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Summary

Investigators have long suspected that pathogenic microbes might contribute to the onset and 

progression of Alzheimer’s disease (AD) although definitive evidence has not been presented. 

Whether such findings represent a causal contribution, or reflect opportunistic passengers of 

neurodegeneration is also difficult to resolve. We constructed multiscale networks of the late onset 

AD-associated virome, integrating genomic, transcriptomic, proteomic, and histopathological data 

across four brain regions from human postmortem tissue. We observed increased human 

herpesvirus 6A (HHV-6A) and human herpesvirus 7 (HHV-7) from subjects with AD compared 

with controls. These results were replicated in two additional, independent and geographically 

dispersed cohorts. We observed regulatory relationships linking viral abundance and modulators of 

APP metabolism, including induction of APBB2, APPBP2, BIN1, BACE1, CLU, PICALM, and 

PSEN1 by HHV-6A. This study elucidates networks linking molecular, clinical, and 

neuropathological features with viral activity and is consistent with viral activity constituting a 

general feature of AD.

eTOC

Readhead et al. construct multiscale networks of the late onset Alzheimer’s disease (AD) 

associated virome, and observe pathogenic regulation of molecular, clinical and neuropathological 

networks by several common viruses, particularly human herpesvirus 6A and human herpesvirus 

7.

Introduction

Important roles for microbes and antimicrobial defenses in the pathogenesis of Alzheimer’s 

disease (AD) have been postulated or evaluated for at least six decades, beginning with 

Sjögren in 1952(Sjogren et al., 1952). “Slow virus” was one of the early names used for the 

illness that eventually came to be known as prion disease, referring to the hypothesis that 

conventional viruses might be capable of acting to cause not only acute encephalitis, but also 

a progressive neuronal destruction process that might engender less inflammation because of 

its slowly progressive nature(Sigurðsson, 1954). Measles (MV) is a conventional virus that 

can act through acute inflammatory and slow neurodegenerative processes, occasionally re-

emerging as a fatal brain disease known as subacute sclerosing panencephalitis (SSPE) up to 

a decade after a typical acute MV infection. (Murphy et al., 1976).
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Beginning with Crapper McLachlan in 1980(Middleton et al., 1980), several investigators 

have proposed that AD is an SSPE-like illness, caused by a slow virus form of herpes 

simplex(Itzhaki, 2014). Hundreds of reports have associated AD with diverse bacterial and 

viral pathogens(Itzhaki et al., 2016, Mastroeni et al., 2018), most frequently implicating 

Herpesviridae (particularly HSV-1(Lovheim et al., 2015a, Lovheim et al., 2015b), EBV, 

HCMV and HHV-6(Westman et al., 2017, Carbone et al., 2014)). The results of these 

studies, taken in aggregate, are suggestive of a viral contribution to AD, though findings 

offer little insight into potential mechanisms, and a consistent association with specific viral 

species has not emerged.

Recent reports demonstrate that diverse classes of microbes can stimulate amyloid-beta (Aβ) 

aggregation and deposition as part of an intra-CNS anti-microbial innate immune response 

whereby the amyloidosis triggered by various microbes results in the coating of the 

infectious particles by the growing amyloid aggregate(Soscia et al., 2010, Kumar et al., 

2016). These microbes coated with aggregated Aβ become unable to interact with cell 

surfaces, thereby arresting the infectious process.

We designed this study to map and compare biological networks underlying two distinct 

AD-associated phenotypes using multiple independent data sets collected from human 

subjects. We began with a computational network characterization of a specific 

endophenotype of AD: brains meeting neuropathological criteria for AD from individuals 

who were cognitively intact at the time of death(Liang et al., 2010), which we refer to here 

as ‘preclinical AD’(Sperling et al., 2011). We presumed that a network model of preclinical 

AD (and its comparison with networks built from cognitively intact persons without 

neuropathology) might provide novel insights into the molecular context of neuropathology 

in the absence of clinical symptoms. Alternatively, since these individuals had eluded 

cognitive decline despite significant AD pathology, we reasoned that this might illuminate 

protective or resilience mechanisms. Functional genomic analysis of preclinical AD network 

alterations revealed multiple lines of evidence consistent with viral activity. We then directly 

evaluated viral activity in a multiscale network analysis of four large, multi-omic data sets 

(comprising samples from individuals with ‘clinical AD’ as well as neuropathologically and 

cognitively normal controls) that included next generation sequencing data, enabling direct 

examination of viral DNA and RNA sequences.

This study presents novel evidence linking the activity of specific viruses with AD. This has 

been enabled by comprehensive molecular profiling of large patient cohorts, facilitating the 

integration of diverse biomedical data types into an expansive view spanning multiple 

disease stages, brain regions, and -omic domains. This has also allowed us to direct our 

analysis in an entirely data-driven manner, and benefit from a form of data capable of 

implicating specific viral species. Our results offer evidence of complex viral activity in the 

aging brain, including changes specific to AD clinical traits and genetic factors, particularly 

implicating Herpesviridae, HHV-6 and HHV-7. Taken together, these data provide 

compelling evidence that specific viral species contribute to the development of 

neuropathology and AD.
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Results

Preclinical AD networks indicate early changes in G-quadruplex and C2H2 zinc finger 
activity

We constructed, mapped, and compared differences between distinct gene regulatory 

networks to investigate functional molecular changes underlying the etiology of AD (Figure 

1). We used laser captured neuronal gene expression data to construct probabilistic causal 

networks (PCN) representing preclinical AD and also healthy control (individuals without 

cognitive impairment or neuropathology)(Liang et al., 2008, Liang et al., 2007) states. We 

focused on samples derived from brain regions associated with the most profound neuronal 

loss: the entorhinal cortex(Gomez-Isla et al., 1996) (EC) and the hippocampus(Hyman et al., 

1984) (HIP). We built each PCN using a modified “inductive causation with latent variables” 

procedure(Pearl, 2009), constructing separate preclinical AD and control (CON) networks 

including paired samples from EC and HIP for each donor, and for each network, nominated 

genes that regulate the expression of unexpectedly large subnetworks as “network drivers” 

(See Methods and Table S1). Edge reproducibility in PCNs has been demonstrated to be 

strongly dependent on sample size, however detection of highly connected nodes is more 

robust across a range of sample sizes(Cohain et al., 2016). We therefore focused initially on 

characterizing the set of drivers present only in the CON network (“Lost in preclinical AD”) 

and those present only in the preclinical AD network (“Gained in preclinical AD”) as a 

means to prioritize differences between preclinical AD and CON states. We found that 

promoters of both sets of drivers are strongly enriched (compared with the rest of the 

network) for a shared set of C2H2 zinc finger transcription factor (C2H2-TF) binding motifs 

(Figure 1e), especially SP1, MAZ, NRF1 and EGR1. This prompted us to evaluate other co-

regulatory features associated with C2H2-TF activity that might explain a general shift in 

their collective activity. We found that G-quadruplex (G4) sequences are strongly enriched 

among the promoters of both sets of drivers in the network, but that the “Lost in preclinical 

AD” drivers have significantly more G4 motifs within their introns, exons and 3’-UTR on 

both coding, and non-coding strands (Figure 1f–g). We concordantly found a strong negative 

correlation between gene G4 density (G4 motif count, normalized by gene length), and gene 

expression in the EC in preclinical AD and clinical AD samples (Figure 1h). Given the 

complex roles for G4 in dynamically regulating mRNA transcription, stability, translation 

and localization(Rhodes et al., 2015), we hypothesized that a global shift in G4 regulation or 

stability could explain the differences in C2H2-TF regulatory programs—for example, 

changes in expression and network influence of genes with especially high G4 density in 

locations like the 3’-UTR that are associated with alternative polyadenylation and miRNA-

mediated regulation(Beaudoin et al., 2013).

