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Abstract

Diffusion MRI fiber tractography is widely used to probe the structural connectivity of the brain, 

with a range of applications in both clinical and basic neuroscience. Despite widespread use, 

tractography has well-known pitfalls that limits the anatomical accuracy of this technique. 

Numerous modern methods have been developed to address these shortcomings through advances 

in acquisition, modeling, and computation. To test whether these advances improve tractography 

accuracy, we organized the 3-D Validation of Tractography with Experimental MRI (3D-VoTEM) 

challenge at the ISBI 2018 conference. We made available three unique independent tractography 

validation datasets - a physical phantom and two ex vivo brain specimens - resulting in 176 

distinct submissions from 9 research groups. By comparing results over a wide range of fiber 

complexities and algorithmic strategies, this challenge provides a more comprehensive assessment 

of tractography’s inherent limitations than has been reported previously. The central results were 

consistent across all sub-challenges in that, despite advances in tractography methods, the 

anatomical accuracy of tractography has not dramatically improved in recent years. Taken 

together, our results independently confirm findings from decades of tractography validation 

studies, demonstrate inherent limitations in reconstructing white matter pathways using diffusion 

MRI data alone, and highlight the need for alternative or combinatorial strategies to accurately 

map the fiber pathways of the brain.
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1. Introduction

Mapping the detailed structural connectivity of the human brain has been a major scientific 

goal for decades. Currently, the only safe, noninvasive method to map the white matter 

connections in the living brain is called diffusion MRI tractography (Conturo et al., 1999), 

which uses information about the displacement of water molecules in the brain (Le Bihan et 

al., 1986) to map fiber pathways. For nearly two decades, tractography has been used to 

probe both the spatial extent (or trajectory) of white matter pathways, as well as the region-

to-region (cortical-cortical) connectivity of the brain. These techniques have been applied 

not only by neuroscientists in order to elucidate fundamental insights about brain function, 

cognition, and development, as well as neurological diseases and disorders, but also by 

neurosurgeons for surgery planning (Essayed et al., 2017; Jones, 2010). Thus, the 

anatomical accuracy of tractography is critical for sound scientific conclusions or effective 

surgical outcomes. Specifically, tractography must be able to classify the presence or 

absence of connections in the brain (i.e. have high specificity and sensitivity), as well as 

precisely delineate the full spatial extent of the fiber pathways.

A number of validation studies have been carried out with the aim of determining the 

reliability of tractography - typically utilizing numerical simulations, physical phantoms, 

histological tracers, or comparisons against prior anatomical knowledge (Alexander and 

Barker, 2005; Alexander et al., 2002; Cote et al., 2013; Daducci et al., 2014; Donahue et al., 

2016; Dyrby et al., 2007; Girard et al., 2014; Irfanoglu et al., 2012; Jones, 2003; Jones and 
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Cercignani, 2010; Knosche et al., 2015; Leergaard et al., 2010; Maier-Hein et al., 2017; 

Ning et al., 2015; Reveley et al., 2015; Schilling et al., 2018b, 2018d; Thomas et al., 2014; 

Tournier, 2010; Wheeler-Kingshott and Cercignani, 2009). Together, this collection of 

studies have revealed pitfalls, uncertainties, and sources of error in the tractography process 

that may limit anatomical accuracy. For example, the sources of error can emerge during any 

stage of the tracking process: image acquisition, local voxel-wise reconstruction, and/or 

tracking streamlines from voxel to voxel. Specifically, with regard to image acquisition, it is 

well known that diffusion MRI (particularly with echo planar imaging (EPI)) is noisy, and 

prone to artifacts due to susceptibility gradients affecting EPI acquisitions, head motion, and 

eddy currents. These artifacts can lead to uncertainty in orientation estimates (Alexander et 

al., 2002; Jones, 2003), biases in diffusion indices (Wheeler-Kingshott and Cercignani, 

2009), geometric distortion in pathways (Irfanoglu et al., 2012), all of which can result in 

anatomically incorrect tractography (Jones and Cercignani, 2010). Another source of error 

involves drawing inferences about local fiber orientation from the diffusion displacement 

profile. MRI voxels are typically on the scale of millimeters, and can contain hundreds of 

thousands of axons with a large number of potentially complex geometric configurations 

(see (Dyrby et al., 2018) for a review on diffusion validation and its relationship to basic 

brain anatomy). In particular, fibers with crossing, kissing, fanning, and curving 

configurations have been a subject of concern for many diffusion reconstruction algorithms 

(Leergaard et al., 2010; Ning et al., 2015; Tournier, 2010), resulting in incorrect and 

ambiguous estimates of fiber orientation (Daducci et al., 2014). In addition, these 

reconstructions have been shown to be dependent on data acquisition conditions (including 

signal-to-noise ratio, amount of diffusion weighting, and number of diffusion encoding 

directions), as well as axonal geometry (for example, the crossing fiber angle) (Alexander 

and Barker, 2005; Schilling et al., 2018d). Finally, the tracking process itself is known to be 

subject to biases or inaccuracies due to lengths of streamlines (Donahue et al., 2016), shape 

and size of pathways (Girard et al., 2014), cortical folding patterns (Reveley et al., 2015; 

Schilling et al., 2018b), ambiguity in pathways selection (Maier-Hein et al., 2017), and 

choices of tracking parameters (e.g., seeding and stopping criteria, step size, curvature 

thresholds) (Dyrby et al., 2007; Knosche et al., 2015). Together, these difficulties have 

limited the anatomical accuracy of past tractography algorithms (Cote et al., 2013; Thomas 

et al., 2014). Some authors even argued that the anatomical accuracy of diffusion MRI 

tractography is inherently limited because inferring fiber direction information from a water 

diffusion displacement profile is fundamentally a complex, underdetermined inverse 

problem (Thomas et al., 2014).

