This result enables us to almost triple the amount of
clusters one can put on a gene chip using MOID design.
Combined with other new design ideas, MOID lays the
foundation for the first universal human chip that con-
tains 75,000 UniGene clusters (release 116). The results
have recently been validated and led to many interesting
discoveries, which provides indirect support for MOID (to
be submitted).

Noise Tolerance of both Algorithms
Probe-Specific Effect
MOID is based on the assumption that the background
for probes is mainly non-probe-specific. The results indi-
cate that this assumption is sound overall. However, it is
clear that by better understanding probe-specific behav-
iors, the analysis accuracy can be further improved. For in-
stance, probe response factors might be derived by
accumulating and studying many experiments. If there are
a sufficient number of experiments, where the target gene
is significantly present, probe response factors may be re-
trieved by some statistical modeling. A recent study [8]
provides an important example in this direction. Re-
searchers at Corimbia  [http://www.corimbia.com]  also
developed some proprietary methods to identify "good"
probes and assign different weights to them to improve
data analysis. Efforts can be made along similar lines with
the MOID algorithm in the future. If probe response fac-
tors can be calculated, the "bad" but "stable" probes can
be scaled, and the distribution may be expected to be clos-
er to normal, therefore expression levels and their uncer-
tainties can be calculated in a more statistically sound
manner.

Future studies for more accurate background subtraction
models may also improve the fold change distribution;
therefore yield better statistics for fold change evaluation
as well. The relative error in spiking experiments (28%)
suggests that there is room for future improvement.

LogP and Absolute Calls
In the derivation of LogP (see materials and methods, Fig-
ure 7), it is assumed that the statistics of any absent probe
can be described by the general background curve B. The
P value should not be literally interpreted as accurate
probabilities, since it is only as good as the underlining as-
sumption. Users should also bear in mind that a P value
is for the null hypothesis that the discrepancy between ob-
servables and generic mismatches is generated by noise,
which is different from the likelihood of gene presence
conditioned on the observed discrepancy. However, LogP
values more or less serve as a statistical indicator for the
sorting of genes by their significance. The discrete abso-

Table 1: Relative errors of MAS4 and MOID measured by 366 
spiking fold change data points.

Algorithm Rerr1 Rerr2 Rerr

MAS4 0.23 0.37 0.30
MOID 0.25 0.32 0.28
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lute calls in MAS4 are determined in a completely differ-
ent empirically manner. Although higher LogP values
have a higher tendency of being assigned "Absent" in
MAS4, the exact correspondence between the two varies
from experiment to experiment. Roughly, LogP values
above -3.0 have a greater chance to be called "Absent"
than "Present" by MAS4. Users should be aware not to
over interpret this correspondence. One interesting obser-
vation we had in this study was that discrete calls by MAS4
are not as stable as LogP values. Sometimes a gene can be
reassigned to "Present" from "Absent" by MAS4 due to a

small perturbation in the underlying quantities without
going through a "Marginal" transitional stage.

Curve Normalization
It is clear by observing various experiments that the re-
sponse of intensity to signal varies in different intensity re-
gions. Occasionally, the normalization constant nf does
not cover well for all intensity values. A more generalized
normalization procedure should use a normalization
curve instead of a constant factor. The MOID normaliza-
tion algorithm can be easily modified to the following
(see [10] for a similar approach):

Figure 2
Histograms of fold change calculations on two human lung sample replicates. The two hybridizations obtained from
the same mRNA source are supposed to have identical gene expression levels. The MAS4 and MOID calculations are in blue
and red bars, respectively. The fold change values for MAS4 and MOID are shifted slightly to the left and right, respectively, to
avoid overlapping. 80 percent of data are distributed in the range [0.80, 1.34] for MAS4, and [0.92, 1.22] for MOID. Only genes
marked as "Present" by MAS4 were counted in the histogram. If all genes are taken into account, 80 percent of data are distrib-
uted in the range [0.59, 1.48] for MAS4 and [0.96, 1.25] for MOID.
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Step 1: include all genes in the normalization gene list.

Step 2: using the Ek values for all the genes in the list, gen-
erate integral intensity distributions for both experiments.
A normalization curve NF(I) is constructed in such a way
that the two integral distributions are identical after nor-
malization.

Step 3: normalize the data sets using NF obtained in the
previous step; refine the gene list by further excluding
those genes whose intensity values changed by more than
a certain fold, > fmax or < 1/fmax, between the two data
sets.