Functional analysis of network patterns suggests roles for viral mediators in AD

Identification of strong C2H2-TFs and G4 functional patterns in the differential network 

analysis suggested a potential role for virus-mediated network activities in AD (Figure 1d, 

see Table S1). Enrichments among the network drivers (gained and lost) in preclinical AD, 

implicated viral infection susceptibility risk genes, as well as host differential gene 

expression changes associated with viral infection. We also noted findings around C2H2-TF 

and G4 sequences that are implicated in a range of proviral and antiviral contexts, including 
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SP1: (1) binding with Epstein-Barr Virus (EBV) protein Rta to regulate host and viral SP1 

target genes(Chang et al., 2005); (2) regulating Human Immunodeficiency Virus 2 (HIV-2) 

LTR transcription(Harrich et al., 1989), and (3) mediating antiviral effects against Human 

Cytomegalovirus (HCMV) (Scholz et al., 2004). In addition, G4 sequences are recognized as 

important regulatory features for viral pathogens such as EBV and HSV-1(Artusi et al., 

2016), dynamically impacting translation of viral proteins(Murat et al., 2014).

Patterns of miRNA target enrichments identified by the differential network analysis of 

preclinical AD vs. CON, as well as multiregional differential gene expression changes in 

clinical AD samples, offered an additional line of evidence for virally-mediated network 

activity. We looked for significant overlap between experimentally validated gene targets of 

human miRNAs(Hsu et al., 2011) and multiregional differential gene expression signatures 

from preclinical AD samples(Liang et al., 2010), clinical AD samples(Liang et al., 2008), as 

well as “Lost in preclinical AD” and “Gained in preclinical AD” drivers. This identified a 

number of miRNA with gene networks overlapping many of these AD contexts, particularly 

miR-155, a multifunctional miR with associations to malignancy, innate immunity, and 

DNA virus activity. Interactions between miR-155 and viral biology are well established, 

including perturbation of miR-155 by EBV to stabilize viral latency(Gatto et al., 2008), 

inhibition of miR-155 by HHV-6A(Caselli et al., 2017) and coding of a miR-155 functional 

ortholog by Kaposi’s sarcoma-associated herpesvirus (KSHV)(Gottwein et al., 2007) and 

Marek’s Disease Virus(Zhao et al., 2009). Considering these findings, we sought to directly 

evaluate viral DNA and RNA sequences in the context of clinical AD. We performed this 

investigation using four large, independent multiomic data sets from individuals with clinical 

AD as well as neuropathologically and cognitively normal controls.

Human Herpesvirus 6A and 7 are more abundant in Alzheimer’s disease in multiple brain 
regions across three independent clinical cohorts

To evaluate differential viral abundance in AD, we initially performed RNA-seq on samples 

from a cohort of AD and Control brains from the Mount Sinai Brain Bank (MSBB) and 

quantified differences in viral sequences between groups. We began by profiling MSBB 

sample transcriptomes across four brain regions, (STG: superior temporal gyrus, n=137, 

APFC: anterior prefrontal cortex, n=213, IFG: inferior frontal gyrus, n=186 and PHG: 

parahippocampal gyrus, n=107), which we used to quantify the presence and abundance of 

515 viral species known or suspected to infect humans as a primary host(Brister et al., 

2015). We applied a viral mapping approach (Figure S1), based on a modified ViromeScan 

workflow(Rampelli et al., 2016), optimized for detection specificity, rather than sensitivity 

to allow us to discriminate between viruses with highly homologous regions, and to ensure 

we were not falsely including human derived transcripts when summarizing viral abundance.

We estimated viral abundance at two levels. We summarized RNA reads to the level of the 

entire viral sequence, with the aim of estimating ‘total viral transcription’. We then 

summarized the RNA reads to the level of individual genomic features based on counting 

reads that overlap any of the genomic features included in the NCBI annotations for that 

viral sequence(Brister et al., 2015). Throughout this study, we have evaluated viral 

abundance according to these two levels separately.
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We identified differential abundance of multiple viral species in the APFC and STG (Figure 

2a, Table S2). The most consistent difference we saw was an AD-associated increase in the 

abundance of two closely related Roseoloviruses, HHV-6A and HHV-7, across the APFC 

and STG. The third Roseolovirus, HHV-6B had a discordant profile with increased 

abundance in AD in the STG, and reduced in the APFC. Viral gene-level differential 

expression (Figure 2b, Table S2) identified increased abundance across the APFC and STG 

regions of the HHV-6A U3/U4 genes (positional homologs of human cytomegalovirus 

(HCMV) US22, with transactivating effects on other viral species(Mori et al., 1998)) and the 

HHV-7 direct repeat terminal gene, DR1.

To understand whether our observations of altered viral abundance in AD would also be 

preserved in additional cohorts we incorporated post-mortem brain RNA-seq data from three 

additional, independent consortium studies; (1) Religious Orders Study47 (ROS), a 

longitudinal clinico-pathological study comprising 300 samples from the dorsolateral 

prefrontal cortex (DLPFC) of individuals with AD and healthy controls, (2) Memory and 

Aging Project(Bennett et al., 2012a, Bennett et al., 2012b) (MAP) comprising 298 samples 

from the DLPFC of individuals with AD, as well as healthy controls, and (2) Mayo 

Temporal Cortex(Allen et al., 2016) (MAYO TCX) comprising 278 samples from the 

temporal cortex of individuals with AD, pathological aging (PA)(Dickson et al., 1992), 

progressive supranuclear palsy (PSP), and healthy controls. Our goal was to process these 

additional samples using the procedure described above, and integrate the results (Table S2) 

into a meta-analysis of viral abundance in AD (Figure 2e–f). Our main finding was a 

consistently increased abundance of HHV-6A and HHV-7, driven mainly by the “unique” 

region of each virus (the full viral sequence excluding the ~15kb flanking DRL and DRR 

terminal repeats). We also observed an increased abundance of the HSV-1 latency-associated 

transcript (LAT), supporting an increased rate of HSV-1 infection (latent or otherwise) in 

AD. These additional validations support the main findings originally observed in the MSBB 

cohort, that multiple viruses are at increased abundance in AD, across multiple brain tissues, 

with prominent roles for Roseoloviruses HHV-6A and HHV-7.

Increased HHV-6A and HHV-7 are not ubiquitous features of neurodegeneration

We utilized the PA and PSP samples available within the MAYO TCX cohort to perform 

comparisons against these additional neurodegenerative disorders, to understand whether our 

findings were specific to AD, or perhaps reflect a more general feature of neurodegenerative 

processes. In a comparison of AD vs. PA, we found an increased abundance of HHV-6A and 

HHV-7 (Figure S2). When we compared AD vs. PSP, we found increased HHV-7 in AD, but 

reduced HHV-6A. Taken together, these observations suggest that elevated HHV6-A and 

HHV-7 are not ubiquitous features of neurodegenerative disease, although HHV-6A may 

also be relevant to other diseases such as PSP.

Increased abundance of HHV-6A DNA in Alzheimer’s disease

We looked for evidence of viral DNA in whole exome sequencing (WES) data that was 

generated on STG samples (n=286) in the MSBB cohort, applying a similar procedure to 

that used in evaluating viral RNA abundance (Figure S1). We detected viral DNA for 

multiple viruses, and identified an increased abundance of HHV-6A (Figure 2c–d, Table S2). 
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This was primarily due to reads mapping to HHV-6A Region 8009 – 151234, which 

comprises the “unique” region of HHV-6A, (and consistent with our findings in the RNA 

sequences). Chromosomal integration of HHV-6A into host subtelomeric regions is well 

described(Arbuckle et al., 2010), occurring via a mechanism involving homologous 

recombination between telomeric repeats and the DRR. Excision and reactivation of 

integrated HHV-6A is associated with preferential loss of the entire DRL, facilitating viral 

circularization and rolling circle replication(Prusty et al., 2013). This may indicate that the 

HHV-6A DNA that we find as more abundant in AD reflects HHV-6A that has undergone 

reactivation from a chromosomally integrated form, although we have not evaluated this 

directly.

Viral RNA abundance associates with clinical dementia and neuropathology traits

We extended our analysis to identify significant associations between virus level and viral 

gene level RNA abundance and AD-relevant clinical and neuropathological traits (“AD 

traits”) (Figure 3, Table S3), including a consensus based clinical dementia rating 

score(Morris, 1993) (CDR), multi-regional neuritic amyloid plaque density(Haroutunian et 

al., 1998) (APD), and Braak and Braak score(Braak et al., 2006) (Braak score). We 

identified several viral genes that significantly associate (FDR < 0.1) with multiple AD 

traits, including the HHV-7 DR1 gene, and HHV-6A unique region, both demonstrating a 

positive association with all three AD traits within the APFC.