Recently, several advancements in image acquisition, diffusion modeling, computational 

strategies, and tracking algorithms have been achieved with the aim of addressing these 

tractography limitations. To test whether these developments improve tracking accuracy, we 

organized the 3-D Validation of Tractography with Experimental MRI (3D-VoTEM) 

challenge that took place at the 2013 IEEE International Symposium on Biomedical 

Engineering (ISBI) conference, which advances tractography validation using three different 

validation datasets: [1] a macaque dataset with a histological map of known tracer 

connections (Thomas et al., 2014), [2] a squirrel monkey dataset with registered histological 
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sections of the same sample (Schilling et al., 2018a, 2019), and [3] a 3D physical fiber 

phantom with manually traced ground-truth pathways (Synaptive Medical, Toronto, ON).

This challenge differs from the conventional methods of validating tractography - rather than 

a researcher proposing a novel method or algorithm and evaluating this technique on 

proprietary datasets which can vary in a number of aspects, 3D-VoTEM provides image data 

and a reference standard to a number of independent research groups who can implement, 

parameterize, and optimize their choice of algorithms. Thus, this challenge serves as a 

platform to compare algorithms and results on the same data, and in a fair manner. Providing 

the community with three well-characterized, curated diffusion MRI and corresponding 

ground truth data, allows groups that may not have the resources or abilities to carry out 

animal experiments, histological processing, phantom construction, or MRI acquisitions to 

test their methodologies. In this way, this challenge facilitates validation from research 

groups that one group, acting alone, may be unable to perform due to limited resources, 

expertise, or hardware. In addition, tractography is performed by research groups that have 

tuned their setup for optimal performance, given their knowledge and experiences, rather 

than an individual research group evaluating many methods by simply evaluating an entire 

parameter space for one optimal solution of parameters. Past diffusion MRI challenges have 

utilized similar frameworks to assess reproducibility of tractography and fiber orientation 

reconstruction (Daducci et al., 2014). In other community challenges, the performance of 

tractography has been assessed qualitatively on neurosurgical datasets (Pujol et al., 2015), 

and quantitatively on simulated human images (Maier-Hein et al., 2017) and 2D phantoms 

(Cote et al., 2013; Neher et al., 2014), revealing the successes and limitations of a number of 

past reconstruction strategies and tracking algorithms. Expanding upon these, 3D-VoTEM, 

utilizes three independent sub-challenges which allows us to test the conclusions that 

individual research groups, validation studies, and tractography challenges have shown in 

the past. By evaluating the results of these three sub-challenges, each providing insights into 

the same problems, we sought to characterize the anatomical accuracy of the current state-

of-the-art of diffusion tractography methods. In addition, by comparing results across a 

range of validation strategies, fiber complexities, and algorithmic strategies, the results from 

this challenge confirm the pitfalls of tractography revealed by independent research groups, 

as well as provide a more comprehensive assessment of tractography’s inherent limitations 

and successes than has been demonstrated previously.

2. Materials and Methods

2.1. Data and ground truth

The sub-challenges vary in both data acquisition and definition of ground truth. Example 

data and ground truth volumes are shown in Fig. 1. The first sub-challenge consisted of a 

high quality - high resolution, high signal-to-noise ratio, and high angular sampling - ex vivo 

macaque dataset (Fig. 1A) featured in previous validation studies (Reveley et al., 2015; 

Thomas et al., 2014). The two ground truth pathways were derived from anterograde tracer 

injections placed in the precentral gyrus (PCG) (Fig. 1A, red) and the ventral part of visual 

area V4 (V4v) (Fig. 1A, yellow), as described and characterized in (Schmahmann and 

Pandya, 2009). Gray and white matter regions of interest were manually delineated on the 
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data in order to assess agreement between tracer and tractography. This dataset allows 

validation of region-to-region connectivity. The second sub-challenge is performed on an ex 

vivo squirrel monkey dataset (Schilling et al., 2017a, 2017b, 2018a), acquired at a coarser 

resolution (relative to brain volumes), a lower SNR, and fewer sampling directions (31 

versus 114 for the macaque). The ground truth, is defined based on an anterograde and 

retrograde tracer injection in the primary motor cortex (M1) of the same brain. Image 

processing on histological slices allows extraction of the ground truth fiber pathways on a 

voxel-by-voxel basis (Fig. 1B) as well as the creation of a binary “ground-truth” fiber 

pathway (Fig. 1C). Gray and white matter regions of interest are defined based on additional 

histological stains. This sub-challenge allows validation of both region-to-region 

connectivity as well as voxel-wise spatial overlap between tractogram (tractography 

streamlines) and tracer. The final sub-challenge consists of data acquired on a biomimetic 

anisotropic diffusion phantom (Synaptive Medical, Toronto, ON) containing 16 separate 

fiber bundles (Fig. 1D). Image acquisition consists of an overnight scan on two different 

scanners (scanner “A” and scanner “B”) in the same imaging facility, with multiple diffusion 

weightings (b = 1000 and 2000 s/mm2), a large number of sampling directions (96 per b-

value), and seven repetitions. The ground truth is manually defined on a high resolution T1-

weighted image for all 16 bundles, and registered to dMRI space for a voxel-wise 

comparison of the spatial overlap between tractography and ground truth bundles (Fig. 1E). 

Details regarding the acquisition and processing procedures, as well as ground truth creation, 

are described below. All animal procedures followed the Guide for the Care and Use of 
Laboratory Animals and were approved by appropriate Animal Care and Use Committees.