Step 4: repeat Step 2 and update NF to NF', until one of
the following conditions is met:

1) the maximum number of iterations, Itrmax, is reached;

2) max(|NF(I)/NF'(I) - 1|) ≤ max, where max is a small
predefined threshold;

3) size of the normalization gene list drops below a prede-
fined threshold, Szmin.

This algorithm offers a chance to correct non-linearity in
the chip system to a certain extent. To demonstrate the al-
gorithm, we applied the procedure to two measurements,

Figure 3
Reduced probe set test for 366 known spiking data. The method is the same as described in Figure 1. The red and blue
filled circles are the results for MAS4 and MOID, respectively. The error bars were derived from three independent simula-
tions. As indicated, there is no significant deterioration in the performance of both methods down to 10 probe cells.
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where genomics DNA sample of yeast s288c strain were
hybridized onto Affymetrix YG_S98 arrays. The second ex-
periment was a repeat of the first one after about 50 days,
where some of hybridization and scanning parameters
had been changed over the course. It is shown in Figure 8
that the curve normalization procedure out-performed
constant normalization as expected.

Conclusions
MOID algorithm allows at least double or even triple the
information density of current (U95 human chip) Af-
fymetrix high-density oligo nucleotide arrays without

compromising analysis accuracy. Table 2 summarizes fea-
ture comparisons between MOID and MAS4.

It should be noted that at the time of this study, Affyme-
trix U95 chip uses 16 probe pairs per set. As Affymetirx is
planning on further reducing probe set size in their next
design, the density improvement by using MOID may be
less than the estimation given above.

Materials and Methods
The user should refer to the Affymetrix web site  [http://
www.affymetrix.com]  and the documentations that come

Figure 4
Reduced probe set test for two human lung samples replicates previously described. During a test, a certain
number of probe pairs were randomly selected for calculation. The computations were otherwise done is the same way as Fig-
ure 2. The error bars indicate the widths of fold change ranges where 80 percent of the fold change numbers fall. Only
"Present" genes are considered here. There is no significant deterioration in the performance for both methods down to ten
probes; MOID is in favor for all tests.
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with the MAS4 software for technical details regarding Af-
fymetrix array and MAS4 algorithm.

Affymetrix Oligonucleotide Chip
At the time of this study, Affymetrix synthesizes 25-mer
oligonucleotides on a 640 × 640 array with 20 µm feature
size using photolithographic fabrication techniques
(some data used in this study were collected from some
previous generation arrays of 540 × 540 cells and 24 µm
feature size). Each cell (also called a probe) in the array
contains the same oligonucleotide sequences. As shown
in Figure 9, typically a set of 16–20 probes are designed
for each targeting cluster (called a probe set, or sometimes
a "gene".). An expression value will be derived per probe
set as the result of analysis. Probes taken as fragments

from a target sequence are called perfect matches (PM).
Multiple matches per set serve as independent signal de-
tectors and provide a possibility to capture statistical un-
certainties. For each match, there is also a corresponding
mismatch (MM) probe, whose sequence differs from its
match by a single base in the middle. Mismatches are
meant to detect cross hybridization components of their
corresponding matches, and are used by MAS4 for probe-
specific background subtraction. There are also several Af-
fymetrix control sets on each chip used for quality refer-
ences, which were used in the spiking experiments to
validate and refine hybridization protocols.

Figure 5
Noise test for 366 known spiking data. During a test, a certain number of perfect matches were randomly selected and
their intensities were multiplied by ten. The computations were otherwise done in the same way as in Figure 1. The MAS4 and
MOID calculations are in blue and red filled circles, respectively. Error bars were derived from three independent simulations.
Both methods are robust enough to stand for two noisy probes, MOID is slightly in favor for larger noise.
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Intensity Distribution
In an ideal case, all the probes in a set should give similar
signals and serve as replicate measurements. One com-
mon rule in probe design is to select probes with similar
melting temperatures to minimize the variances among
probes. The chemistry involved in a hybridization experi-
ment is often too complicated to be predicted computa-
tionally at the current stage, therefore in reality probe
intensity distribution for a set is usually fairly wide and
has a long tail, which causes all kinds of difficulty for data
analysis.

