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Abstract. Accurate and automated prostate whole gland and central gland segmentations on MR images are
essential for aiding any prostate cancer diagnosis system. Our work presents a 2-D orthogonal deep learning
method to automatically segment the whole prostate and central gland from T2-weighted axial-only MR images.
The proposed method can generate high-density 3-D surfaces from low-resolution (z axis) MR images. In the
past, most methods have focused on axial images alone, e.g., 2-D based segmentation of the prostate from each
2-D slice. Those methods suffer the problems of over-segmenting or under-segmenting the prostate at apex and
base, which adds a major contribution for errors. The proposed method leverages the orthogonal context to
effectively reduce the apex and base segmentation ambiguities. It also overcomes jittering or stair-step surface
artifacts when constructing a 3-D surface from 2-D segmentation or direct 3-D segmentation approaches, such
as 3-D U-Net. The experimental results demonstrate that the proposed method achieves 92.4%� 3% Dice sim-
ilarity coefficient (DSC) for prostate and DSC of 90.1%� 4.6% for central gland without trimming any ending
contours at apex and base. The experiments illustrate the feasibility and robustness of the 2-D-based holistically
nested networks with short connections method for MR prostate and central gland segmentation. The proposed
method achieves segmentation results on par with the current literature. © 2019 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.JMI.6.2.024007]
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1 Introduction
Automated prostate segmentation from MR images has been a
challenging problem in the past decade. Multiparametric MRI
(mpMRI) of the prostate has been effective at detecting likely
regions of prostate cancer. These are then targeted for biopsy
to confirm and grade prostate cancer. There has been a plethora
of computer-aided detection systems developed and evaluated to
assist radiologists in detecting prostate cancer with mpMRI.
These systems require or benefit from prostate segmentation
and central gland segmentation by restricting the region of inter-
est (ROI) on which a computer-aided diagnosis (CAD) system is
trained or evaluated, and sometimes by providing additional
anatomical information. Manual segmentation of the prostate
and anatomical structures can be prohibitively time consuming
as well as error prone. Fully automatic segmentation systems are
expected to improve efficiency and reduce error.

In the past decade, the traditional MR prostate segmentation
spanned the domain of atlas, shape, region, and machine learn-
ing-based methods. We review a few typical works from the tra-
ditional perspectives. Klein et al.1 proposed an automatic
segmentation method based on atlas matching. Yin et al.2 pro-
posed an automated segmentation model based on normalized
gradient field cross correlation and graph search-based

framework. Ghose et al.3 proposed an active appearance
model (AAM) to segment the prostate. Toth and Madabhushi4

extended the traditional AAM model to include intensity and
gradient information and used level set to capture the shape stat-
istical model information with a multifeature landmark-free
framework. Many successful approaches were proposed that
use feature-based machine learning. Habes et al.5 proposed a
support vector machine-based algorithm that allows automated
detection of the prostate on MRI images. Liao et al.6 proposed a
unified deep learning framework using a stacked-independent
subspace analysis network to learn image features in a hierar-
chical and unsupervised manner.

Most recently, the deep learning-based methods were inte-
grated into MRI prostate segmentation and achieved striking
performance as compared to the traditional approaches. The
major works stem from the medical image computing and com-
puter assisted intervention (MICCAI) PROMISE-12 challenge.
Most of the works focus on using 3-D U-net architectures to
perform the volumetric segmentation. Yu et al.7 proposed a
3-D volumetric U-Net with mixed residual connections between
corresponding scale layers. Milletari et al.8 proposed 3-D volu-
metric V-Net architecture to perform end-to-end prediction.
Each stage of the V-Net comprises one to three convolutional
layers as a residual block: a skip connection between the
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input convolution layer and the output convolution layer to
bypass the nonlinear transformations with an identity
mapping7. Meyer et al.9 proposed multistream 3-D U-net to seg-
ment the prostate from the high-resolution scanned MR images
(axial, sagittal, and coronal). Zhu et al.10 proposed the UR-Net
architecture, which utilizes a bidirectional convolutional LSTM
layer as the basic building block and leverages U-Net as the main
framework. Jia et al.11 proposed a coarse-to-fine prostate seg-
mentation—an atlas-based image registration followed by
VGG-19 CNNs to predict the prostate boundary. In previous
works, Refs. 12 and 13, we proposed holistically nested net-
works (HNN)-based deep learning segmentation models. A
standard HNN model12 is applied to scanned high-resolution
orthogonal axial, coronal, and sagittal images. Each orientation
image is processed alone. Then the three deep-learning-predicted
volume of interests (VOIs) are merged together to create a 3-D
prostate surface. We proposed an enhanced HNN model13 with
MRI and coherence enhanced diffusion (CED) images to axial
images alone. Although the performance is good, certain axial
cases suffer over-segmentation and under-segmentation errors
(large) at apex and base, and fewer cases even at central slices.

One common feature of the 3-D U-Net convolution is that
they parcellate the 3-D image volume into smaller cubes (i.e.,
64 × 64 × 16) with sliding window or random sampling. Those
smaller volumetric cubes were sent down to the 3-D U-Net
architecture to be further processed into smaller 3-D units.
The 3-D convolution operation applies to the 3-D units to extract
features for image segmentation. The spatial context informa-
tion is enforced within each 3-D cube unit. However, the spatial
context information across each 3-D cube unit is not preserved
by the nature of the 3-D convolution operation. Thus 3-D U-Net
convolution only learns the limited spatial contextual informa-
tion. Still, these architectures exhibited good performance in the
PROMISE-12 challenge and are a suitable approach if graphics
processing unit (GPU) memory limitations are not a concern.14

Most existing MR prostate segmentation methods generate
the boundary VOIs with axial image alone. Due to the lower
z axis resolution (i.e., 3 mm), most methods only apply to 2-D
axial slices, ignoring the coarse features from sagittal and coro-
nal views. The primary concern is that the low z resolution might
introduce larger segmentation errors. The 3-D U-Net preserves
local spatial context. However, the 3-D volume is still con-
structed from a low z resolution image or smaller image volume
size. For example, Yu et al.7 resampled the image to a fixed res-
olution of 0.625 × 0.625 × 1.5 mm3 and crops the volume to a
small unit of 64 × 64 × 16. Meyer et al.9 used an image size of
168 × 168 × 168 with a resolution of 0.5 × 0.5 × 0.5 mm3.