Human DNA variants that associate with viral abundance also associate with AD status, 
clinical dementia and neuropathological features of AD

Given the prolonged preclinical course of AD, a primary question for us was whether these 

viral species represent a truly informative, causal component of AD, or instead reflect an 

“opportunistic passenger” of a neurodegenerative process driven by other factors. To help 

address this, we integrated WES data with RNA-seq for each donor within the MSBB. Our 

goal was to identify host DNA variants that significantly associate with viral abundance, 

which we refer to as “viral quantitative trait loci” (vQTL). These vQTL might then be used 

in a causal inference paradigm(Millstein et al., 2009) to resolve directed regulatory 

interactions in virus-host networks and, for the fraction of vQTLs that are also AD risk-

associated, evaluate whether viral abundance is an authentic risk factor for AD. Causal 

inference approaches like this have been used to elucidate molecular networks impacted by 

DNA loci across biological contexts as diverse as cardiometabolic disease(Franzen et al., 

2016), COPD(Yoo et al., 2015) and meditation(Epel et al., 2016).

We identified host DNA markers(Shabalin, 2012) across all four brain regions with paired 

DNA and RNA samples (APFC: n=174, STG: n=86, PHG: n=80, IFG: n=147) that 

significantly associated with normalized viral abundance, for any viral species detected 

within that region (Figure 4, Table S4). DNA markers with a permutation based FDR < 0.25 

were classified as vQTLs for that specific viral gene in the context of that region.

We identified 1,672 vQTL associations across the four regions assayed (APFC: 883, STG: 

479, PHG: 175, IFG: 135). This represented 747 non-independent vQTL markers that 

collectively associate with 16 separate viruses. The viruses with the largest number of 
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separate vQTL markers were human adenovirus-A (HAdV-A), HHV-6A, HSV-2 and HSV-1 

(222, 103, 91 and 87 markers respectively). The vQTL associated with the most viruses and 

regions (Figure 4b) (rs71454075) falls within the glycoprotein Mucin 6, Oligomeric Mucus/

Gel-Forming gene (MUC6), expressed particularly in gastric epithelium, and with 

cytoprotective roles against pathogens, acids and proteases(Toribara et al., 1993). The genes 

that collectively overlapped vQTLs across the most regions and viruses (Figure 4c) indicated 

biological themes that plausibly relate to individual variability in virome composition, 

including mucosal immunity (MUC6, NTRK1), innate immunity and antiviral sensing 

(ISG20L2, MORC3, NTRK1, TRIM7).

We hypothesized that cis-eQTL associations could represent a potential mechanism linking 

vQTL with viral abundance, whereby a vQTL might alter the expression of a nearby host 

gene that has the potential to impact, or be impacted by viral abundance. We performed a 

cis-eQTL analysis across this same cohort, detecting significant associations (FDR < 0.1) 

between host gene expression, and markers within 1 MB of gene boundaries. Thirty five 

percent of the unique vQTL markers (263 of 747) were associated with at least one cisgene, 

inlcuding several with associations to AD and other dementias, for instance, rs4942746 is a 

vQTL for HSV-1 LAT, and is also a cis-eQTL for Integral Membrane Protein 2B (ITM2B), 

an endogenous inhibitor of Aβ aggregation and associated with familial British(Vidal et al., 

1999) and Danish(Vidal et al., 2000) dementia.

We employed the sequence kernel association testing(Lee et al., 2012, Wu et al., 2016) 

approach to understand whether vQTLs are genetic risk markers for AD status, clinical 

dementia rating or neuropathology (AD traits) (Figure 4d, Table S5). Iterating over each 

viral gene feature, we combined vQTL from all regions into a single set, and calculated a P-

value associating each vQTL set with each AD trait. We detected multiple viral features with 

significant associations to AD traits (Figure 4e–f), supporting the hypothesis that DNA 

variants that predispose to AD also predispose to abundance of key viral species - most 

notably HHV-6A. We also found multiple viral genes with vQTL sets that associate with 

multiple AD traits, including the HHV-6A unique region, and the HSV-1 Neurovirulence 

protein ICP34.5.

These results indicate a significant overlap between the genetic basis for AD traits, and the 

abundance of specific viral species and viral genomic features. This supports our broader 

hypothesis that viral activity plays a role in the development and progression of AD, and is 

consistent with a role for HHV-6A in particular.

Viral regulation of AD associated host networks

We generated virus-host gene regulatory networks to understand the biological context of 

viral activity across samples. We constructed informative models by detecting the set of host 

genes that are correlated with vQTL/virus pairs within each tissue, and iterating over each 

candidate trio (each trio comprising a vQTL marker, virus feature abundance, and host gene 

expression), and then testing the mathematical conditions required to demonstrate causal 

mediation of an association between a DNA marker and a trait(Millstein et al., 2009) (Figure 

5a). We built tissue-specific virus-host gene networks for all detected viral features (Table 

S6) identifying interactions in all four brain tissues (Figure 5b), comprising a total of 4,110 
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“virus to host” interactions, and 2,255 “host to virus” interactions, collectively associating 

16 different viral species with 4,929 host genes. Only three viruses had detected interactions 

in all four tissues: HSV-1, HSV-2 and HHV-6A. Several viruses only had interactions 

detected in a single tissue: Aravan Virus, HCV-2, Variola Virus, and Wesselbron Virus, 

which may reflect higher regional tropism for the species, or the potential for contamination 

to be driving the detection of these viruses in a subset of samples.

Host genes that are most commonly perturbed by viruses are shown (Figure 5c), ranked 

according to the number of unique viruses that we detected perturbing that gene across all 

four regions surveyed. This includes several genes implicated in regulation of APP 

processing and AD, including β-site amyloid precursor protein cleaving enzyme 1 (BACE1), 

FYN Proto-Oncogene, Src Family Tyrosine Kinase (FYN), and Peroxisome Proliferator 

Activated Receptor Gamma (PPARG). Several of these genes are also associated with pro 

and antiviral signalling, including positive regulation of interferon-λ1 genes by FYN during 

viral infection(Nousiainen et al., 2013), negative regulation of viral replication by 

PPARG(Bernier et al., 2013), and promotion of viral translation by SRSF6(Swanson et al., 

2010).

We evaluated the set of genes causally regulated by each virus, against a set of known AD-

associated genes, including risk genes for early and late onset AD, as well as AD associated 

traits (such as β-amyloid plaque density, rate of disease progression, neurofibrillary tangle 

density) from multiple human genetics disease resources(Rouillard et al., 2016). We found 

that multiple viruses interact with AD risk genes. HHV-6A stood out as notable with 

significant overlap (FDR < 3e-3) between the set of host genes it collectively induces across 

all tissues and AD-associated genes (Figure 5d, Table S7). This includes several regulators 

of APP processing and AD risk-associated genes, including gamma-secretase subunit 

presenilin-1 (PSEN1), BACE1, amyloid beta precursor protein binding family B member 2 

(APBB2), Clusterin (CLU), Bridging Integrator 1 (BIN1) and Phosphatidylinositol Binding 

Clathrin Assembly Protein (PICALM). We also found that several other viruses regulate, or 

are regulated by AD risk genes, including: (1) HAdV-C induced expression of Complement 

Receptor 1 (CR1), and inhibition of Solute Carrier Family 24 Member 4 (SLC24A4), (2) 

inhibition of KSHV by Fermitin Family Member 2 (FERMT2), and (3) inhibition of HSV-2 

by Translocase Of Outer Mitochondrial Membrane 40 (TOMM40). These findings indicate 

multiple points of overlap between virus-host interactions and AD risk genes.

Expression QTL of virus-host networks are enriched for AD GWAS risk loci

To investigate the broader context of how virus-host interactions might overlap with AD 

genetic risk, we integrated cis-eQTL data with AD GWAS summary statistics (Figure 5e–f). 