2.2. Sub-challenge 1 - ex vivo macaque

2.2.1. Data description—The provided dataset is the one used and described in detail in 

(Thomas et al., 2014). Briefly, the images were acquired from an ex-vivo fixed macaque 

brain at 0.25 mm isotropic resolution. The diffusion weighted-images (DWIs) contain 7 vol 

with b = 0 s/mm2 and 114 vol with b = 4900 s/mm2 (with small variations due to the effects 

of the imaging gradients) (scanning time≈71 h, SNR≈40). The data were preprocessed using 

the TORTOISE software package (Pierpaoli et al., 2010) and were corrected for eddy current 

distortions and motion-like artifacts caused by frequency drifts.

2.2.2. Ground truth pathways—Two ground truth pathways were derived from the 

anterograde tracer injections placed in (i) the precentral gyrus corresponding to the foot 

region of the primary motor cortex and (ii) rostroventral part of the occipital region 

corresponding to the ventral part of area V4 (V4v) and the adjacent ventral area V3 - as 

described and characterized in (Schmahmann and Pandya, 2009). The tracer-labeled regions 

of interest were transferred to the same space as the diffusion data. In addition, gray matter 

and white matter regions of interest were manually delineated on the high-resolution data in 

order to assess agreement between tracer and tractography results.

2.3. Sub-challenge 2 - ex vivo squirrel monkey

2.3.1. Tracer injection—The histological ground truth data is acquired on a squirrel 

monkey brain. Here we utilize a commonly used neuroanatomical tracer for studying 

neuronal pathways, biotinylated dextrane amine (BDA). Because it is transported both 
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anterograde and retrograde, BDA yields sensitive and detailed labeling of both axons and 

terminals, as well as neuronal cell bodies. This tracer relies on axonal transport systems; 

thus BDA injection is performed prior to ex vivo imaging. Under general anesthesia using 

aseptic techniques, BDA was injected into left hemisphere M1 cortex. Eight injections were 

made in order to cover a large M1 region representing the forearm as identified by 

intracortical microstimulation. After surgery, the monkey was allowed to recover from the 

procedure, giving the tracer sufficient time to be transported along axons to all regions 

connected to M1.

2.3.2. MRI imaging—For ex vivo scanning, the brain was perfusion fixed with 4% 

paraformaldehyde preceded by rinse with physiological saline. The brain was removed from 

the skull and stored in buffered saline overnight. The next day, the brain was scanned on a 

9.4 T Varian scanner. Diffusion-weighted imaging was performed using a pulsed gradient 

spin echo multi-shot spinwarp imaging sequence with full brain coverage (TR = 5.2s, TE = 

26 ms, number of diffusion gradient directions = 31, b = 0, 1200s/mm2, voxel size = 300 × 

300 × 300 μm3, data matrix = 128 × 128 × 192, number of acquisitions = 10, SNR≈25, 

scanning time≈50 h). The b value used in this experiment was lower than is optimal for 

diffusion studies in fixed tissue, due to hardware limitations. A low b value decreases the 

available diffusion contrast-to-noise ratio (CNR) in the image data, which has the same 

effect as higher image noise. To compensate for this shortcoming, we extended the scan time 

to 50 h, which yielded a CNR comparable to in vivo human studies (equivalent to an in vivo 

study with mean diffusivity = 0.7 × 10−3 mm2/s and SNR≈20). All sub-challenge data will 

be distributed and analyzed directly in the space in which diffusion data were acquired.

2.3.3. Histological acquisition—Following ex vivo MRI scanning, the brain was 

frozen and cut serially on a microtome in the coronal plane at 50 μm thickness. Prior to 

cutting every third section (i.e., at 150 mm intervals), the surface of the frozen tissue block 

was photographed using a Canon digital camera (image resolution = 50 μm/pixel, image size 

= 3330 × 4000 pixels, number of images per brain ~280), mounted above the microtome. 

Every 6th section (approximately the size of an MR voxel) is processed for BDA to trace 

pathways associated with the M1 cortex. Whole-slide Brightfield microscopy was performed 

using a Leica SCN400 Slide Scanner at 20× magnification, resulting in a maximum in-plane 

resolution of 0.5 μm/pixel.

2.3.4. Ground truth M1 connectivity—The “ground truth” connectivity of the 

injection area was determined by the presence of BDA-labeled axons in our high-resolution 

histology, which displayed as brown in the digital images. BDA-labeled fibers were 

segmented and counted following a series of morphological processes: top-hat filtering was 

performed to correct uneven illumination, global thresholding to extract fibers (segmenting 

brown [r/g/b = 165/42/42] using the “colorseg” function available on MathWorks File 

Exchange), and morphological operations to remove non-fiber objects (objects less than 11 

pixels, empirically chosen) and to remove branch points of overlapping fibers. Histological 

images were down-sampled to the resolution of the MRI-data (300 μm isotropic), and the 

number of BDA fibers per voxel was counted, resulting in BDA density maps. These BDA 

density maps represent the ground truth “strength of connections” to the M1 injection area.
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A total of 71 gray matter and white matter regions of interest were defined in MRI-space, 

using both histological and MRI-derived information, as described in (Gao et al., 2014, 

2016; Schilling et al., 2017a), and retrieved from the squirrel monkey brain atlas (Schilling 

et al., 2017b), in order to assess connectivity agreement between tracer and tractography.

2.3.5. Registration—The multi-step registration utilized here is very similar to the 

registration procedure validated in an earlier study (Choe et al., 2011), which showed that 

the accuracy of the overall registration was approximately one MRI voxel (~0.3 mm). From 

the Leica image file, the TIFF image stored at 128 μm/pixel (down-sample factor 256) was 

extracted and registered to the down-sampled photograph (256 × 256 pixels at a resolution 

of approximately 128 μm/pixel) of the corresponding tissue block using a 2D affine 

transformation followed by a 2D non-rigid transformation, semi-automatically calculated via 

the Thin-Plate Spline algorithm (Bookstein, 1989). Next, all down-sampled block face 

photographs were assembled into a 3D block volume and registered to the corresponding 3D 

MRI volume using a 3D affine transformation followed by a non-rigid transformation 

automatically calculated via the Adaptive Bases Algorithm (Rohde et al., 2003). The 

deformation fields produced by all registration steps were applied to processed histological 

data in order to transfer the ground truth histological pathways into the diffusion space for 

comparisons with tractography.