Due to limited GPU memory, it is prohibitively expensive
to upsample the 3-D image into high resolution and then
apply the 3-D U-Net segmentation to the upsampled volume.
For example, an image size of (256 × 256 × 256, 0.35 × 0.35 ×
0.35 mm3) with overlapping sliding windows (stride-1) of 64 ×
64 × 16 small volumes will end up resulting in nearly 9 million
3-D U-Net invocations. In such a case, most time will be spent
communicating 64 × 64 × 16 volumes with the GPU and invok-
ing the 3-D U-Net network. Training could conceivably be made
more efficient by randomly sampling the 9 million 64 × 64 × 16

volumes, but this potentially leads to a substantial loss of
training examples, some of which may even provide important
confounding examples.

In this paper, we aim to develop a feasible system for MRI
prostate and central gland segmentation. We employ multiscale

and multilevel learning, region cues using 2-D holistically nested
networks with short connections (HNNsc) to solve the segmen-
tation issues on MR images. The proposed method takes advan-
tage of the 2-D HNNsc and applies it to an orthogonal context. At
the current stage of integrating deep learning methods into medi-
cal image segmentation, the ideal state is to come up with a stand-
alone deep learning system that can segment the target object end-
to-end. In reality, most existing deep learning systems more or
less predict the segmented object with certain noise. For example,
small noise can be generated from the deep learning model. Those
scattered points or smaller regions mainly contribute to large
Hausdorff distance (HD) errors. To overcome the problem, we
utilize 3-D surface reconstruction and 3-D mesh optimization
to effectively reduce noise from deep learning generated results.
The experiments illustrate the promise and robustness of the pro-
posed automatic segmentation pipeline, which achieves on par
performance to the state-of-the-art results in the current literature.
In addition, the proposed the 2-D deep learning approach can
train large number of images to fit into a general-purpose graphics
card, such as Nvidia k20× with 6 GB texture memory. With the
3-D convolution architectures,7–9 the memory of those 3-D
counterpart is too large to fit in the small GPUmemory limitation,
which constraints them from scaling well to large datasets and fit
onto a general purpose graphics card.

2 Methods

2.1 Data

The MR images used in this study are T2Waxial images provided
by the National Cancer Institute, Molecular Imaging Branch. T2W
MRIs of the entire prostate were obtained in axial planes at a
scan resolution of 0.35 × 0.35 × 3.0 mm3 and image dimension
of 512 × 512 × 26 from 145 patients. Among the 145 images,
130 images are from National Institutes of Health (NIH) multi-
institutional studies (different scanning protocols and resampled
into the same resolution) and 10 images are from MICCAI
ProstateX challenge,14 in which endorectal coil (ERC) and non-
ERC prostate images were presented. Manual prostate and central
gland delineation of the axial images are obtained from the expert
manual segmentation for all 145 images. These VOIs are consid-
ered as the ground truth of the evaluation. The axial T2W MRIs
were manually segmented in axial view by an experienced geni-
tourinary radiologist (B. T., with cumulative experience of 10
years reading and segmenting 700 prostate MRIs/year) using
research-based segmentation software (pseg, iCAD Inc., Nashua,
New Hampshire). Those segmentations were all performed during
clinical read out of the prostate MR images to document the pros-
tate volume in clinical reports. One ablation study we conducted is
the MICCAI Prostate MR Image Segmentation (PROMISE-12)
challenge dataset,15 an extreme case benchmark. This dataset
was acquired from multi-institutional studies, which explore a
wide variety of prostate MR images, such as different image
size, intensity, prostate location, resolution, field of view, and
bias field distortion. The training dataset has 50 T2W MR images
with corresponding binary masks as the ground truth. The test
dataset consists of 30 MR images.

2.2 Preprocessing

2.2.1 Preprocessing pipeline overview

Empirically, preprocessing of MR prostate images is a substan-
tial step to ensure the stability of the whole segmentation
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system. Because of the MR prostate scanning protocol, the
intensity range variation and the bias-field distortion can affect
the segmentation performance. We follow the ad hoc prepro-
cessing steps in the current literature to create better contrast
and finer detailed prostate images to train and test the proposed
deep learning model. Figure 1 demonstrates the preprocessing
pipeline. We will explain the detail of each step in this section.
After the preprocessing step, the newly generated MR image
and CED image slice pairs with corresponding ground truth
are used to train and test the deep learning model.

2.2.2 N4 correction

An MR prostate scan can create biased images from different
scanning protocols. The artifacts sometimes appear on the
image as black regions, which hide certain parts of the prostate.
To improve the quality of the images from the acquisition, we
first apply N4 correction to remove bias field distortion on the
image. The N4ITK16 algorithm is used to correct nonuniformity
within each given MR prostate image. Figure 2 demonstrates the
image quality before and after applying N4 correction.

2.2.3 Isotropic upsampling

For the given NIH data, the axial MR image resolution is
0.35 × 0.35 × 3 mm3. The xy plane of the axial image presents
the finer detail of prostate with high resolution. However, the
slice thickness is 3 mm, and the coronal and sagittal view planes
from an axial image only represent the prostate at a coarse level,

which is prone to blurring and staircasing artifacts. Figures 3(a)
and 3(b) show the coronal and sagittal views before upsampling.
To get a reasonable spatial context information from the 3-mm
low-resolution view, we isotropically upsample the image to
0.35 × 0.35 × 0.35 mm3 resolution. We use MIPAV17 trilinear
interpolation to upsample the axial image. Figures 3(c) and 3(d)
illustrate the coronal and sagittal views after upsampling.

2.2.4 Reorientation

After upsampling the axial image into isotropic resolution, we
interpolated and reoriented the axial image with corresponding
binary VOI masks into coronal and sagittal images. Figure 3
shows the effect after converting from the axial image. By taking
advantage of the spatial contextual information from three
orthogonal views, we build up the 2-D approach to segment
the prostate and central gland.

2.2.5 Coherence enhanced diffusion

For the MRI alone, the noise and low-contrast regions contribute
to the major artifacts. As a consequence, some edge boundaries
might be missing or blended with the surrounding tissues. We
apply a CED filter based on Ref. 18 to obtain the boundary-
enhanced feature image. The CED filters enhance the gray-
level edge boundaries, which can remove noise to improve
HNN performance. The CED image operation is shown in
Fig. 4.