Our hypothesis was that identifying virus-host networks that are enriched for AD GWAS 

loci could provide a natural means to prioritize the relevance of individual viruses to AD, as 

well as provide useful functional context for specific viruses. Our approach was to use cis-

eQTL identified in any of the four brain tissues within the MSBB data, to define the set of 

markers that are associated with the host genes in each virus/host network (“virus network 

eQTLs”), and then determine whether virus network eQTLs are enriched for AD risk-

associated loci(Lambert et al., 2013) using the versatile gene-based association study 
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(VEGAS) approach(Liu et al., 2010b, Mishra et al., 2015). We observed that multiple 

viruses have host networks that are enriched for AD risk-associated eQTLs (Figure 5g), 

most consistently for HHV-6A, but also HCMV, HSV-1, Aravan, HHV-6B, and VZV. This 

suggests that loci that alter the expression of genes that regulate, or are regulated by specific 

viruses are in aggregate associated with AD risk.

Viral mediation of neuronal loss in AD

Progressive neuronal dysfunction and eventual death is a hallmark feature of AD and is the 

primary driver of the striking cortical atrophy associated with the disease. Diverse findings 

implicate aberrant regulation of apoptosis(Su et al., 1994), necroptosis(Caccamo et al., 

2017), and autophagy(Nixon et al., 2005) although findings are conflicting and a unified 

understanding of the mechanisms underlying neuronal loss is lacking. Given the potential 

for viral infection to modulate cellular death pathways through these mechanisms and 

others(Upton et al., 2014), we were interested in understanding whether viral abundance 

might be associated with specific brain cell type fractions within our data set, particularly 

neurons. We used CIBERSORT(Newman et al., 2015) to deconvolute each MSBB RNA-seq 

sample into estimated fractions for major brain cell types (neurons, astrocytes, microglia, 

endothelial cells, and oligodendrocytes), based on comparison with a reference panel of 

single cell RNA-seq in cortical samples from neurologically normal, middle-aged 

adults(Darmanis et al., 2015) (Figure 6a). Our goal was to identify significant associations 

between estimated cell fractions, AD traits and viral abundance.

The most consistent AD-associated change (Table S8) was a significant (FDR < 0.1) 

decrease in neuronal fraction, and an increased endothelial cell fraction in the PHG, IFG, 

and STG, which we confirmed using an alternative cell signature enrichment method, 

xCell(Aran et al., 2017) (Table S8). We observed strong negative correlation between 

neuronal fractions and CDR in all four brain tissues, and with Braak score and neuritic 

plaque density in three (PHG, IFG, STG) (Figure 6b, Table S8).

We found multiple correlations between cell fractions and viral RNA abundance (Figure 6c, 

Table S9), with associations detected in the APFC, STG and IFG, collectively implicating all 

cell types with five viruses. Only a single virus (HHV-6A) was associated with cell fraction 

changes in multiple tissues (APFC and STG; the same two tissues in which HHV-6A was 

observed at increased abundance in AD), although the specific cell profiles were different 

between tissues. We were most interested in focusing on viruses or viral genes that are 

negatively correlated with neuronal fraction, particularly if they were also detected as 

differentially abundant in that same brain tissue (Figure 6d). Only HHV-6A met these 

criteria demonstrating strong negative correlation with neuronal fraction in the STG, as well 

as being highlighted in the viral RNA analyses of the MSBB, MAP, MAYO TCX cohorts 

and meta-analysis.

We applied causal inference testing to evaluate the hypothesis that abundance of HHV-6A 

exerts a significant effect on neuronal fraction in the STG, and detected multiple instances 

consistent with the HHV-6A virus, and the HHV-6A U3/U4 gene mediating such an effect 

(Figure 6e–f, Table S9). We reasoned that part of this effect might be through the direct 

impact of viral products on biological mechanisms underlying the neuronal loss, however 
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there might also be informative, indirect effects mediated through a host subnetwork (i.e. 

host genes regulated by HHV-6A, and which also causally regulate neuronal fraction). We 

iterated over the set of host genes we detected as regulated by each HHV-6A sequence in the 

STG, and for each gene, tested whether it also correlated with neuronal fraction, and 

whether the vQTL marker for that host gene was associated with neuronal fraction in the 

STG. We performed causal inference testing, and detected genes that are regulated by 

HHV-6A virus (121 genes), HHV-6A unique region (86 genes) and HHV-6A U3/U4 (6 

genes), and which exert an effect on neuronal fraction (Figure 6g, Table S9). To determine 

whether these “neuronal loss networks” (NLN) might overlap with AD GWAS risk loci, we 

used the VEGAS approach described above, and found a significant enrichment within the 

cis-eQTL of the HHV-6A virus level NLN (FDR < 7e-3).

The HHV-6A virus level NLN includes many genes with roles in cellular viral response, as 

well as associations to biological mechanisms that could help account for neuronal death, 

including upregulation of Poly(ADP-Ribose) Polymerase 1 (PARP1) by HHV-6A (and 

negative regulation of neuronal fraction by PARP1), consistent with its reported activation 

by EBV(Mattiussi et al., 2007), HIV(Ha et al., 2001) and HSV-1(Grady et al., 2012), and 

induction of caspase-independent apoptosis in the latter(Grady et al., 2012). AD risk-

associated haplotypes for PARP1 have also been reported(Liu et al., 2010a), and suggested 

as a mechanism mediating cell death following cytotoxic response(Liu et al., 2010a). The 

NLN gene with the lowest eQTL AD risk P-values (Figure 6g) is N-acylethanolamine acid 

amidase (NAAA), a close homolog of Acid Ceramidase (AC), suggested to regulate 

neuronal apoptosis in AD(Huang et al., 2004).

We were also interested to find that MIR155 Host Gene (MIR155HG) was within the 

HHV-6A NLN and associated with multiple low AD risk P-value eQTLs. We had prioritized 

miR-155 during our analysis of the preclinical AD networks (Figure 6h–i, also Table S1) 

due to strong associations between its mRNA targets and a variety of multiregional AD and 

preclinical AD transcriptomic changes as well as “gained in preclinical AD” drivers. In 

addition to diverse associations with viral biology including EBV(Gatto et al., 2008), 

HHV6A(Caselli et al., 2017), KSHV(Gottwein et al., 2007) and MDV(Zhao et al., 2009), 

miR-155 has also been reported as a regulator of T-cell response in AD(Song et al., 2015), a 

mediator of inflammation induced neurogenic dysfunction and apoptosis(Woodbury et al., 

2015), and an effector of TREM2-APOE regulation of a microglial neurodegenerative 

phenotype(Krasemann et al., 2017). Reports of viral tropism have also demonstrated that 

HHV-6 and HHV-7 can infect microglia(Albright et al., 1998), and macrophages(Zhang et 

al., 2001). In the NLN, we found that HHV-6A suppressed miR-155, as described in recent 

reports of miR-155 inhibition by HHV-6A in infected T-cells(Caselli et al., 2017).

These findings show that computational deconvolution of RNA-seq in AD recapitulates the 

expected neuronal loss. The negative correlations between STG neuronal fraction and 

HHV-6A sequences (that are also at increased abundance in the STG), in combination with 

the findings of causal testing, and the association of the NLN cis-eQTLs with AD risk are 

consistent with HHV-6A exerting an effect on neuronal fraction in AD.
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miR-155 is suppressed by HHV-6A, and alters Aβ oligomer levels and amyloid plaque 
density in a genetically manipulated mouse model

Given the convergence of multiple analyses upon miR-155 (Figure 6g,i), we crossed 

miR-155-KO mice(Thai et al., 2007) with a standard APP/PS1 amyloidosis 

strain(Jankowsky et al., 2004) to evaluate the effect of miR-155 depletion on molecular and 

tissue pathology. At age four months, we observed that the brains of miR-155-KO/APP/PS1 

mice displayed larger, more frequent cortical amyloid plaques and higher levels of certain 

Aβ conformers as compared with APP/PS1 mice (Figure 6k–l). We hypothesized that if 

HHV-6A was inhibiting the expression of miR-155, then this might cause the de-repression 

of certain miR-155 mRNA targets (Figure 6m). We generated RNA-seq on cortical samples 

comparing miR-155-KO vs. wildtype mice to identify the differentially expressed genes 

(DEG, FDR < 0.1, Table S10), and found a significant overlap between upregulated DEGs, 

and the set of host genes we had identified as upregulated by HHV-6A (FDR < 0.03), 

suggesting that some component of our detected HHV-6A network is mediated through an 

effect on miR-155, or a viral ortholog of miR-155 (which has not been described for 

HHV-6A).