2.4. Sub-challenge 3 – anisotropic fiber phantom

2.4.1. Phantom construction—The Anisotropic Diffusion Phantom (Synaptive 

Medical, Toronto, ON) is a physical phantom containing complex geometries of anisotropic 

fibers that mimic the tissues of the brain. The phantom contains 16 flexible fiber bundles, 

each containing as many as 4.4 million proprietary solidcore fibers held in place with a 

flexible casing. Pathways are aligned in orthogonal planes, as well as in curved (both 90° 

and helical curving), and kissing geometries to mimic complex nerve fibers of the brain, 

with bundle dimensions of magnitudes comparable to major white matter pathways in the 

human brain, ranging from 2 mm up to 6 mm diameter bundles. The phantom is filled with 

distilled water.

2.4.2. MRI imaging—MR scans were performed on two scanners, both Philips 3.0T 

systems. The 16 cm diameter phantom was imaged for both structural and diffusion 

contrasts. The structural scan utilized a 3D MPRAGE sequence to acquire a T1 contrast 

(TE/TR = 3.6/8 ms, Matrix = 256 * 256, Resolution = 0.88*0.88 mm, slice thickness = 1.0 

mm). A low-resolution diffusion contrast was acquired using a 2D EPI diffusion weighted 

sequence (TE/TR = 75 ms/9.65s, Matrix = 72*72, resolution = 2.25*2.25 mm, slice 

thickness = 2.5 mm). 96 diffusion directions were acquired, uniformly sampled over a 

sphere, at b-values of 1000 s/mm2 and 2000 s/mm2. Non-diffusion weighted images were 

acquired between every 8 diffusion-weighted images. Sampling was performed with phase 

encoding both anterior to posterior, and repeated posterior to anterior, in order to allow pre-

processing for motion, eddy currents, and susceptibility distortions. This series of scans (2 b-

values, 96 uniformly distributed directions, with two phase encoding directions each) was 

repeated 7 times on each scanner.
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2.4.3. MRI data processing—Diffusion MRI pre-processing was performed in the 

coordinate system that the data were acquired in. Steps included correction for movement, 

susceptibility induced distortions, and eddy currents using FSLs topup and eddy algorithms 

[5]. The gradient tables were rotated based on the transformations obtained from the 

corrections.

2.4.4. Ground truth—Ground Truth was manually delineated for each bundle on the T1-

weighted high resolution image, separately for each scanner, using ITK Snap 

(www.itksnap.org, v 2.4.0). For each scanner, the T1-weighted image was registered to the 

average non-diffusion weighted image using 3D affine followed by a 3D non-rigid 

registration (FSL Software Library v5.0 (Jenkinson et al., 2012)). Ground truth labels were 

individually transformed to diffusion space using nearest-neighbor interpolation.

2.5. Anatomical accuracy measures

Measures were calculated which describe the anatomical fidelity of the resulting 

tractograms, several of which have been previously employed in the validation literature. 

Here, measures are divided into ROI-based fidelity metrics and voxel-wise fidelity metrics. 

All metrics, both ROI-based and voxel-wise, are computed for all algorithms.

2.5.1. ROI-based measures—For both squirrel monkey and macaque sub-challenges, 

the ROI-based connectivity to seed regions was assessed using the white matter and gray 

matter regions of interest. Anatomical fidelity metrics of sensitivity, specificity, and Youden 

index were derived for all tractograms.

• Sensitivity - True positive rate; measures the proportion of positives (regions that 

are occupied by ground truth) that are correctly identified as such (using 

tractography). Sensitivity measures the ability to correctly detect all connections 

of the seed region.

• Specificity - True negative rate; measures the proportion of negatives (regions 

that do not contain ground truth) that are correctly identified as such (do not 

contain streamlines). Specificity measures the ability to correctly identify voxels 

that do not have connections with the seed region.

• Youden’s J statistic – Sensitivity+Specificity-1; a statistic that captures the 

performance of a diagnostic test, and estimates the probability of an informed 

decision, ranging from −1 to 1. A value of 1 indicates a perfect test with no false 

positives or false negatives.

2.5.2. Voxel-wise measures—Voxel-wise measures were calculated for the phantom 

and squirrel monkey sub-challenges, because the ground truth volumes are defined voxel-

wise. In the following, the Ground Truth volume is represented by Gj (j = 1,2, ..., m) and 

tractography volume represented by Ti (i = 1,2, ..., n).

• Bundle Overlap (OL) (Cote et al., 2013): The proportion of voxels that contain 

the ground truth volume that are traversed by at least one streamline. The OL 
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describes how well tractography is able to describe the volume occupied by the 

ground truth and is defined as:

OL =
T i ∩ G j

G j
(1)

where [•[denotes cardinality.

• Bundle Overreach (OR) (Cote et al., 2013): the number of voxels containing 

streamlines that are outside of the ground truth volume divided by the total 

number of voxels within the ground truth bundle:

OR =
T i\G j

G j
(2)

where operator \ denotes relative complement operation.