Fig. 1 Preprocessing pipeline.

Fig. 2 N4 correction. PROMISE-12 training case 12: (a) before and (b) after.

Journal of Medical Imaging 024007-3 Apr–Jun 2019 • Vol. 6(2)

Cheng et al.: Fully automated prostate whole gland and central gland segmentation. . .



2.2.6 Intensity normalization

To overcome the intensity variability of MR prostate images, we
apply the interquartile range (IQR) method to scale the image
intensity range between 0 and 1000, then rescale between [0,
255] to standard PNG file format. The IQR is the difference
between the first and third quartiles, i.e., 25% and 75%. The
IQR scaling is calculated as

EQ-TARGET;temp:intralink-;e001;326;146resultxyz ¼ 1000 � Ixyz
medianðIÞ þ 2 � ½75%ðIÞ − 25%ðIÞ� ;

(1)

where I is the intensity set of the whole 3-D image after sorting
and Ixyz is the unscaled voxel intensity. Figure 5 shows the
intensity normalization step.

Fig. 3 Axial image isotropic upsampling: (a) coronal before, (b) sagittal before, (c) coronal after, and
(d) sagittal after.

Fig. 4 CED filter: MR image and (b) CED image.
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After the preprocessing step, axial, coronal, and sagittal view
images and corresponding binary masks are converted into 2-D
slices with PNG file format. The newly generated MR image
and CED image slice pairs with corresponding ground truth
are used to train and test the deep learning model.

2.3 Proposed Deep Learning Architecture

2.3.1 Schema overview

The overall proposed processing pipeline is shown in Fig. 6.
From the given low-resolution axial images, we first perform
isotropic upsampling followed by reorientation to generate
high-resolution orthogonal multiplanar images (axial, coronal,
and sagittal). Each orientation is trained and tested with holis-
tically nested network (HNN) or HNNsc models. With the
deep learning model predicted VOIs, we utilize 3-D surface
reconstruction and mesh optimization as postprocessing to cre-
ate high-density prostate or central gland surfaces. The final step
is to convert the highly dense 3-D surface back into original
image low-resolution binary masks for comparison.

2.3.2 Holistically nested networks architecture

HNN was first proposed by Xie and Tu,19 as a general edge
boundary detection method on natural images. Roth et al.20

adapted the HNN architecture for segmenting the interior of
organs on medical images, especially for the pancreas segmen-
tation. In previous work,13 we developed an enhanced version of
the HNN model.19 The HNN architecture learns the rich hierar-
chical feature representation and contexts from a general raw
pixel-in and label-out mapping function to tackle semantic seg-
mentation tasks in the medical image domain. HNN computes

the image-to-image and pixel-to-pixel prediction maps from raw
input image to its annotated binary mask, building multiscale
and multilevel fully CNNs with deep supervision. The HNN
(Fig. 7) consist of five stages. Each stage is scaled with corre-
sponding convolution filters and one additional 1 × 1 convolu-
tional layer as side output. Each side output produces a
probability map at a single-scale level, and one added fusion
layer computes the average of side outputs and generates the
final probability map. The entire network is trained with multi-
ple error propagation paths (Fig. 7 side outputs and fusion
lines). The HNN model has two folds: (1) holistically training
and predicting on the image end-to-end, learning the weight
and bias via the per-pixel-based loss function, and (2) leveraging
the multiscale and multilevel deep convolutional neural net-
works to capture the complexity of prostate appearances in MR
images.

Experimentally, we found that training and testing the HNN
with the MR image data alone occasionally produced unex-
pected irregular shapes and smaller scattered regions, primarily
due to low-edge signals in the MR images. To minimize these
problems and to increase the stability of the HNN, we proposed
an enhanced HNN model13 that can handle multifeature image
pairs. Each MRI and CED image set was paired with the cor-
responding ground-truth binary mask. Each image pair was
a standalone basic unit and together these pairs constitute the
training set. The HNN architecture holistically learns the deep
representation from both MRI and CED images and builds the
internal convolution neural networks between the two image
features and corresponding ground truth image maps. The
HNN produces per-pixel prostate prediction map pairs (MRI
and CED) from each side output layer simultaneously with
the ground truth binary mask acting as the deep supervision.

Fig. 5 Median and IQR intensity normalization: (a) before and (b) after.

Fig. 6 Proposed segmentation pipeline.
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The proposed model lets the HNN architecture naturally learn
appropriate weights and biases across different features in the
training phase.

2.3.3 Holistically nested networks with short connection

Inspired by the recent work of Hou et al.,21 we apply the HNNsc
(Fig. 8) model to try to make marginal improvement for segmen-
tation. The intuition of the HNNsc architecture is that the shal-
lower layers side output in the HNN focus on low-level features
(finer details, i.e., conv1 side output in Fig. 8) and miss the
global context information (coarse-level guidance, i.e., conv5
side output in Fig. 8). The deeper layers side output can find

the location or global view of ROI but lose the finer details
such as edge boundary. To overcome the drawback, the HNNsc
architecture builds the short connections from the deeper layers
side output back to the shallower layers side output in order to
extract the most visually distinctive object.

To formulate the HNNsc architecture, the side connection of
the m’th side output is

EQ-TARGET;temp:intralink-;e002;326;419R̃ðmÞ
side ¼

(P
M̂
i¼mþ1 r

m
i R̃

ðiÞ
side þ ÂðmÞ

side; for m ¼ 1; : : : ; 5

ÂðmÞ
side; for m ¼ 6

;

(2)

Fig. 7 The proposed HNN architecture for MR prostate segmentation.