One usual attraction in expression analysis is to assume a
normal distribution for probe intensities. This hypothesis
can be examined by the following calculation. For each
probe set, we applied a linear transformation to probe in-
tensities, so that the mean and the standard deviation of
the intensities in the set were normalized to zero and one,
respectively. Then all the resulting match intensities were
used to generate an overall distribution. Our calculation
shows the normal distribution assumption is not an ap-
propriate one. When similar analysis was applied to mis-
match intensities and mismatch-subtracted match
intensities, the conclusion stays more or less the same.

Figure 6
Noise test for two human lung samples replicated previously described. During a test, a certain number of perfect
matches were randomly selected, and their intensities were multiplied by ten. The computations were otherwise done in the
same way as in Figure 2. The MAS4 and MOID calculations are in blue and red filled circles, respectively. The error bars repre-
sent the widths of intensity ranges where 80 percent of the fold change data fall. Both methods are robust enough to stand for
two noisy probes; MOID is slightly in favor for larger noise.
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Despite the fact that the intensity distribution of a set is
non-Gaussian, it is still crucial to find out the distribution
function for match or mismatch intensities to generate
meaningful statistics tests, if such distributions actually
exist. The authors tried several analytical functions on
match and mismatch probe intensities. Unfortunately, the
distributions seemed to be quite "bad", the tail portions
even fade out slower than the extreme value distribution.
It was found that distributions of mismatch signals also
significantly depended on the sample and experimental
conditions. One may reasonably suspect that cross hy-
bridization, intensity saturation, overall sample concen-
tration, chip production irregularities, and miscellaneous
noise may all cause a change in the signal distribution.
The study seems to suggest the distribution of cross hy-

bridization should be taken from each experiment as a re-
sult of measurement instead of using an a priori
determined analytical expression. This guideline is used in
MOID algorithm.

MOID algorithm: hypothesis and principles
As mentioned in the intensity distribution analysis,
MOID assumes cross hybridization behavior of probes is
mainly non-probe-specific, and therefore all the match
cells can share the same cross hybridization background.
MOID primarily aims at saving 50% of the chip space cur-
rently dedicated to mismatch cells in the Affymetrix de-
sign under this study. It was also discussed before that
cross hybridization distributions should be taken from ex-
perimental data instead of from some analytical function.

Figure 7
Schematic diagram of the MOID algorithm. The blue curve is the integral intensity distribution of the non-probe-specific
background data B(I) for the experiment. The red curve is the integral intensity distribution of a particular probe set, where
each step represents the addition of one additional probe. The maximum vertical distance, dk max, is used in the P value calcula-
tion. The horizontal intensity difference, Ek, measured at pct captures the true signal for the set optimally.
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Based upon the general belief that there is always a signif-
icant amount of genes unexpressed in any mRNA experi-
ment, we will use the match cell signals from the 5%
darkest probe sets in the current public Affymetrix arrays
to prove the point that it is possible for MOID not to use
any mismatch signal. For the next generation gene chip
designed based on MOID algorithm, some designated
probes may be used as generic mismatches to collect non-

probe-specific cross hybridization data. In fact, on GNF-
HS1, 16,460 probes from 476 viral genes are used for such
a purpose.

As discussed, the distributions of quantities in expression
analysis are usually asymmetric and contain a long tail, re-
gardless whether it is match intensity, mismatch intensity,
or average intensity difference. For such abnormal distri-
butions, concepts like mathematical average and standard
deviation are not the most appropriate statistical terms to
use. Pre-filtering the data, like what MAS4 does, certainly
helps reshape the distribution, but by no means this can
bring the distribution back to normal without throwing
out a significant portion of measurements. The MOID al-
gorithm is specifically designed to avoid these problems
by using percentile instead of mean and using confidence
intervals instead of standard deviation in all possible cas-
es.

MOID algorithm for significance of gene presence
A non-probe-specific integral background distribution
(representing noise, cross hybridization, and possible
other factors), B(I), is derived from the intensities of the
5% darkest probe sets (or from generic mismatches in the
future). I stands for intensity; B satisfies boundary condi-
tions: B(0) = 0 and B(∞) = 1. For each probe set k, the
match signals are sorted and the integral distribution,
Sk(I), is generated as well. Figure 7 is a schematic diagram.