Given the context of HHV-6A induced inhibition of miR-155 within the NLN, we wondered 

whether we would observe transcriptomic evidence for mechanisms associated with 

neuronal loss. Molecular and functional enrichments of the miR-155-KO DEGs (Table S10), 

highlighted multiple enrichments for apoptosis regulatory pathways and neuronal signature 

gene sets (Figure 6n).

Collectively, these findings support the role of miR-155 as a key node in host response to 

AD-relevant viral perturbation, and as a potential mediator of neuronal loss. This is also 

consistent with a contribution of viral perturbation in driving the preclinical AD 

transcriptional phenotype given that our prioritization of miR155 was informed by findings 

in the preclinical AD networks. The finding that miR-155-KO causes increased Aβ plaque 

deposition in the presence of APP/PS1 mutations also suggests a pathway linking viral 

perturbation with AD-associated neuropathology. This line of evidence is also consistent 

with findings linking viral infection with antimicrobial innate immune response, 

proamyloidogenesis, and microbe entombment(Kumar et al., 2016, Eimer et al., 2017).

Viral perturbation of transcription factor regulatory networks

Viruses demonstrate remarkable strategies to effectively co-opt endogenous host factors 

necessary to their survival. Through context-dependent transcription of viral gene products, 

viruses hijack host transcription, signaling networks and cellular machinery to orchestrate all 

aspects of their life cycle.

Given our earlier findings of widespread changes in C2H2-TF in the preclinical networks we 

were interested in determining whether the virus-host networks might indicate viral targeting 

(directly or indirectly) of specific TFs (Figure 7). We constructed a diverse collection of TF-

target networks, generated from the MSBB, MAYO and ROSMAP consortium data, using 

the Transcriptional Regulatory Network Analysis (TReNA) approach comprising seven TF-

target networks in total (reflecting tissue-specific networks within each cohort), which 
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collectively model transcriptional relationships between 569 unique TFs, and 14,583 target 

genes.

Within each virus-host network, we compared the “virus to host” genes with the target genes 

for each TF, across all seven TF-target networks to identify significantly (FDR < 0.1) 

associated virus/TF pairs (Figure 7a). For each enriched pair, we examined the concordance 

of effect that the virus and TF demonstrate on the genes driving the enrichment (Figure 7b). 

We calculated the Pearson’s correlation between the individual virus-host gene correlations 

and the TF/target gene correlations to identify instances where the virus and TF both exerted 

a similar effect (“TF agonist-like”, Pearson Corr > 0, FDR < 0.1), and instances where they 

exerted an opposing effect (“TF antagonist-like”, Pearson Corr < 0, FDR < 0.1). We then 

identified the set of virus/TF pairs that were associated in all seven TF-networks, and which 

demonstrated a consistent status as TF agonistlike/antagonist-like in each case (Figure 7c), 

reasoning that these “unanimous virus/TF associations” would represent the most robust 

candidates for considering viral perturbation of a TF network.

This unanimous virus/TF network (Figure 7d) includes 26 associations between four 

different viruses (HSV-2, HHV-6A, HCMV and KSHV) and 14 TFs. The majority of 

connections (20 of 26) indicate associations where a viral feature exerts an agonist-like 

effect on TF targets. We found multiple virus-TF interactions where the TF was also directly 

detected as being regulated by the virus, including agonist-like interactions between 

HHV-6A and OLIG1, TCF12, SOX8 and ZEB2. In each of these cases, the TF was 

upregulated by the virus, consistent with the agonist-like associations inferred from the TF 

network enrichments. We hypothesized that a potential mechanism to link viral perturbation 

of multiple TF networks might be mediated through viral mimicry or modulation of host 

kinase activity(Shugar, 1999). We compared the set of four HHV-6A regulated TF (that were 

also directly detected as regulated by HHV-6A) with a library of kinase coexpression 

networks(Lachmann et al., 2017), and identified significant (FDR < 0.1) enrichments with 

seven different human kinases (Figure 7e). This includes four kinases that were also detected 

as directly upregulated by HHV-6A. For example, Neurotrophic Receptor Tyrosine Kinase 2 

(NTRK2) expression is linked with neuronal survival in AD(Wong et al., 2012) and 

associated with AD risk(Chen et al., 2008). FYN tyrosine kinase, linked with synaptic 

dysfunction in AD via a range of Aβ- and/or tau-related mechanisms(Nygaard, 2017), is also 

bound directly by the HHV-6A U24 protein potentially disrupting interactions with 

endogenous ligands(Sang et al., 2014).

These observations indicate the potential for viral perturbation of host TFs and TF-Target 

networks in the context of AD, and offer an explanatory mechanism that could account for 

the large number of virus-host interaction detected for species such as HHV-6A and HSV-2. 

The described kinase-TF enrichments represent a potential upstream mechanism whereby 

HHV-6A modulation of kinase activity could alter the activity of specific endogenous TFs, 

thus perturbing host regulatory programs in the manner reflected in the HHV-6A host 

networks.
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Virus-host protein networks indicate perturbation of cellular nucleotide pools, tRNA 
synthesis and protein translation

We constructed virus-host protein networks to evaluate proteomic consequences of viral 

activity in AD. We generated protein expression profiles for a subset of APFC samples 

(n=152), performing liquid-chromatography-mass spectrometry (LC-MS) and using 

MaxQuant(Cox et al., 2008) for quantifying label free protein. Using a similar procedure as 

outlined for generation of virus-host RNA networks, we identified proteins that are 

associated with vQTLs, and which are regulated by (or which regulate) each virus. Of the 

viruses that we found as differentially abundant in the APFC RNA data, we detected 

interactions with host proteins for HSV-1 (14 proteins), HSV-2 (34 proteins) and HHV-6A 

(28 proteins) (Figure S3, Table S11). Protein regulators of cellular nucleotide pools, 

especially purine biosynthesis (NUDT16, GMPR2), guanine nucleotide binding proteins 

(GNAS, GNAO1, GNG3, GNG5), aminoacyl-tRNA synthetases (SARS, VARS; AARS), 

mitochondrial function (MT-ND5, MFF), nuclear organization (NCL, LMNA) and 

cytoskeletal disruption (CAMK2D, LMNA, MYLK, PRKCB, TF) are among the most 

prominent biological themes of the networks. For instance, we found that several viruses 

alter expression of nucleotide regulating proteins, including HSV-2 induction of reductase 

enzyme GMPR2, which catalyzes conversion of G to A nucleotides, and HHV-6A induction 

of inosine diphosphatase NUDT16 which depletes the cellular pool of non-canonical purines 

IDP and ITP. Collectively, this suggested a picture of virally induced dysregulation of 

nucleotide pool metabolism, especially purine bases, consistent with several metabolomics 

studies in AD(Kaddurah-Daouk et al., 2013, Kaddurah-Daouk et al., 2011). This is notable, 

given our observations of G4 activity as key regulatory features among preclinical AD driver 

genes, which are primarily features of guanine enriched sequences. Nucleotide pool 

depletion or imbalance is known to induce replicative stress, and mediated through 

inadequate unwinding of stabilized G4 sequences, with associated genomic and epigenetic 

instability(Papadopoulou et al., 2015).

We also found that HHV-6A induced expression of multiple AARS enzymes (VARS and 

SARS), responsible for charging their cognate tRNAs with valine and serine respectively. 

Increased d-serine has been reported in the CSF of patients with AD, as well cellular and 

mouse AD models(Madeira et al., 2015). Some viruses possess endogenous tRNA and 

AARS sequences, which appear critical to viral protein synthesis throughout the infectious 

cycle(Nishida et al., 1999). Multiple viruses recruit host tRNAs into virions for use as 

primers in reverse transcription(Mak et al., 1997) and some such as HIV also selectively 

incorporate host AARSs as well(Cen et al., 2001). Recent works have also demonstrated the 

role of tRNA in shifting the G4 conformational equilibrium towards a hairpin 

conformer(Rode et al., 2016).