Fig. 8 The proposed HNN short connections architecture for MR central gland segmentation.
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where rmi is the short connection weight that back propagates
from deeper layers side output i to each shallower layer’s
side output mði > mÞ. The side output function is expressed as

EQ-TARGET;temp:intralink-;e003;63;719L̃sideðW; w̃; rÞ ¼
XM̂
m¼1

aml̃
ðmÞ
sideðW; w̃m; rÞ; (3)

and the fusion loss is

EQ-TARGET;temp:intralink-;e004;63;656L̃fuseðW; w̃; f; rÞ ¼ ĥ

�
Y; σ̂

�XM
m¼1

fmR̃
ðmÞ
side

��
; (4)

where r ¼ frmi g; i > m; l̃ðmÞ
side is the cross-entropy loss, fm is the

fusion weight function, and Y is the ground truth label. The
overall HNNsc loss function is
EQ-TARGET;temp:intralink-;e005;63;573

L̃HNNscðW; w̃; f; rÞ ¼ augmin½L̃sideðW; w̃; rÞ
þ L̃fuseðW; w̃; f; rÞ�: (5)

The HNNsc architecture combines the ROI region lookup
and detail refinement steps into the original HNN architecture.
The locating step finds the most visually distinguishable ROI
region in the deep layers via forward propagation. The details
refinement utilizes the top-down approach to build short connec-
tions from deep side outputs back to all previous shallower side
outputs. Thus the deeper side output guides the shallower layers
to more accurately predict the ROI region. Simultaneously, the
shallower layers can refine the results from deep side outputs to
obtain more dense and accurate prediction maps.

2.4 Postprocessing

Both HNN and HNNsc architectures can produce reasonable
segmentation results along each orthogonal view. However,
the generated binary prostate or central gland masks occasion-
ally contain erroneous segmentation. Some cases have obvious
offset from ground truth masks, even at the central prostate
slices, as shown in Fig. 9.

This is due to a problem of the training data not representing
these challenging cases from the test data or overfitting and gen-
eralization issues, which model the training data too well and
fail to generalize to new unseen data. The HNN and HNNsc
architectures cannot guarantee that the end-to-end prediction

generates the perfect segmentation solution. No matter which
deep learning architecture is applied, U-Net, DenseNet, or
the proposed HNN architecture, the unexpected irregular shapes
of prostate exist randomly in the MR-based segmentation tasks.
In 2-D stand-alone approach for an axial image, most erroneous
contours appear at apex and base due to incorrect prediction.
Those errors could be reduced from the triplanar spatial context.
This is the key reason that the 2-D orthogonal approach is pro-
posed. Finally, we apply 3-D surface reconstruction to build the
prostate and central gland 3-D surfaces from the cloud point
sets. We further refine the 3-D surface with mesh optimization.

2.4.1 Bounding-box based errors reduction

When we merge the axial, sagittal, and coronal VOIs from the
deep learning generated results, the aforementioned irregular
shapes can have obvious outward points from the base. The sim-
plest and most effective way is to build a minimum bounding
box to remove the outward points. We search each axial, coro-
nal, and sagittal VOI contour to find min and max X, Y, Z coor-
dinates for each orthogonal VOI, then using the minimum
bounding box to remove the outside points. Figure 10 illustrates
the effect before and after applying the min bounding box.

2.4.2 3-D surface reconstruction

The given images are all in the axial orientation. After isotropic
upsampling and reorientation steps, the axial image still keeps the
high resolution in the xy plane. The generated coronal and sagittal
views are still coarse but contain more contextual information
than the low-resolution (3 mm) images. Along each z direction,
each orientation image has a large number of slices after isotropic
upsampling. While the merged cloud points are much denser,
they contain a lot of noisy points internally (due to HNN segmen-
tation error) and externally around the 3-D surface. The ball-
pivoting22 and Poisson surface reconstruction algorithms23 are
used to generate a smoothed high-resolution 3-D surface out
of the noisy points. Figure 11 illustrates the 3-D surface created
from ball-pivoting and Poisson algorithms.

2.4.3 3-D mesh optimization

Some 3-D surfaces after ball pivoting and Poisson
reconstruction still look bumpy due to the predefined ball radius
and point cloud complexity. To approximate a smooth surface,

Fig. 9 Erroneous contours predicted from HNNmodel: (a) axial segmentation, (b) coronal segmentation,
and (c) sagittal segmentation. Green contours are the ground truth and red contours are the HNNsc
predicted results. HNNsc generated contours have obvious offset from the ground truth contours.

Journal of Medical Imaging 024007-7 Apr–Jun 2019 • Vol. 6(2)

Cheng et al.: Fully automated prostate whole gland and central gland segmentation. . .



we apply the VTK Laplacian smoothing algorithm.24 The effect
is to reduce the high-surface curvature and flatten the bumpier or
coarser meshes. Those small curvature or bumpier patch arti-
facts from the 3-D surface reconstruction procedure can be fur-
ther reduced. The 3-D surface quality depends on the parameters
setting of the ball pivoting and the Poisson algorithm, i.e., ball
radius, Poisson octree traversing depths, etc. Occasionally, the
BPA and PA reconstructed 3-D surface can still be coarse. Thus
3-D surface smoothing is important in creating high-quality

surface and in approximating the real prostate or central
gland shapes. Overall, the surface reconstruction and mesh
optimization together warrant a smooth 3-D surface being con-
structed from the noisy cloud points.

After the 3-D surface is created, we need to convert the 3-D
prostate surface back into 2-D prostate binary masks for evalu-
ation. We compute the 3-D surface and 2-D slices intersection
points from the 3-D mesh subdivision in image space. The non-
uniform subdivision25 algorithm is used to subdivide the 3-D

Fig. 10 Min bounding box to remove noise contour points: (a) the HNN predicted points after merging the
three VOIs. The deep learning model occasionally produces unexpected shapes and (b) min bounding
box removes outward points and moves the bounding box planes close to the majority prostate cloud
points.

Fig. 11 Central gland 3-D surface reconstruction: (a) ball-pivoting output. (b) Poisson output.
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surface multiple times (i.e., 50). We subdivide the 3-D surface
into much denser triangles, then compute the closest points to
the specific slice number. We use a polar coordinate system to
extract the 2-D VOI contours from the interpolated intersection
points. The method is simple and effective. It also generates the
2-D binary masks with less information loss. Conservatively, we
apply the 3-D morphology identity function to the binary mask
image to further remove scattered noisy points on the binary
mask image. Finally, the 2-D binary mask is transformed back
to the original image space (low resolution in axial image) for
comparison. Figure 12 shows the subdivision effect.