If the gene represented by a probe set is absent, the inten-
sity data from matches are due to pure background contri-
bution, therefore Sk is likely to be close to B. We choose
the Kolmogorov-Smirnov test to determine likelihood
that the observed signal distribution, Sk, could be ex-
plained by B. If we define dk max as the maximum vertical
distance between B and Sk, according to K-S statistics, the
probability of observing discrepancies greater than dk max
is determined by a P value [11],

where

nk is the effective number of data points in the K-S statis-
tics, which is the number of PM for gene k in our case. P
carries the meaning of probability, therefore is a number
between 0 and 1. Practically, Log10P, a negative value, is
used as our final representation. In this way, MOID uses a

Figure 8
Comparison of results between constant normaliza-
tion and curve normalization. The two data sets were
both genomics DNA samples of the same yeast strain (s288c)
collected using the YG_S98 Affymetrix array in about 50 days
period. The intensities of the 70 percentile of each probe set
were used in the Log-scale plot. Results for constant normal-
ization and curve normalization are shown in green and red
pixels, respectively. Yellow dots are shown where the pixel is
colored by both red and green. As it shows, the two meth-
ods give essentially the same results for lower intensity
regions, while curve normalization seems to be able to cor-
rect non-linearity better in the high intensity end.

Figure 9
Schematic diagram of current Affymetrix GeneChip
design.
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continuous LogP criterion to replace MAS4 absolute calls.
Those signal sets that can be easily explained by noise are
assigned a LogP value closer to zero.

MOID algorithm for expression level calculation
MOID uses the horizontal distance between Sk and B to
represent gene expression level (Figure 7). Since the dark-
est probes may be more likely caused by their poor bind-
ing properties to the target gene, and the brightest probes
may be more likely caused by serious cross hybridization
issues, different parts of the integral distribution tend to
have different qualities. Therefore, the MOID algorithm
uses the horizontal distance measured at a certain percen-
tile, pct, instead of the whole curve. Based on the analysis
of the spiking experiments discussed later, it is empirically
determined that 70% is the optimal percentile for signal
retrieval. We also tried to use the average of horizontal dis-
tances from several pct, but without significant improve-
ment. Therefore the expression level Ek, related to gene
concentration for gene k, is defined as

Ek = max(I|Sk = pct - I|B = pct, 0).

Instead of using the standard deviation, we take confi-
dence intervals directly from the distribution curve Sk,
with the background subtracted. E.g., 80% confidence in-
tervals can be represented by a lower bound (Ekl) at 10
percentile and an upper bound (Eku) at 90 percentile of
the distribution, i.e.,

Ekl
0 (0.1) = max (I|Sk = 0.1 - I|B = pct, 0)

and

Eku
0 (0.9) = max (I|Sk = 0.9 - I|B = pct, 0).

As one might expect, increment of the probe set size helps
narrowing down the confidence intervals in a manner de-
termined by the statistics of probe distribution. However,
this piece of information is unknown and we took an ad
hoc approach by modifying the boundaries formulae as
the following:

and

MOID algorithm for normalization
The most common way of understanding gene functions
by expression profiling is to study the change of their ex-
pression levels in various disease states and cellular envi-
ronments. The observed expression level is a product of
complicated protocols, and is subjected to various factors
from sample preparation to final image scanning. There-
fore, it is a common practice to normalize expression data
drawn from multiple profiles before making any reliable
interpretation.

Table 2: Comparison between MAS4 and MOID.

MAS4 MOID

Mismatch used Yes No
Sensitivity to probe set size Super-Olympic filtering is turned off when remain-

ing probe number is less than 8.
Confidence intervals gradually increase as probe 
set size drops.

Relative error (Spiking tests) 30% 28%
Minimum of probes required (Spiking 
tests)

10 10

No-change test results (True fold 
change = 1.0)

80% of fold change values in [0.80, 1.34] 80% of fold change values in [0.92,1.22]

Normalization Constant based on average intensity. Normalize 
once.

Allow both constant and curve normalization. Iter-
ative scheme.

Problematic genes (Bright mismatches) May underestimate expression level May overestimate expression level
Expression Level Average difference (may be negative). No confi-

dence interval evaluations
Expression value (always positive) Lower bound 
and upper bound (with probe set size taken into 
account.