• Dice Overlap Coefficient (D): measures the overall similarity between ground 

truth and tractography volume by taking twice the shared information 

(intersection) over the sum of the cardinalities:

D =
2 T i ∩ G j

T i + G j
(3)

3. Results

3.1. Submissions

Although the submission site remains open (https://my.vanderbilt.edu/votem/submissions/), 

the data in this study includes only those submitted before the ISBI 2018 conference (April 

4, 2018). Overall, 176 unique submissions were submitted across the challenges (58 for the 

macaque, 62 for squirrel monkey, and 56 for the phantom) from nine international research 

groups. Submissions ranged in complexity from open-sourced software, diffusion tensor 

based tractography with default software configurations to that of complex, multi-shell, in-

house algorithms with extensive post-processing - with most featuring either reconstruction 

or tracking strategies developed in the last few years. Details of each submission are 

provided in Supplementary Tables 1–3. The most common reconstruction methods were 

some form of spherical deconvolution or multi-compartment models. Both deterministic and 

probabilistic algorithms were employed, with most utilizing some form of constraint on 

fractional anisotropy (FA), curvature, or anatomical mask. The seed regions (where 

tractography is initiated) provided along with the datasets were used as both true seeds as 

well as regions of interest after whole-brain tractography was performed. Standard 

preprocessing for susceptibility distortions, motion, and eddy currents was performed for all 
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datasets, but very few groups used additional preprocessing steps (with the exception of 

denoising techniques), and post-processing included various filtering techniques, track 

grouping, and manual track selection. The measures of anatomical accuracy for each method 

and dataset are provided in Supplementary Tables 4–6, allowing the algorithms to be 

compared for specific reconstruction and algorithm parameter choices. However, we do not 

attempt to declare an overall winner of the challenge (or sub-challenges), since this would 

require making arbitrary choices about the relative importance of different metrics and 

validation datasets.

3.2. Qualitative results

The tractography streamlines for randomly selected submissions are shown in Fig. 2 for the 

three sub-challenges. Qualitatively, there is large variability in the resulting connectivity 

profiles and pathways represented. Specifically, for the macaque and squirrel monkey, 

visualizing submitted streamlines shows a range in spatial extent from only connectivity 

nearby the seed region, to covering large expanses of the entire hemisphere. The phantom 

submissions generally capture the correct shape, position, and orientation of all 16 bundles, 

with most noticeable differences in sparsity of streamlines and thickness of pathways.

3.3. Region-to-region connectivity validation – sensitivity and specificity

For the macaque and squirrel monkey datasets the agreement between tracer and 

tractography results are evaluated using sensitivity and specificity measures, validating the 

ability of tractography to accurately map region-to-region (or seed-to-region, see Materials 

and Methods section) connectivity. Additionally, to identify the best combination of 

sensitivity and specificity, the Youden index (J) (Specificity + Sensitivity − 1) is computed, 

where a value of 1 indicates a perfect test and a value of zero indicates no predictive value. 

The results across all submissions are shown as ROC curves in Fig. 3, where marker color 

indicates unique research groups. In both macaque and the squirrel monkey datasets, the 

main finding is that no algorithm or submission consistently identifies true positive pathways 

without also generating a large number of false positive pathways, and none consistently 

identify true non-connections without suffering a low true positive rate (i.e., an increase in 

sensitivity comes at the cost of a decrease in specificity, and vice-versa). For the macaque, 

most submissions result in high specificity values (with a large number of false negative 

connections), while the squirrel monkey algorithms typically lie at the extremes of the ROC 

plots.

Most submissions have relatively low predictive value, with median Youden indices of 0.21, 

0.30, and 0.37 for macaque PCG, macaque V4v, and squirrel monkey M1 pathways, 

respectively (Fig. 3D). The highest Youden values for each pathway are only 0.56, 0.58, and 

0.67. Thus, even the anatomical accuracy of the most predictive algorithms are suboptimal. 

The squirrel monkey results have a statistically significant (1-way ANOVA, p < 0.01) higher 

population mean Youden value than the macaque results – thus, in general, the algorithms 

provide slightly more anatomically accurate tracts on the squirrel monkey than macaque.
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3.4. Spatial overlap validation – bundle overlap and overreach

A voxel-wise measure of spatial agreement between tracer and tractography is possible for 

the squirrel monkey with binary tracer data and phantom datasets with manually drawn 

tracts, because the ground truths are established in the same animal/phantom, making voxel-

by-voxel comparisons possible. In these sub-challenges, we compute the bundle overlap: the 

proportion of voxels that contain the ground truth that are traversed by a streamline - and 

bundle overreach: the number of voxels containing streamlines outside the ground truth 

divided by the total number of voxels within the ground truth. In short, the overlap is a 

measure of the true positive rate (i.e., sensitivity) while the overreach is related to the false 

positive rate (i.e., specificity).

Plots of overlap and overreach for the squirrel monkey and both phantom scans (Fig. 4, A–

C) show very similar results as the regional connectivity accuracy: algorithms that are 

successful at identifying the full extent of the pathways (high overlap) suffer from high 

overreach. In the squirrel monkey, algorithms that did not suffer from a significant overreach 

(<10%), often had very low overlap values, identifying less than 25% of the full 

histologically defined ground truth volume. While the phantom had significantly improved 

overlap values, many algorithms that recover the full bundle volumes can suffer from 

overreach as much as 1.5–5× the actual ground truth volume.

The Dice overlap coefficient (Fig. 4, D) has median values of 0.34, 0.46, and 0.51 for the 

squirrel monkey, phantom on scanner A, and phantom on scanner B, respectively, with 

maximum Dice coefficients reach 0.51, 0.63, and 0.72. The phantom submissions have 

statistically significant (1-way ANOVA, p < 0.01) higher Dice coefficients than that of the 

squirrel monkey, indicating an overall better voxel-wise accuracy.

4. Discussion

The 3D-VoTEM challenge combines and presents three separate tractography validation 

strategies, inviting ideas and algorithms from researchers from around the world, with the 

primary objective to determine whether recent technical advancements in diffusion MRI 

tractography can deliver anatomically accurate maps of the brain structural connectivity. 