3 Experiments

3.1 Training and Testing

The NIH dataset includes 145 axial MR images with dimensions
of 512 × 512 × 26 and resolutions of 0.35 × 0.35 × 3 mm3.
Both whole prostate and central gland VOIs are given as the
ground truth. Fivefold cross validation is used for the experi-
ments. Two experiments (HNN and HNNsc) are conducted
for each fold to evaluate the segmentation performance.
For each orientation (axial, coronal, and sagittal), we train a
2-D-based standalone model; three models formulate the 2-D
orthogonal approach. After preprocessing, around 45,000 2-D
slice pairs [MRI slice with ground truth (GT) mask and CED
slice with GT mask] are mixed (pair wise) together to train
one stand-alone HNN or HNNsc model. During the testing
phase, the tested images run against each trained model to gen-
erate the VOIs for each orientation. Surface reconstruction and
mesh optimization are used to create a highly dense 3-D surface
from the HNN- or HNNsc-predicted VOIs. Then the 3-D surface
is converted back to binary mask images for comparison. The
whole prostate and central gland segmentations are conducted as
separate experiments.

The PROMISE-12 dataset has 50 prostate MR images for
training and 30 images for testing. We perform experiments
with HNNsc model for prostate segmentation only. The training
and testing follow the same procedure as described above.
Testing is evaluated by the PROMISE-12 organizers.

3.2 Implementation

All the preprocessing, postprocessing, 3-D surface reconstruc-
tion, mesh optimization, and 3-D visualization are all imple-
mented with the MIPAV application. HNN19 and HNNsc21

are implemented using the Caffe library (C++ and Python).
The HNN and HNNsc hyperparameter settings are the same:
batch size (1), learning rate (1 × 10−7), momentum (0.9), weight
decay (0.0002), number of training iterations (30,000), and step
size (10,000). The fusion layer side output generates a [0, 1]
probability map, which is scaled to [0, 255] intensity range.
During postprocessing, we convert the probability map into a
binary mask using threshold at ≥250 to extract the whole pros-
tate and the central gland. The threshold level has been found
as optimal on both the NIH dataset and Promise 12 dataset. We
then generate final VOI contours from the binary mask.

3.3 Evaluation

The 3-D prostate or central gland surfaces are converted back
to the original image space (low resolution) binary masks to
compare with the ground truth. The evaluation metrics for NIH
data include Dice similarity coefficient (DSC), Jaccard (IoU),
Hausdoff distance (HD, mm), and average minimum surface-
to-surface distance (AD, mm). EvaluateSegmentation26 is uti-
lized to evaluate segmentation performance. No trimming is
applied to any ending contours, such as a 5% or 95% trimming
interval to remove outliers for distance-based measure and DSC
measure. Incorrect prediction (i.e., under or over segmentation
slices at apex and base) are counted into the final measurement

Fig. 12 3-D prostate surface subdivision: (a) before subdivision and (b) after subdivision.
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results. Statistical significance of differences in performance
measure between the HNN models is computed using the
Wilcoxon signed-rank test for the p value. Tables 1 and 2
demonstrate the whole prostate and central gland segmentation
accuracy performance by comparing the HNN and HNNsc
models.

We observe that the HNNsc model improves the mean DSC
by 2% with p < 0.001 (i.e., prostate: 90.01% to 92.35%; central
gland: 88.03% to 90.06%), the mean IoU by 4% with p < 0.001
(i.e., prostate: 81.97% to 85.93%; central gland: 78.99% to
83.06%). In current MR prostate segmentation literature, 2%
performance improvement is significant, especially for DSC
results close to or better than 90%.

Visual comparison of the HNNsc segmented whole prostate
and central gland results are shown in Figs. 13 and 14. The 3-D
surfaces are on the top, followed by VOI contours at the bottom.
In general, the HNNsc model illustrates promising segmentation
results from the best and normal cases. In worst case scenario,
the whole prostate segmentation [Fig. 13(d)] has a certain offset
from the ground truth. Perceptually, the HNNsc result is accept-
able due to the anatomic structure. The central gland segmen-
tation [Fig. 14(d)] reflects an incorrect prediction case from
HNNsc prediction (coronal, sagittal, and 3-D views), which
is under-segmented. Overall, the mean DSC and HD values
of HNN and HNNsc demonstrate the promise and robustness
of the segmentation pipeline.

Direct quantitative comparison with other methods from the
literature is not possible due to differences in image datasets and
number of images used in the experiments during training and
testing. Table 3 lists DSC and HD values to roughly compare the
latest literature results. The proposed HNNsc model has a mean
DSC of 92.35% on NIH dataset (145 images) under the fivefold
cross-validation scheme. The evaluation scheme does not trim
any erroneous contours at apex and base (i.e., trim lower 5% and
higher 95%). To our best knowledge, the proposed 2-D orthogo-
nal HNNsc segmentation model achieves comparable results to
the-state-of-the-art literature results.

3.4 Ablation Study

One ablation study we conducted applies the proposed HNNsc
method to the PROMISE-12 challenge dataset. We train the 50
training images thoroughly without fine-tuning the training set
images for better performance. The quantitative results for the
30 testing cases are shown in Table 4. We compare our results
with a few methods from the leaderboard. We come close to the
performance of the top ranked teams (September 2018, as
of written). Future work will aim to improve apex and base
performance.

One other ablation study compares the proposed result to one
previous work. We proposed the enhanced HNN MRI + CED
segmentation model13 for axial image alone. In the worst case

Table 1 Whole prostate segmentation. The prostate segmentation results of two proposed methods, HNN, HNNsc, four metrics DSC (%), Jaccard
index (%), HD (mm), and AD (mm). The statistical significance when comparing between the two methods is Wilcoxon signed-rank test with
p < 0.001.

DSC (%) Jaccard IoU (%) HD (mm) AD (mm)

HNN HNNsc HNN HNNsc HNN HNNsc HNN HNNsc

Mean 90.01 92.35 81.97 85.92 11.95 8.49 0.14 0.11

Std 2.99 3.00 4.82 5.01 8.73 2.99 0.07 0.06

Median 90.45 92.89 82.56 86.73 9.64 8.06 0.12 0.09

Min 78.91 81.30 65.17 68.50 3.00 3.16 0.05 0.03

Max 95.21 97.39 90.86 94.91 63.01 20.22 0.48 0.39

Note: Bold values indicate the best results.

Table 2 Central gland segmentation. The central gland segmentation results of two proposed methods, HNN, HNNsc, four metrics DSC (%),
Jaccard index (%), HD (mm), and AD (mm). The statistical significance when comparing between the two methods is computed by Wilcoxon
signed-rank test with p < 0.001.