Present Call A, P, M (discrete, unstable). Rules were derived 
from 50 µm and 24 µm feature arrays, may need 
update for 20 µm)

Continuous LogP

E E E E nkl k k kl k= − −( )( )max / ,0 0

E E E E nku k ku k k= + −( )( )max / , .0 0
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The normalization procedure in MAS4 aims at normaliz-
ing the average intensities of probe sets (excluding the top
and bottom 2%). To avoid possible signal contamination,
MOID takes similar approach by normalizing the probe
sets between 10 and 90 percentiles. However, it is noticed
that an ideal normalization factor should be derived from
only those genes that do not change their expression levels
between the two experiments. MAS software provides the
possibility to use a list of housekeeping genes for such
purposes; however, it certainly requires careful down-
stream research to validate any such a list. Some common
normalization criteria were summarized in a recent study
by Zien et al. [12]. MOID uses a heuristic bootstrap meth-
od to identify an approximate list of unchanged genes be-
tween two data sets:

Step 1: include all genes as the normalization gene list.

Step 2: sort the Ek values (already background subtracted)
for all the genes in the list; the interesting portion of ex-
pression values (between 10% and 90% in our case) is re-
trieved and average intensity is calculated for each
experiment, respectively. The initial normalization factor
nf is calculated by the ratio of the two average intensities.

Step 3: normalize the data sets using nf obtained in the
previous step; refine the gene list by further excluding
those genes, whose intensity values changed by more than
a certain fold, > fmax or < 1/fmax, between the two data
sets.

Step 4: repeat Step 2 and update nf to nf', until one of the
following conditions is met:

1) the maximum number of iterations, Itrmax, is reached;

2) |nf/nf' - 1| ≤ max, where max is a small predefined
threshold;

3) size of the normalization gene list drops below a prede-
fined threshold, Szmin.

In practice, a single iteration is usually sufficient for most
comparisons. User can adjust threshold parameters to-
wards their preferred stringent levels. In this study we use
fmax = 2.0, max = 0.05, Itrmax = 5, Szmin = 1000.

MOID algorithm for comparison analysis
Different probes within the same probe set generally re-
spond very differently to mRNA sample fragments. We ex-
amined various probe properties such as melting
temperature, nucleotide base composition, possible se-
quence motifs, and potential secondary structures in order
to understand the cause of such diverse response proper-
ties. That study did not find any conclusive factor that ex-

plains observed probe signal distribution satisfactory.
Although it seems rather difficult to pre-compute and pre-
dict probe responses, it is possible to derive some features
afterwards for a probe based on a significant amount of
expression data where the target gene of interest is present
[8]. Instead of using a modeling approach to explain var-
ious signal contributions, MOID uses a new approach to
avoid the affect of diversities of probe response factors in
calculating expression fold changes.

Let us assume any two probes in a probe set k of size nk al-
ways respond to their target gene concentration with fac-
tor r1 and r2, respectively. That is, if the gene is present at
concentration c1 and c2 in two hybridizations, the two
probes in average give signal intensities r1c1 and r2c1 in
the first experiment, r1c2 and r2c2 in the second experi-
ment. As in MAS4, fold change is calculated by the ratio
between r1c2 + r2c2 and r1c1 + r2c1, where the result is es-
sentially dominated by the probes with the largest re-
sponse factors, and the statistics of the ratio becomes
difficult to estimate. However, we observe that by taking
the ratio of the two signals for each probe individually,
one essentially is looking at nk independent measure-
ments of c2/c1 for that probe set. This opens a possibility
for obtaining a distribution of fold change values.

If one assumes most probes have a rather stable intrinsic
response factor, r, a fold change number can be calculated
from each probe i in the set independently, which hope-
fully removes the affect of the unknown response factors
ri. However, it seems the response factor of each probe has
a non-negligible intrinsic spread as well; this may be fur-
ther complicated by alternative splicing and tissue-specific
cross hybridization issues. In addition, the nk ratio num-
bers calculated for a probe set are not normally distributed
(it is well known that even the ratio of two normally dis-
tributed values is no longer normally distributed). The
current background subtraction algorithm may not take
fully into account response factor-unrelated signals, there-
fore could further increase the non-normal component.
To overcome this difficulty, MOID uses a percentile, pctf,
of the integral distribution formed by the nk fold change
numbers, Fk(f), which satisfied the boundary conditions:
F(0) = 0 and F(∞) = 1. Empirically, 70% is used for pctf as
determined by spiking experiments discussed later. The
confidence intervals are also directly taken from relevant
percentiles in the distribution corresponding to the lower
bound and upper bound, respectively. The effect of the
number nk is taken into account in the same heuristic
manner as we did previously for absolute analysis. The fi-
nal formulae are:
Page 13 of 15
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MAS4 Algorithm for Absolute Analysis
After a sample is hybridized to probes on a chip, the chip
is scanned and fluorescent signals are collected and stored
in an Affymetrix DAT file. For cell i, after filtering out
boundary pixels, Ni numbers of pixels are used to calcu-
late an average intensity value Ii and standard deviation σi.
Hereafter we index a probe set by k, which contains nk
probe pairs. The calculated intensity values for thejth pair
in the kth probe set are denoted as PMkj for PM and MMkj
for MM. Background intensity, bg, is derived from the av-
erage intensity of the 2% darkest cells. Noise level, Q, is
determined as