These results indicate novel molecular mediators and associated pathways that might help 

shed light on mechanisms of viral pathogenicity, such as a potential role for AARSs in 

HHV-6A co-option of host protein synthesis machinery. These findings may also suggest 

novel molecular mediators and mechanisms for more widespread changes we have observed, 

such as dysregulation of G4 activity.
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Impact of viral activity on genetic, transcriptomic, clinical and neuropathology networks in 
AD

We aggregated the results across several analyses to summarize the systems-level impact of 

individual viral species on AD biology (Figure 8a). This included multiregional viral RNA 

differential abundance, multiregional correlations of RNA abundance with AD traits, 

associations between vQTL sets and AD genetics, viral DNA differential abundance and AD 

risk gene enrichment scores for virus-host subnetworks. iral species implicated in any of 

these analyses were assigned a combined score based on the summed -log10(P-value) of 

each individual association. This view indicated that multiple viruses impact on AD 

associated biology, across multiple -omic domains. The most strongly implicated viruses, 

were Roseoloviruses HHV-6A, HHV-7 and HHV-6B. HHV-6A in particular was robustly 

prioritized on the basis of: (1) RNA and (2) DNA differential abundance, (3) RNA 

abundance association with AD traits (4) vQTL markers association with AD traits, (5) 

HHV-6A/host network eQTL enrichments for AD risk loci, and (6) inducing the expression 

of a significant fraction of AD risk genes within the HHV-6A/host network.

Discussion

Developing a sophisticated understanding of the causal basis for AD is complicated by its 

protracted preclinical course, and the inability to routinely sample brain tissue. 

Distinguishing the earliest drivers of disease from the “opportunistic passengers” of a multi-

decade neurodegenerative process is especially formidable given the profound changes in 

transcriptomic, proteomic, and histopathological profiles(Zhang et al., 2013).

We report a multi-stage study that aims to reconcile nascent changes in preclinical AD with 

findings made in the context of AD. Our strategy began by examining transcriptomes from 

brain regions that undergo the earliest changes in AD with the goal of identifying novel 

biology that could offer a frame for understanding the more dramatic changes seen in later 

stages of AD. Exploration of the preclinical AD networks sensitized us to pervasive 

dysregulation of C2H2-TF, G4 sequences, and a possible role for viral perturbations in 

driving network changes. This informed a focused evaluation of viral perturbations in 

clinical AD. We examined four, large multi-omic data sets that included next-generation 

sequence data that enabled direct examination of viral sequences. We observed the presence 

of many viral species in the ageing brain, and linked multiple viral species with AD biology, 

including regulation of AD genetic risk networks, AD gene expression changes, and 

association with clinical dementia rating and neuropathology burden. We found prominent 

roles for Roseoloviruses HHV-6A and HHV-7, both implicated across multiple domains, and 

in 3 independent cohorts. Importantly, the inclusion of the MAYO TCX data set allowed us 

to perform comparisons between AD and other neuropathological controls. These additional 

comparisons suggest that HHV-6A and HHV-7 are not ubiquitous features of 

neuropathology, and appear at least partly specific to AD. Comparison against additional 

neuropathological diseases and brain regions would help clarify this specificity, for instance 

although PSP is associated with accumulation of cortical neurofibrillary tangles, the most 

severe manifestations are typically seen throughout the basal ganglia, brainstem and 
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cerebellar structures, regions that were not profiled in this study, yet which might harbor 

different viral species and abundances than those observed.

Additional focused sequencing efforts are required to gain further resolution on the role of 

HHV-6 and HHV-7 in AD. Previous reports suggest an increased prevalence of HHV-6 in 

AD based on PCR of postmortem brain tissue(Lin et al., 2002) and seroprevalence(Carbone 

et al., 2014), though subsequent serological studies did not find increased HHV-6 

seropositivity(Agostini et al., 2016). Importantly, not all of the methods employed in these 

studies distinguished between HHV-6A and HHV-6B, which may account for some 

discrepancy. We found considerable inter-regional variability in AD associated viral 

abundance, finding differences in four of the six regions assayed. Additionally, we found a 

discordant profile for HHV-6B (increased in STG, reduced in APFC), indicating the 

importance of distinguishing HHV-6B from HHV-6A (increased in the STG, APFC, DLPFC 

and TCX). Given the near universal seropositivity for HHV-6 in the general population, 

seropositivity is likely too non-specific to reliably distinguish AD-relevant states of viral 

activity within the brain.

The miR-155 network offers a targeted area for further investigation of viral activity and 

neuronal loss in AD. We first identified miR-155 during investigation of the preclinical AD 

networks, and later identified that HHV-6A negatively regulates neuronal fraction in the 

STG, and that the cis-eQTLs of the host genes that mediate this are enriched for AD risk 

loci, leading to the re-emergence of miR-155 (via MIR155HG) in our analysis. Our finding 

that four month miR-155-KO x APP/PS1 mice develop increased cortical amyloid plaque 

density and increased levels of Aβ oligomers provides further evidence linking miR-155 to 

AD pathology. These findings support the view of miR-155 as a regulator of complex anti- 

and pro-viral actions, and offer a mechanism linking viral activity with AD neuropathology 

and supports the hypothesis that viral activity contributes to AD.

The integrated findings of this study suggest that AD biology is impacted by a complex 

constellation of viral and host factors acting across different time scales and physiological 

systems (Figure 8b). This includes host mucosal defense and modulation of innate immune 

response by virus and host. It also includes disturbance of core biological processes, 

including some that are well described in AD (e.g. APP processing, cytoskeletal 

organization, mitochondrial respiration, protein synthesis and cell cycle control) and some 

that are less well characterized (e.g. widespread shifts in G4 activity and C2H2-TF 

regulatory programs). We note potential mechanisms (and candidate molecular mediators) 

that we find perturbed by viral species, and which have known impacts on these altered 

processes, for instance virally driven changes in protein synthesis machinery, tRNA 

synthetase activity, and nucleotide pool maintenance, which collectively exert complex 

effects on G4 regulation and C2H2-TF activity.

Our interpretation of the changes seen in the preclinical AD networks rests partly on the true 

disease relevance of neuropathology in the absence of cognitive impairment. We cannot 

readily discriminate molecules involved in disease progression from molecules that are 

responsible for resilience and for maintaining brain function in the face of advanced AD 

pathology. Despite the uncertainty around the eventual health trajectory of these donors, our 
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reasoning was that by that conditioning our analysis on changes in AD vulnerable brain 

regions we might still find instructive biological themes, even if uncertainty remained 

around whether those changes were disease associated, opportunistic or somehow adaptive. 

Despite this reasoning, and supportive circumstantial evidence (e.g. miR-155) we have not 

yet confirmed in an equivalent data set whether the viral findings associated with clinical 

AD have predecessors in the preclinical AD context.

Investigating the subcellular distribution of viral DNA, especially for the key species of 

interest (HHV6A and HHV-7) would add valuable context to these findings. Unlike most 

viruses discussed in this study, HHV-6(Tanaka-Taya et al., 2004) and HHV-7(Prusty et al., 

2016) can integrate into subtelomeric regions of host chromosomes during latent infection, 

and are excised into an episomal form during lytic infection and replication. Characterizing 

the extent and distribution of integrated vs. episomal Roseolovirus in AD, would be an 

important step in further understanding the mechanisms that connect viral abundance with 

molecular aspects of AD biology, and would have implications for therapeutic targeting of 

latent viral reservoirs relevant to AD.

It is important to note that the findings reported in this study are not sufficient to definitively 

demonstrate that viral activity causally contributes to the onset or progression of AD which 

would be most naturally established in a prospective, intervention-based study. We do report 

on multiple streams of indirect evidence, however, which enabled us to partially address this 

with the available data, including: (a) causal inference testing that supports a role for 

HHV-6A in contributing to neuronal loss in AD, (b) AD GWAS risk loci enrichments in 

virus-host network eQTLs, (c) emergence of molecules such as miR-155 from preclinical 

AD networks and virus-host networks, and (d) relative specificity of HHV-6A and HHV-7 

for AD, compared with other neurodegenerative diseases. Follow-up studies that evaluate the 

onset and progression of AD phenotypes in virally infected AD model systems would be one 

approach to better delineate the causal and mechanistic relationships that link pathogen 

activity with the evolution of AD associated behavioral, molecular and neuropathological 

changes.