DCS (%) Jaccard IoU (%) HD (mm) AD (mm)

HNN HNNsc HNN HNNsc HNN HNNsc HNN HNNsc

Mean 88.03 90.06 78.99 83.06 9.01 9.35 0.20 0.16

Std 5.62 4.71 7.68 7.35 5.29 4.56 0.24 0.14

Median 89.04 91.60 80.25 84.51 7.68 8.36 0.15 0.11

Min 41.34 69.69 26.05 53.48 2.82 3.6 0.05 0.04

Max 95.25 96.88 90.94 93.96 44.5 29.7 2.81 0.77

Note: Bold values indicate the best results.
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scenario, we encountered noticeable volume difference and high
HD errors, which are primarily contributed from the erroneous
contours at the apex and base. Figure 15 illustrates one worse
case. HNN model generates unpredictable results occasionally.
HNN prediction errors cannot be eliminated with axial context
alone. With the proposed 2-D orthogonal context, the HNN pre-
diction errors can be effectively reduced via low-resolution
coronal and sagittal views.

In our previous work,13 we utilized 250 datasets from NIH,
and all axial images are acquired from ERC insertion. In this
proposed work, we utilize mixed data from a NIH multi-institu-
tional study and a few datasets from the ProstateX challenge, a
total of 145 datasets. The ERC context is mixed. The proposed
axial image segmentation pipeline alone (Fig. 6) follows exactly

the model setup in Ref. 13. We compare axial image segmen-
tation alone with the proposed 2-D orthogonal segmentation
model using 145 datasets as an approximation to compare
with the previous work.13 Table 5 demonstrates the mean
value of the four metrics. The HNN 2-D orthogonal model out-
performs HNN axial alone by ∼1% (Dice score) with p < 0.001.
The HNNsc 2-D orthogonal model outperforms HNN axial
alone by 3% (Dice score) with p < 0.001, which is significant.
The HNNsc mean HD error is reduced by 4 mm from the HNN
axial alone.

One other interesting study investigates the impact of HNN
versus 2-D U-Net. We segment the prostate (orthogonal context,
fivefold cross validation) with the NIH 145 dataset by replacing
HNN or HNNsc pipeline part completely with 2-D U-Net

Fig. 13 HNNsc segmentation result of whole prostate: (a) best result, (b) and (c) average results, and
(d) worst result.
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architecture in the proposed paradigm (Fig. 6). We ensure that
the remaining pipeline is the same, such as preprocessing, MRI
and CED pairs, orthogonal segmentation, postprocessing with
3-D surface reconstruction, and optimization. For simplicity,
we slightly change the 2-D U-Net implementation30,31 to run
the experiment with the closest HNN hyperparameter settings:
image size (64 × 64), batch_size (8), epochs (100), learning rate
(1 × 10−4), momentum (0.9), optimization (SGD, stochastic gra-
dient decent), and decay rate (1 × 10−6). Table 6 illustrates the
segmentation performance. Both HNN and HNNsc outperform
the 2-D U-Net in all four measures, showing that HNN-based
architectures provide an advantage over 2-D U-Net. HNN-
and HNNsc-based architectures have noticeably improved the

performance by 16% and 18%, respectively, (p < 0.001) on
the average DSC as compared with 2-D U-Net.

4 Discussion and Conclusion
In this work, we propose a 2-D orthogonal HNNsc deep learning
framework to accurately segment the prostate and central gland
volumes in MR images. The framework utilizes the axial, sag-
ittal, and coronal images to reconstruct high-density 3-D pros-
tate and central gland surfaces from the low-resolution axial
images. Traditional 2-D schemes with axial image alone suffer
from prediction errors. Even with the latest proposed deep learn-
ing methods, irregular shapes and scattered small regions could
appear in the central part, apex, and base part of the predicted

Fig. 14 HNNsc segmentation result of central gland: (a) best case, (b) and (c) average cases, and
(d) worst case.
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Table 3 Comparison with latest literature results of the whole prostate segmentation.

Methods DSC� Std (%) HD (mm) Images Eval method Trim-95% Year

Zhu10 UR-Net 93.61 80 Train:76, test:4 Yes 2018

He27 BT + CNN-ASM 84� 0.04 6.17� 1.89 Promise-12 Train:50, test:30 Yes 2017

Jecevicius28 AAM 93 4.12 Promise-12 50-fold, leave-one-out Yes 2017

Meyer9 3D-CNN 92.10 8.12� 2.89 Prostate-X Train: 25, test: 15 Yes 2018

Yu7 U + Res net 89.43 5.54 Promise-12 Train: 50, test: 30 Yes 2017

Jia11 ensemble 91� 3.6 2.81� 1.29 Promise-12 Fourfold cross validation Yes 2018

Our HNNsc 92.35� 3.00 8.49� 2.99 145 (NIH) Fivefold cross validation No 2018

Our HNNsc 88.47� 3.30 4.72� 1.15 Promise-12 Train: 50, test: 30 Yes 2018

Table 4 Comparison with a few PROMISE-12 challenge leaderboard methods. Three metrics DSC (%), (HD, mm), and average boundary
distance (ABD, mm).

Ours Phlilips DL_MBS29 CUMED Emory Individual

Method HNNsc CNN 3-D V-net Superpixel DenseFCN

Whole 88.47� 3.30 90.45� 3.12 89.43� 2.68 87.02� 3.21 88.98� 3.07

DSC (%) Apex 81.17� 9.84 85.29� 7.44 86.81� 5.84 81.5� 6.88 87.09� 6.75

Base 84.29� 8.31 88.51� 4.34 86.42� 4.02 83.52� 6.32 87.17� 5.11

HD (mm) Whole 4.72� 1.15 4.68� 1.51 5.12� 1.51 4.95� 1.01 5.32� 1.78

ABD (mm) Whole 1.73� 0.38 1.48� 0.37 1.71� 0.39 1.96� 0.36 1.66� 0.42

Fig. 15 One worst case segmentation result from the enhanced HNNmodel on axial image alone. Image
from Ref. 13. Ground truth (green) and segmentation (red). The 3-D surface is constructed from
a marching cube algorithm.
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probability maps. To overcome the problems, the proposed 3-D
surface reconstruction and optimization step can approximate
the real prostate and central gland 3-D shapes from deep learn-
ing predicted probability maps and effectively reduce the noise
regions.