where average is done over all background cells.

MAS4 assumes that the cross hybridization component of
a match is captured by its mismatch companion, therefore
the difference, PMk - MMk, is used to derive expression lev-
els. MAS4 also uses a "super-Olympic scoring" procedure
to iteratively filter out outliers, defined as those probe
pairs with difference values more than three times the
standard deviation away from the mean. After filtering,
the average difference value for a probe set, Dk, is used to
represent the expression level of that particular gene.

The significance of gene presence is determined by an em-
pirical absolute call decision matrix coupled with propri-
etary MAS4 algorithms, parts of which are described in the
Microarray Suite documentation. As the result, a probe set
is marked as either "Present", "Absent", or "Marginal".

MAS4 calculates average difference by

Dk = < PMkj - MMkj >j,

which is essentially

Dk = <PMkj >j - <MMkj >j,

where the average is taken over all the probe pairs surviv-
ing the super-Olympic filtering process mentioned above.
Based on this observation, the one-one correspondences
between PMkj and MMkj, typically with an average correla-
tion coefficient around 0.8, are essentially lost during
such averaging. Since MAS4 is successful in various appli-
cations despite the fact it averages out probe-specific mis-
match signals, we hypothesize that contributions of the
mismatch probes are mainly probe-nonspecific, if the
pairwise correspondence between PMkj and MMkj are not
enforced. This observation led to the idea of only using
match probes in the MOID algorithm discussed above.

MAS4 Algorithm for Normalization
MAS4 introduces a normalization factor (a scaling factor
in MAS4 serves the same purpose). The goal of normaliza-
tion is to reduce false positives in the expression fold
change calculation and ensure housekeeping genes are
marked as unchanged. Since it is usually unknown a priori
what genes sustain their expression level during the two
experiments, different heuristic normalization schemes
may be adopted and it is unclear at this point which par-
ticular approach is optimal. MAS4 normally derives the
normalization factor by scaling average Dk for all genes
with expression levels within the central 96% to a certain
target intensity constant. This algorithm is based on the
assumption that the total copy of mRNA per cell is a con-
served number among experiments.

MAS4 Algorithm for Comparison Analysis
In comparison of two chips, we follow Affymetrix conven-
tion of calling the reference chip measurement as the base
(b), the other one as the experiment (e). After the above
normalization procedure, the fold change value for gene
k, fk, is essentially calculated by dividing Dk (e) with Dk
(b). MAS4 uses a filtering process to ensure that a com-
mon subset of "good" probe pairs between b and e are
used to recalculate Dk. Very weak expression signals
(sometimes negative) are rounded to the noise level men-
tioned before. The final formula for f is:

fk = [Dk(e) + max (Q - Dk(b), 0)] / max (Dk(b), Q), if Dk(e)
≥ Dk(b),

or

fk = max (Dk(e), Q) / [Dk(b) + max (Q - Dk(e), 0)], other-
wise.

An empirical difference call decision matrix and a propri-
etary MAS4 algorithm, partly described in the Microarray
Suite 4.0 documentation, determine the significance of
the fold change. As a result, the probe set is marked as "In-
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crease", "No Change", "Decrease", "Marginally Increase",
or "Marginally Decrease". It is obvious that the fold
change number is only meaningful if the probe set is clear-
ly present at a level above the noise in both data sets.

List of Abbreviations
MOID - match-only integral distribution

MAS4 - Affymetrix algorithms implemented in its Micro-
array Suit 4.0 software

PM - perfect match

DMM - mismatch
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