More specifically, given the known limitations of these techniques, we asked if advances in 

algorithms, acquisition, and methodologies utilized in modern tractography techniques have 

improved anatomical accuracy. The key finding is that, despite a better understanding of 

limitations and pitfalls of these techniques, and considerable effort leading to advances in 

these algorithms, the anatomical accuracy of modern tractography approaches is still limited. 

Importantly, the limited anatomical accuracy is observed in three independent sub-

challenges, each with algorithms created, developed, and optimized by leading research 

groups in the field. These findings support the results and conclusions demonstrated over the 

last decade of validation studies, across species and phantoms, performed by individual 

research groups. Advances in the accuracy and reliability of tractography reconstructions 

will likely depend on the availability of shared validation and experimental datasets, 

standardized processing pipelines, and incorporating new information in the tracking process 

including better priors and alternative sources of tissue contrast.
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4.1. Limits to accuracy

Importantly, we find consistent results across a diverse range of validation approaches. The 

sub-challenges vary in not only the systems under investigation (phantom versus non-human 

primates), but also acquisition (voxel size, angular resolution, SNR, diffusion weightings), 

complexity of pathways, and definition of ground truth. In all cases, algorithms that 

succeeded in recovering the true connections (high sensitivity or high overlap) consistently 

generated a large number of false positive connections (low specificity or high overreach), 

and no algorithm was highly informative or highly similar to the ground truth (high Youden 

or high Dice). In fact, most algorithms had surprisingly low connectivity predictive value 

and low spatial overlap with the true pathways. Thus, accuracy in tractography is not only 

hampered by a false positive problem (Maier-Hein et al., 2017), but many algorithms appear 

to be dominated by false negative connections (Aydogan et al., 2018).

While the accuracy tradeoffs have been consistent across challenges, differences in 

tractography performance between the challenges are apparent. This is expected, as 

tractography, and especially local reconstruction, are known to be heavily affected by the 

quality of the diffusion MRI acquisition. For example, it is generally assumed that many 

failures of tractography will be mitigated through improved angular and spatial resolution 

data. However, tractography in the macaque system resulted in less accurate connectivity 

measurements than tractography in the squirrel monkey system, despite significantly 

improved resolution, SNR, and diffusion sensitivity. Thus, differences in accuracy likely 

depend on the complexity of the pathway of interest, rather than acquisition quality alone. It 

should also be considered, however, that the ground truth data for the macaque brain were 

obtained from tracer studies performed in different animals so that interindividual variability 

in brain connections may have slightly lowered the accuracy value that could be reached 

with that dataset. Similarly, the phantom, with relatively sparse, well-defined, and less-

complicated pathways resulted in significantly higher overlap agreement than that of the 

squirrel monkey.

We consider all submissions, in all challenges, to be “modern” algorithms. In most cases, 

investigators implemented reconstruction or tractography techniques developed only 

recently, with many specifically created to address one or more known limitations. Most 

importantly, these algorithms were tuned based on the collective knowledge and experience 

of the research lab, with the aim to optimize the accuracy of their results. Other implemented 

algorithms were proposed as early as 2001 (for example, using the tensor with a low-order 

streamline integration), and while they may be considered rudimentary or basic, because 

they are still in use today - sometimes as the default algorithm in many open source software 

packages - they are considered modern. Thus, the observed plateau or limits in anatomical 

accuracy applies to not only the state of the art approaches, but also to the techniques of the 

past, on which the bulk of current knowledge of structural connectivity in the human brain is 

based upon.

The trend in many of the more recently developed algorithms and pipelines is to include 

some variation of informed post-processing. This includes track grouping or clustering 

(Garyfallidis et al., 2012), streamline filtering based on the diffusion signal or track densities 

(Smith et al., 2013), globally fitting streamlines to microstructural models (Daducci et al., 
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2015), and even manual delineation of regions of interest or streamlines. In all, 67 

submissions (33 phantom, 11 squirrel monkey, 23 macaque) used some form of either 

anatomically-, globally-, or microstructurally-informed post-processing. Although the false 

positive rate was reduced in many of these (increased specificity, decreased overreach), no 

statistically significant difference was observed between these and submissions not utilizing 

post-processing - although there is a diverse range of alternative confounding factors across 

algorithms, including pre-processing, reconstruction methods, algorithms, constraints and 

number of streamlines. It would be informative to compare tractograms to ground truth both 

before and after post-processing to confirm increased accuracy and reduced false positives. 

In addition to new post-processing, several teams used recently developed reconstruction 

methods (most a variant of spherical deconvolution or multi-compartment models), software 

packages (Dipy, MI-BRAIN, Quantitative Imaging Toolkit, dMRITool, MRTrix, 

FiberNavigator), and streamline algorithms.

The results of the 3D VoTEM challenge confirm and expand upon the limitations and 

shortcomings demonstrated over the last decade in validation literature. Importantly, the 

algorithms submitted in this challenge are run and optimized (and often developed) by the 

contestants themselves, rather than run as off-the shelf algorithms typically implemented in 

validation literature. Submitted algorithms are compared and benchmarked on the same 

dataset, using the same evaluation criteria. In the past, both white matter pathways and long-

range connections have been assessed using either histological validations (Azadbakht et al., 

2015; Calabrese et al., 2015; Dauguet et al., 2006; Donahue et al., 2016; Knosche et al., 

2015), simulated datasets (Close et al., 2009), or physical phantoms (Cote et al., 2013). Past 

studies have demonstrated that DTI tractography has difficulties when tracts cross or divide 

(Dauguet et al., 2006), highlighting the importance of the crossing fiber problem. However, 

DTI tractography is strongly correlated with true connectivity on the scale of major cortical 

regions, but is less reliable at measuring voxel-wise connectivity (Gao et al., 2013). The 

current challenge confirms this, not only for DTI, but for a range of reconstruction 

techniques (Both DTI and higher order models) and tracking strategies. Cortical-cortical 

connection strengths of tractography have been shown to be modestly informative 

predictions of tracer connections (Donahue et al., 2016) with biases dependent on path 

lengths and connections strengths. Tractography is also capable of finding the spatial extent 

of major pathways (Knosche et al., 2015), however, it was found not possible to achieve high 

specificity and sensitivity at the same time, with only moderate ability to detect true positive 

(~0.35–0.85 true positive rate) and true negative (~0.05–0.4 true negative rate) connections. 