Several latest literature works7–9 integrate the deep learning
model into the MR prostate segmentation and show promising
results. They all stem from the 3-D-convolution filter with U-
Net architectures, which are all end-to-end prediction systems.
Brosch and Saalbach32 mentioned that 3-D U-Net requires a
large amount of GPU memory in the training step and performs
poorly on the training images. A few drawbacks cause a sub-
stantial bottleneck in the 3-D-Conv U-Net approach: (1) image
size and resolution limitation. Small 3-D blocks extraction
(overlapped sliding window, random sampling, and data aug-
mentation) from the large image is time-consuming and is
prone to over-fitting issues during the deep learning training
phase. Since only a small fraction of 3-D volume blocks re-
present the real prostate boundary, remaining blocks from inter-
nal and external regions will be labeled as negative 3-D patches.
As we mentioned in Sec. 1, all the three proposed works apply
3-D-Conv U-Net to either small images or low-resolution
images. (2) Limited GPU memory can prevent the architecture
from scalability issues. For example, training 3-D U-Net convo-
lution on a general purpose 5 GB texture memory card (Nvidia
k20 card) for large datasets is infeasible and prohibitively expen-
sive. In contrast, we propose the 2-D orthogonal approach. We
apply HNN or HNNsc model to each upsampled axial, coronal,
and sagittal image as a standalone model. Then spatially aggre-
gate the multiple orthogonal view VOIs to reconstruct 3-D sur-
faces. The substantial advantages are: (1) 2-D HNN or HNNsc is
computationally efficient. This 2-D MRI and CED slice pairs

mechanism can fit into a large number of images with high res-
olution and large image size in both training and testing phases.
It also scales well on a general purpose graphics card. (2) The
spatial aggregation of orthogonal views could be an efficient
way to diminish the curse of dimensionality from their 3-D
counterparts. Volumetrically, the proposed framework can still
get reasonable spatial context. (3) We apply the whole frame-
work to the low-resolution axial image alone. One big concern
is that the low-resolution coronal view and sagittal view might
impose segmentation ambiguities from the deep learning model.
We utilize isotropic upsampling to generate finer axial, coronal,
and sagittal viewing images and apply a CED filter to enhance
the edge boundary. We find experimentally that the 2-D
orthogonal approach obtains reliable segmentation results.
The experiments show that using the low-resolution coronal
and sagittal views is a viable approach to fine-tuning multiple
aggregations for MR prostate segmentation tasks.

In the previous work,12 we applied HNN and 3-D
reconstruction models to MR images alone. The orthogonal
viewing images (high-resolution axial, sagittal, and coronal)
were given from an MR scanner with a specific scanning pro-
tocol. Recent work13 applied the HNN model with MRI and
CED pairs to axial image alone. This system is end-to-end pre-
diction without 3-D surface reconstruction involved.We run into
the irregular shapes and scattering noise issues at the prostate
central part, apex, and base, which is mainly caused by insta-
bility of the HNN deep learning model. In this work, we are
only given low-resolution axial images with mixed ERC coil
context. The proposed framework has a few advantages over
the previous works: (1) it integrates the upsampling step to
an axial image to get finer context information from orthogonal
views. (2) 3-D surface reconstruction and optimization effec-
tively reduce noise from deep learning prediction. (3) The
HNNsc back-propagates the global context to all previous
side output layers to increase robustness of the deep learning
prediction. Experimentally, the HNNsc deep learning model
with short connections elevates the DSC segmentation perfor-
mance by 2% from the HNN model.

Meyer et al.9 proposed a similar approach from multiplanar
volumes. They were given high-resolution axial, sagittal, and
coronal images from the MR scanners. They co-register the
three volumes to make context alignment. Then they apply mul-
tistream 3-D U-Net convolution architecture to all three volumes
with marching cubes as the postprocessing step to generate a
smooth 3-D prostate surface. To distinguish from this work,9

we take a standalone HNN or HNNsc model to each orthogonal
view image, which is obtained from upsampling and re-interpo-
lation of the low-resolution axial images. The reason is obvious.
There should not be any correlation across orthogonal views
in a 2-D context, i.e., the correlation between 2-D coronal
and sagittal slices. We could merge all three views to train
one deep learning model to adapt the multistream paradigm.
Conservatively, we consider this multistream mechanism for
2-D context could be error prone. The separate training
model can avoid ambiguities among the orthogonal context
in 2-D. Even with the proposed 2-D HNNsc model, direct
end-to-end prediction cannot avoid noise regions in all three
orthogonal views. The proposed postprocessing step plays a cru-
cial role to effectively reduce noise. The ball radius of the ball-
pivoting algorithm avoids obvious convex and concave compo-
nents from the cloud points and not all points need to be visited
via ball pivoting. The Poisson algorithm can further remove

Table 5 Approximate comparison with our previous work,13 using the
NIH 145 dataset to compare axial image alone segmentation results
with proposed 2-D orthogonal segmentation results. Four metrics:
DSC (%), Jaccard index IOU (%), HD (mm), and AD (mm).

Mean HNN_axial HNN HNNsc

DSC� std% 89.17� 3.06% 90.01� 2.99% 92.35� 3.00%

Jaccard IoU� std% 80.60� 4.91% 81.97� 4.82% 85.92� 5.01%

HD� std (mm) 12.80� 6.83 11.95� 8.73 8.49� 2.99

AD� std (mm) 0.18� 0.09 0.14� 0.97 0.11� 0.06

Table 6 Replacing HNN part pipeline with 2-D U-Net and comparing
prostate segmentation results between 2-D U-Net and HNN on axial
image using the NIH 145 dataset. Four metrics: DSC (%), Jaccard
index IOU (%), HD (mm), and AD (mm).