In summary, we find evidence that links the activity of specific viral species with molecular, 

genetic, clinical, and neuropathological aspects of AD. Interpretation of these findings in 

light of the disturbances in G4 and C2H2-TF regulation in the preclinical AD samples that 

prompted our evaluation of viral activity is supportive of an important role for viral activity, 

especially Roseoloviruses HHV-6A and HHV-7, in the development and progression of AD.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Joel T. Dudley (joel.dudley@mssm.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals—APPKM670/671NL/PSEN1Δexon9 (APP/PS1)(Jankowsky et al., 2004), and miR-155-

KO(Thai et al., 2007) mice were obtained from Jackson Laboratories. 
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APPKM670/671NL/PSEN1Δexon9 were crossed with miR-155-KO mice to obtain 

APPKM670/671NL/PSEN1Δexon9 heterozygous or KO for miR-155. Mouse lines were 

maintained on a C57Bl6/J background. 4-month-old male and female mice were sacrificed 

by decapitation. Brains were dissected into right and left hemispheres. One hemisphere was 

collected and fixed in 4% paraformaldehyde for immunohistochemistry analysis. The second 

hemisphere was dissected and prefrontal cortex (PC) was collected for transcriptomic 

analysis. PC and hemibrains were then snap-frozen and stored at −80°C prior to RNA 

isolation or biochemistry analysis. Male and female mice were used in the experiments. The 

experimental procedures were conducted in accordance with NIH guidelines for animal 

research and were approved by the Institutional Animal Care and Use Committee (IACUC) 

at Icahn School of Medicine at Mount Sinai.

METHOD DETAILS

RNA sequencing human gene expression—RNA sequencing data was obtained from 

the Accelerating Medicines Partnership - Alzheimer’s Disease (AMP-AD) Knowledge 

Portal (MSSB synapse ID: syn3157743, MAYO TCX: syn8612203, ROS/MAP: 

syn8612097). For the MSBB cohort, post-mortem samples were collected from the STG 

(Brodmann Area 22), APFC (Brodmann Area 10), PHG (Brodmann Area 36) and IFG 

(Brodmann Area 44) by the Mount Sinai NIH Brain and Tissue Repository. MAYO TCX 

cohort samples were collected from the temporal cortex, as previously described(Allen et al., 

2016). ROS and MAP cohort samples were collected from the DLPFC as previously 

described(Bennett et al., 2012a, Bennett et al., 2012b).

For all cohorts, RNA-seq samples with RIN less than 6, were removed from the analysis.

For host gene expression (MSSB cohort), single end reads were aligned to human genome 

reference (GRCh37 ensembl version 70(Kersey et al., 2016)), using STAR-RNAseq 

(2.4.0g1) read aligner(Dobin et al., 2013), and accepted mapped reads were summarized to 

gene level counts using the featureCounts function of the subread software package(Liao et 

al., 2013, Liao et al., 2014). Genes with at least 1 count per million mapped reads(Robinson 

et al., 2010) in at least half of the sample libraries were retained, and normalized using the 

voom function in the Limma package(Law et al., 2014, Ritchie et al., 2015).

Whole exome sequencing—Whole exome sequencing data (MSBB) used in this study 

can be obtained from the Accelerating Medicines Partnership - Alzheimer’s Disease (AMP-

AD) Knowledge Portal (synapse ID: syn4645334). Reads were aligned to human genome 

hg19 using BWA aligner(Li et al., 2009a). DNA sequence variants were called using the 

DNAseq Variant Analysis workflow of GATK Best Practices version 3(Van der Auwera et 

al., 2013). Variants with a minor allele frequency < 0.05, or with missing calls in > 10 

samples were removed from further analysis. Common variants were imputed using 

IMPUTE2(Howie et al., 2009, Howie et al., 2011) using 1000 Genomes Phase 3 reference 

genotypes(Genomes Project et al., 2015).

Liquid Chromatography tandem mass spectrometry—Proteomics data (MSBB) 

used in this study can be obtained from the Accelerating Medicines Partnership - 

Alzheimer’s Disease (AMP-AD) Knowledge Portal (synapse ID : syn5759470). All samples 
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were from a single brain region (APFC), and underwent Liquid Chromatography tandem 

Mass Spectrometry (LC-MS/MS) and MaxQuant(Cox et al., 2008) was used to quantify 

label free protein counts. Protein counts were normalized by the total counts detected for 

that sample, and log transformed (log2) using an offset of 0.25 for null values.

Immunohistochemistry—Paraformaldehyde-fixed mouse brains were cut (30μm thick) 

with a vibratome VT1000S (Leica Microsystems, Germany). Sagittal free-floating sections 

were pre-treated with 70% formic acid for 15min at room temperature. Sections were then 

blocked for 1h at room temperature (PBS with 0.1% v/v Tween-20 and 10% goat serum) and 

incubated overnight with anti-Iba1 (1:500;Wako, Richmond, VA) and 6E10 

(1:1000;Covance, Princeton, NJ) antibodies (PBS with 0.1% v/v Tween-20 and 1% goat 

serum). Sections were then incubated for 1h with fluorescent conjugated secondary 

antibodies (PBS with 0.1% v/v Tween-20 and 1% goat serum) (anti-rabbit Alexa 488 (1:400) 

for Iba1 and anti-mouse Alexa 568 (1:400) for 6E10) and mounted in Superfrost Plus slides. 

Images were acquired on an Olympus BX61 microscope with an attached Olympus DP71 

camera.

Mouse RNA isolation and library preparation—RNA isolation and library 

preparation were performed as previously described(Readhead et al., 2016). Briefly, snap 

frozen samples from male and female mice were homogenized in QIAzol Lysis Reagent 

(Qiagen). Total RNA purification was performed with the miRNeasy Mini kit (Qiagen), 

according to the manufacturer’s instructions. RNA quantification and quality were evaluated 

by Agilent BioAnalyzer and processed for RNA library preparation. RNA integrity was 

checked by either the Fragment Analyzer (Advanced Analytical, IA, USA) or the 2100 

Bioanalyzer using the RNA 6000 Nano assay (Agilent, CA, USA). All processed total RNA 

samples had RQN/RIN value of 8.8 or greater.

QUANTIFICATION AND STATISTICAL ANALYSIS

Construction of entorhinal cortex and hippocampal preclinical AD and control 
regulatory networks—Preclinical AD and Control networks were generated from post 

mortem microarray gene expression data downloaded from Gene Expression Omnibus 

(Preclinical AD: accession GSE9770(Liang et al., 2010), Control accession: 

GSE5281(Liang et al., 2007)). In both data sets, samples were derived from layer 2 

entorhinal cortex neurons, and hippocampal CA1 pyramidal neurons. For each group, we 

built single-tissue networks (HIP and EC), as well as a separate cross-tissue HIP-EC 

network, with the goal of combining these three individual networks afterwards into a single 

union network that is able to capture intra-tissue, as well as inter-tissue connectivity.

Networks were constructed using a modification of the “inductive causation with latent 

variables” procedure(Pearl, 2009). This approach is a constraint-based method for building 

causal networks, using conditional dependence tests between nodes to first identify a 

network skeleton (the set of undirected edges), learn v-structures (a triplet of nodes where 

two non-adjacent nodes share a target node), and output a partially directed graph (PDG). 

The final PDG contains four types of edges: undirected (indicating uncertain causation), bi-

directed (spurious or latent causation), directed (that directed edge is present in at least one 
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Markov equivalent graph, and none contain the opposite arrow for that edge), and marked-

directed edges (that directed edge exists in every Markov-equivalent graph). For each 

network, we retained all edges marked as directed, or marked-directed in the PDG.