General conclusions across all studies were that tractography was informative, but that 

accuracy would be improved through improvements in acquisition, newer algorithms, high 

quality data. Towards this end, in 2013, Thomas et al. (2014) acquired an ex vivo macaque 

dataset with high angular and spatial resolution - estimated to be equivalent to an in vivo 

acquisition requiring thousands of hours of scan time. Using standard algorithms at the time, 

they find that despite exceptional data, accurate tractography still remains an elusive goal. In 

comparison, even with new and improved algorithms in the current macaque sub-challenge, 

only minor improvements are made (an increase in Youden value of 0.05 for the optimal 

algorithm) in accuracy compared to those from nearly five years ago - suggesting that the 

ROC curves have not shifted dramatically in the last few years.
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4.2. Advancements needed

While our phantom and ex vivo validations result in similar trends and findings across a 

range of ground truth geometries, acquisition settings, and image qualities, the ultimate goal 

is to accurately map the in vivo human brain. Although tractography on a human cannot be 

directly validated, the accuracy of tractography based on these non-human validation 

paradigms has largely plateaued in recent years, which likely reflects similar sensitivity/

specificity limitations of the process in a human brain. These specific datasets should require 

a dedicated processing pipeline, tuned and optimized for it. Most existing tools and software 

packages were developed and tuned based on the field’s understanding of human anatomy. 

While some exist (or are easily adaptable), tools for small animals, or larger animals e.g. 

monkeys, or any non-human tractography need to be improved to create better masks, better 

labels, or better priors so that modern, and future, tractography developments can be 

leveraged. These tools and resources will not only be applicable to validation studies, but 

any research on the structural connectivity of the non-human brain.

“Solving” the tractography problems in these phantoms and animal models does not 

necessarily guarantee perfect reconstructions in the human brain. However, better 

understanding mistakes relative to the ground truth will certainly spur improvements and 

innovations in these techniques. Advances will be made through a process well-described by 

Dyrby et al. (2018) where we must “loop until our method’s results agree with the gold 

standard, and/or until the updated knowledge of ground truth can explain the discrepancies 

observed.” This includes continually updating theory and implementation of methods, 

validation against gold standards, understanding deviations from the truth, followed by 

further modifications to theory and implementation, etc. Consequently, there is a need for 

more advanced and sophisticated gold standards, and a need for validation across a range of 

spatial scales. In the past (and in the current study), validation is done as an overall 

assessment in sensitivity and specificity (or overlap and overreach). Future studies should 

not only explore accuracy at assessing connections and overlap, but also voxel-wise and 

microstructural features of the datasets. For example, validation strategies could include 

multiple histological stains or phantoms with varying fiber densities/diameters/volume 

fractions, in order to evaluate both connectivity and microstructural features simultaneously. 

The multi-modal or multi-scale strategies could lend insight into individual steps of the 

tracking process in order to better understand where tractography “first” goes wrong - 

whether it is assumptions about microstructural features, axonal orientations, or simply 

tractography decision making.

When validating tractography it is important to clearly define what we hope to map with 

tractography, and more importantly, how well the ground truth represents this. The goal 

could be to validate microstructural features of specific pathways (fiber densities, fiber 

orientations), the course of white matter pathways, the presence or absence of connections 

between regions, or some measure of connectivity between regions (number of connecting 

axons, proportion of axons reaching a region, conductivity between regions). While the 

challenges in this study focused on the course of the pathway (phantom and squirrel 

monkey) and presence or absence of connections (macaque and squirrel monkey), they are 

not without their limitations in representing true tissue structures (Dyrby et al., 2018). 
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Several factors limit the accuracy of the gold standard in ex vivo validations, including 

changes in tissue due to extraction and fixation (D’Arceuil and de Crespigny, 2007), 

imperfect registrations between histology and MRI, and tracer uptake and visualization. As 

mentioned above, the macaque MRI and tracer injection was performed on different 

subjects. While the squirrel monkey experiments were all on the same subject, the 

acquisition was sub-optimal for ex vivo imaging (Dyrby et al., 2011), and included only a 

single pathway of interest. The phantom is limited by its simplicity, with a simple geometry 

on the macroscopic scale. Potential opportunities involve including more adjacent bundles 

(crossing, kissing, fanning) where partial volume occurs on the scale of individual voxels, as 

well as features that better mimic the in vivo brain (cortex, varying diffusion compartments, 

fiber dispersion). Future validation approaches should continually strive for improvements in 

creation or construction of the ground truth, aim for innovation in validation approaches and 

strategies, and aim to minimize deviations of the “ground truth” from the true tissue 

properties by accurately extracting the feature of interest.