Mean 2-D U-Net HNN HNNsc

DSC� std% 73.95� 4.59% 90.01� 2.99% 92.35� 3.00%

Jaccard IoU� std% 58.87� 5.61% 81.97� 4.82% 85.92� 5.01%

HD� std (mm) 19.42� 16.01 11.95� 8.73 8.49� 2.99

AD� std (mm) 0.63� 0.33 0.14� 0.97 0.11� 0.06
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holes on the 3-D surface. Thus the postprocessing step can
refine the high-density 3-D surfaces from the deep learning pre-
dicted noisy cloud point set. To the best of our knowledge, the
marching cubes algorithm visits every point in the cloud point
set, and it cannot skip the convex or concave shapes on the 3-D
surface. Also the multistream 3-D U-Net convolution model
cannot guarantee the predicted point cloud set is noise free.
Those scattered noise regions cannot be effectively removed
or reduced using the marching cubes surface reconstruction
mechanism. The proposed 3-D postprocessing step (min bound-
ing box reduction→Ball pivoting and Poisson reconstruction→
mesh optimization) only takes around 20 to 30 s to create one
3-D surface from the cloud point set on general CPU (i.e., Intel
i7) during a low computational cost testing phase.

In addition to 3-D U-Net-based image segmentation, one
other interesting perspective is incorporating 3-D mesh-based
training with the convolution neural networks, which is a
very challenging task. One ideal state traces the 3-D mesh nor-
mal lines with the texture-based convolution operation to find
the optimal convergence point. The nature of 3-D convolution
makes controlling the topology path of mesh optimization hard
during the convolution since the CNN neural connections
between convolution layers distort the topology path for the
3-D mesh traversal. Brosch et al.29 presented a typical work
in this direction. The method initializes a 3-D mesh using
model-based segmentation;33 then a neural network-based boun-
dary detection architecture achieves the 3-D mesh optimization
with the CNN convolution. Small 3-D subvolumes sampled
along the normal line of the center point of a triangle are the
basic convolution units, which collect the 3-D texture features.
The signed distance between the center of the triangle and the
correct prostate boundary (the ground truth) is used as the opti-
mization function to build the parametric adaption neural net-
work. Two stages coarse-to-fine boundary detection networks
are the primary architecture: a global boundary detector that
uses the same parameters to optimize all the triangles to
adapt the 3-D mesh close to the right boundary; and a locally
adaptive network that adds a triangle-specific weighting layer to
the global network to refine the final boundary. During the pre-
diction phase, the proposed method produces a smoothed high-
resolution 3-D prostate surface from the last layer of the archi-
tecture. Unfortunately, the work is not publicly available, and it
is hard to project how the topology path is traversed during the
convolution, which needs further clarification. We regard this
method as a sound approach to build the bridge between 3-D
mesh optimization and 3-D convolution. Our proposed method
uses the HNNsc as the primary architecture to find the
rough boundary, followed by 3-D mesh optimization and
reconstruction to refine. Our approach builds the 3-D geometry
after the HNNsc segmentation pipeline. In contrast, Brosch
et al.29 performed the 3-D mesh deformed-based training and
3-D reconstruction simultaneously. Brosch et al.29 yielded better
performance than us on Promise12 challenge (Table 4).
Architecture wise, our method is more straightforward than
Brosch et al.29 Our approach can capture orthogonal contextual
information and create a smoothed 3-D surface out of the low-
resolution images.

To elaborate on the benefits of HNN-based architecture over
2-D U-Net, surprisingly, the experimental results from Table 6
demonstrate the improvement over 2-D U-Net by replacing it
with a HNN pipeline. Our observation is that 2-D U-Net requires
a huge hyperparameter space to train a model with a large

dataset. With our training scenario (50k MRI and CED
pairs), 2-D U-Net is relatively unstable as the baseline segmen-
tation model. During the prediction phase, we can see a lot of
miss and over segmentations in the central part, apex, and base
of the prostate. Scaling up to a large training dataset is the draw-
back of 2-D U-Net and might require further extensive hyper-
parameter tuning. In contrast, the HNN-based architecture is
smaller and simpler than 2-D U-Net and HNN does not have
the scaling issue with the large training dataset. Even the general
purpose graphics card (i.e., Nvidia k20× card with 6 GB texture
memory) can easily fit into the HNN hyperparameter training
space with our training scenario. The 2-D U-Net requires a
10-stage encoding–decoding path, which significantly down-
grades the training and prediction efficiency, preventing its
use for large-scale segmentation tasks, and increases the uncer-
tainty to create unexpected noise. The HNN architecture simpli-
fies the CNN architecture by eliminating the decoding path of
the 2-D U-Net, reducing its size by half. It is a feed-forward
neural network capable of producing multiscale outputs in a sin-
gle path, resulting in minimal resources required in both training
and testing. The HNN training and prediction is based on the
whole image end-to-end (holistically) using per-pixel labeling
cost. HNN incorporates multiscale and multilevel learning of
deep image features via auxiliary cost functions at each convolu-
tional layer. It is capable of automatically learning the rich hier-
archical feature representations (contexts) that are critical in
resolving multiscale spatial segmentation. The stability of the
HNN architecture, its ability to capture texture variation across
the full image context, and the large training set promote the
superior performance of the HNN model.

In conclusion, we present a 2-D orthogonal HNNsc frame-
work to automatically segment the MR prostate and central
gland from the axial images alone. The preprocessing step
enhances the MR image quality and converts the low-resolution
axial image to high-resolution orthogonal view images. The 2-D
HNNsc deep learning model exploits multifeatures (MRI +
CED pair) to generate reasonable segmentation probability
maps. The short connections from deep side output layers
back to all shallower side output layers ensure more robust pre-
diction. The HNNsc model improves the segmentation perfor-
mance from the HNN model by 2% in mean DSC. The
postprocessing step refines the 3-D smooth surfaces from the
HNNsc generated noisy cloud point set and converts the highly
dense 3-D surface back to a low-resolution axial image.
Traditional 2-D deep learning segmentation models rarely use
the low-resolution coronal and sagittal views due to potential
ambiguities imposed from the deep learning model. We isotropi-
cally upsample the low-resolution axial image and multiaggre-
gate the orthogonal views as spatial context to enhance the
segmentation accuracy. The experimental results verify that
the proposed framework is a relatively simple, feasible, and reli-
able approach for prostate segmentation tasks. In addition, the
proposed framework achieves close to state-of-the-art perfor-
mance as compared with other literature results. In the current
literature, we are one of the few works to propose the deep learn-
ing model for both MR prostate whole and central gland seg-
mentation, which can substantially aid the prostate cancer
detection in a CAD system.
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