This stresses the need for sharing and distribution of validation datasets and ground truths, 

and tackling the validation problem from a number of perspectives is critical. However, these 

datasets are time consuming to acquire, expensive, and often require expertise in various 

niche fields (i.e. histology or phantom creation). While the current challenge was the first to 

combine separate datasets with very different validation strategies, there are a large number 

of existing datasets that have lent their own, unique, insight into interpreting tractography 

(see above for examples). However, it is important to not only validate tractography on 

different spatial scales (i.e. microscopic versus macroscopic), diverse datasets, and various 

representations of ground truth, but also necessary to make these open source for valid 

comparisons of existing and future algorithms and approaches. An online tractography 

validation tool (much like the “Tractometer” tool for the FiberCup physical phantom (Cote 

et al., 2013)) combining a large repository of validation datasets would make it easier for 

neuroscientists, computer scientists, and physicians to submit and test new algorithms, 

datasets, and methods. Current neuroimaging validation databases do exist (for example, the 

White Matter Microscopy Database: https://osf.io/yp4qg/), containing largely 

microstructural validation datasets - but tractography is just modeling microstructure at a 

macroscopic length scale. Thus, we recommend this, or similar, databases to collect and 

distribute tractography validation data. This, in combination with more sophisticated 

algorithms, will almost certainly lead to advances in tractography, and allow us to gain better 

insights into trends and limitations of these techniques.

While it seems that the results of this study paint a pessimistic view of tractography, there 

are several positive takeaways. First, some algorithms are indeed able to recover the full 

spatial extent of pathways, while others have a specificity high enough to make confident 

predictions about the presence of pathways. Finally, reassuringly, there will almost always 

be human involvement in this process, especially if tractography is used for surgical 

planning. A surgeon may not be interested in sparse, stray tracts, or may only care about 

streamlines in specific locations (i.e. peri-tumoral), and perfect sensitivity/specificity may 

not be a concern. Alternatively, interaction with the tracking software (and subsequent 

parameters, ROIs, etc.) allows the surgeon to fine tune based on his or her prior knowledge. 

This, in combination with the large variability in reconstructions, makes it critical to educate 
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tractography users that the process as it stands is more akin to an art, than an absolute 

representation of the brains fiber pathways.

In a typical use of tractography, an investigator uses estimated orientation information to ask 

which brain region is connected to another, as well as the shape, size, route, and strength of 

this connection. Similarly, in these challenges, the only information given to the investigator 

is in the form of fiber orientation information (the diffusion signal), and the beginning of the 

pathway (the seed region). Results from our current study as well as the seminal work of 

Maier-Hein et al. (2017) clearly shows that having only this information, i.e. the local 
orientation and seed, is not enough! Tractography needs more information to overcome the 

specificity-sensitivity curse of current methods. Potential solutions are appearing such as i) 

including better and more priors based on known neuroanatomy (Chamberland et al., 2017; 

Rheault et al., 2018), ii) including microstructural information along local orientations to 

better trace-out orientations that belong to the same connection from end-to-end (Daducci et 

al., 2016; Girard et al., 2017; Grinberg et al., 2018), iii) machine learning techniques that 

could learn from all submissions, from challenges with ground truth, the local and global 

structure of valid and invalid connections (Neher et al., 2017), and iv) information from 

other modalities such as myelin markers (Stikov et al., 2015)and functional imaging 

contrasts (Frank and Galinsky, 2016; Galinsky and Frank, 2017; Schilling et al., 2018c) that 

could help reduce the number of invalid connection and increase the number of valid 

connections (Deslauriers-Gauthier et al., 2016, 2017; Schurr et al., 2018).

Better priors from hundreds of years of neuroanatomy research as well as functional imaging 

could bring novel information about the ‘where’ and ‘how’ streamlines should start and end, 

as well as traverse complex crossing and bottleneck regions. Microstructural information 

from dMRI or other modalities could add a vector of features along each fiber orientation to 

help connect orientations that belong to the same structure, that have the same properties 

(axon diameter, intra/extra-cellular space, myelin volume, etc). Moreover, with the terabytes 

of streamlines generated by state-of-the-art techniques in numerous challenges organized 

internationally as well as initiatives such as Tractometer (Cote et al., 2013), there is a great 

potential for having a deep learning algorithm learn the easy-to-track and hard-to-track parts 

of the brain, both locally and globally, and potentially highlight the untrackable regions and 

locations of errors.

While no submission was consistently successful in every tracking fidelity metric, the results 

of our study do not invalidate tractography as a useful biomedical tool, as many were fairly 

predictive of connectivity, or had moderate to good ability to delineate spatial pathways. 

Instead, the results of our study emphasize that given current state of the art approaches, 

pathway reconstruction increasingly appears to be a problem that is unlikely to be wholly 

solved using only local orientation estimates, and it may be necessary to incorporate other 

information, other modalities, or new tracking strategies, to successfully resolve 

tractography’s known limitations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Ground truth fiber pathways for all sub-challenges.
The macaque challenge ground truth (A) is derived from tracer studies for both the PCG (red 

labels) and V4v (yellow labels) pathways, with seed region for PCG shown as a blue label. 

The squirrel monkey ground truth is derived from histological tracer density maps from the 

same subject (B), and visualized as a 3D volume rendering (C), with seed/injection regions 

shown in blue. The phantom (D) ground truth for all bundles is derived from manual tracing 

on a high resolution T1 weighted image (E).
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Fig. 2. Diffusion tractograms for randomly selected submissions.
Tractography is shown in the coronal and sagittal planes, for both macaque pathways (A), 

the squirrel monkey pathway (B), and all 16 phantom bundles (C).
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Fig. 3. Region-to-region connectivity validation.
Results are shown as ROC curves on the macaque PCG (A) and V4v (B) pathways, and 

squirrel monkey M1 pathways (C). Boxplots of corresponding Youden values (D) are shown 

for both challenges. One marker is shown per submission, with marker colors indicating 

unique research groups.
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Fig. 4. Voxel-wise spatial overlap validation.
Plots of overlap versus overreach are shown for the squirrel monkey (A) and phantom 

datasets on scanner A (B) and scanner B (C). Boxplots of the corresponding Dice overlap 

coefficients are shown for both challenges (D). One marker is shown per submission, with 

marker colors indicating unique research groups.
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