Each of the networks we generated was constructed across the top 15,000 most differentially 

expressed probes within that brain region (Preclinical AD vs. Controls). For the HIP-EC 

network, we combined HIP and EC samples from each donor, into a single expression set, 

comprising the top 7,500 most differentially expressed probes from each tissue. We 

constructed the final preclinical AD and control networks by combining discovered edges 

from the EC, HIP and HIP-EC networks into a final structure comprising 30,000 tissue-

annotated probes. We only included HIP-EC cross-tissue edges if the edge was not present 

as an intra-tissue edge in either of the HIP or EC networks.

We then identified network probes with unusually high downstream influence, iterating over 

Gene Ontology (GO) biological process terms, and inducing connected subgraphs from our 

network, according to their annotation with that specific term. Within that subgraph 

(containing a minimum of two connected probes) for each probe, we identified the number 

of probes within the network diameter of the induced subgraph that can be reached via 

incoming connections, and outgoing connections respectively. A GO term score was 

calculated for each probe, based on the difference between Z-scores of total network 

connectivity. A final network driver score was calculated based on the scaled sum of 

individual scores associated for all GO biological process terms. More formally, the driver 

score for probe (P) is the sum of individual differences between upstream neighborhood size 

and downstream neighborhood size, for each subgraph (G) induced according to each GO 

biological process term:

DriverScore(P) = ∑
G = 1

N
ZDownstream PG − ZUpstream PG

We converted these driver scores to standard scores, and nominated probes with a Z-score ≥ 

2 as network drivers. Drivers that were seen in the context of the preclinical AD network 

(but not the control network) were classified as “Gained in preclinical AD”, and those seen 

only in the control network, were classified as “Lost in preclinical AD”.

G-quadruplex sequence prediction—G4 sequence prediction within human genes was 

based on pattern matching against the human reference genome (hg19). Genomic 

coordinates for each gene in the UCSC hg19 “Known genes” were used to download 

nucleotide sequences for gene promoter regions, 5’-UTR, introns, exons and 3’-UTR. 

Promoters were defined as 2000 base pairs upstream and downstream from the transcription 

start site. We used regular expressions to identify the genomic coordinates corresponding to 

occurrences of four runs of at least three guanine bases, interspersed with between one to 

seven other bases (including guanine) based on similar approaches(Garant et al., 2015). We 

used separate patterns to retrieve matches located on the coding strand (G(3,).(1,7)?G(3,).

(1,7)?G(3,).(1,7)?G(3,)) and non-coding strand (C(3,).(1,7)?C(3,).(1,7)?C(3,).(1,7)?C(3,)) 
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respectively. Normalized G4 motif density within a particular feature was calculated by 

dividing the number of predicted motifs by the length (in base pairs) of that feature.

Generation of viral 31mer database—We downloaded nucleotide sequences for 515 

unique viruses with humans as known or suspected hosts(Brister et al., 2015). We segmented 

each viral sequence into its set of unique 31mers using Jellyfish count and dump 

commands(Marcais et al., 2011), followed by removal of any 31mers present in multiple 

viral species. We then generated bowtie2 indices(Langmead et al., 2012) for the viral 

sequences, and the corresponding 31mer database for use in subsequent viral mapping steps.

Detection of viral transcription in RNA and whole exome sequencing—We 

quantified viral transcription through a modified workflow based on ViromeScan(Rampelli 

et al., 2016), which proceeds as follows: preliminary alignment of fastq files to a viral 

reference database using bowtie2(Langmead et al., 2012), identifying candidate viral 

sequences. Mapped reads were filtered through BMtagger(Rotmistrovsky et al., 2011) to 

remove likely human reads. Any putatively non-human reads with low quality scores were 

trimmed, and reads with a trimmed read length < 60 bases were discarded. Reads were again 

filtered using BMtagger(Rotmistrovsky et al., 2011) to remove likely bacterial reads. 

Filtered, trimmed, non-human reads are then mapped to the viral 31mer database with 

bowtie2(Langmead et al., 2012), using a very sensitive, local alignment, outputting all valid 

alignments. Bam files were then sorted and indexed, using Samtools(Li et al., 2009b). BAM 

files were processed manually to output a single best alignment for each read (randomly 

outputting a single alignment in cases where multiple best alignments were found). To 

minimize misclassification of human reads as viral, we then performed an additional 

BLAST(Altschul et al., 1990) search for any 31mers with homology to the combined hg19 

and cDNA sequences(Lander et al., 2001) (blastn e-value < 1e-3), and removed those 

31mers from further analysis.

We generated a 31mer count matrix for all samples, and then summarized these separately to 

the level of viral species, and also for individual viral genomic features. Genomic features 

and coordinates were derived from NCBI gene transfer format files for each sequence. 

Although each viral 31mer is unique to a single viral sequence, some 31mers might occur 

multiple times within that sequence. In these instances, counts for 31mers were assigned to 

all genomic features containing that 31mer. We merged any overlapping genomic features 

that also shared the same total counts in the genomic feature count matrix.

Differential abundance of viral transcription in RNA sequencing—We performed 

differential viral abundance analysis at the level of viral species, and separately, at the level 

of individual genomic features. Due to differences in the study design and availability of 

covariates in each of the three AD cohorts, there were slight differences in the procedure for 

estimating differential viral abundance, reflecting differences in approaches for the (a) 

classification of AD vs. Control status, and (b) availability of technical covariates to 

incorporate into linear modelling. In the MSBB, ROS and MAP cohorts, for each of the 

brain regions assayed, we compared normalized viral abundance between AD cases and 

controls, using three different definitions of AD within each comparison. Definitions of AD 

were based on the multiple levels of CERAD neuropathology classification(Mirra et al., 
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1991), specifically we performed comparisons between “Definite AD Vs. Controls” (NP 

score: 2 Vs. NP score: 1), “Likely AD Vs. Controls” (NP score: 2 / 3 Vs. NP score: 1) and 

“Possible AD Vs. Controls” (NP score: 2 / 3 / 4 Vs. NP score: 1).

Diagnosis within the MAYO TCX cohort was based on neuropathological evaluation and 

classification as follows:

1. AD was based on “Definite AD” diagnosis according to the NINCDS-ADRDA 

criteria and a Braak NFT stage of IV or greater.

2. Control subjects had Braak NFT stage of <= III, CERAD neuritic and cortical 

plaque densities of 0 (none) or 1 (sparse) and the absence of any of the following 

pathologic diagnoses: AD, Parkinson’s disease, dementia with Lewy Bodies, 

vascular dementia, PSP, motor neuron disease, corticobasal degeneration, Pick’s 

disease, Huntington’s disease, frontotemporal lobar degeneration, hippocampal 

sclerosis, or dementia lacking distinctive histology.

3. PA subjects had a Braak NFT stage of <= III, CERAD neuritic and cortical 

plaque densities of >= 2, and the absence of the above diagnoses, as well as the 

absence of any dementia or mild cognitive impairment (MCI).

4. PSP subjects were identified via semiquantitative distribution of NFT(Hauw et 

al., 1994) at autopsy.

Within each comparison, we retained viral features with multiple mapped reads in at least 10 

samples. Viral feature counts adjusted for the total number of reads in each fastq file, and 

quantile normalized using the Voom function in the Limma package(Law et al., 2014, 

Ritchie et al., 2015). Linear models were fit for each of the viral features, for analysis of the 

MSBB cohort, we included covariates for: AD status, age of death, sex, ethnicity, RIN, post-

mortem interval (PMI), and batch. For the ROS and MAP cohorts, we included covariates 

for AD status, age of death, sex, ethnicity, RIN, PMI, batch and years of education. For the 

MAYO TCX cohort, we included covariates for diagnosis, age of death, sex, RIN, batch and 

study center. Differential abundance between AD and control groups were estimated using 

the eBayes function(Smyth, 2004), setting robust=TRUE to minimize the effect of outliers in 

variance.

Viral QTL detection—Host DNA markers that associate with viral abundance (vQTL) 

were identified separately for each brain region. Within each region, data was included from 

donors with paired whole exome sequencing and RNA-seq data. Viral genomic feature 

counts were normalized using the same procedure used in analyzing differential viral 

abundance, and we used the Matrix eQTL(Shabalin, 2012) software package to identify 

DNA variants associated with normalized viral abundance (controlling for age, sex, 

ethnicity, RNA-seq batch, RIN and PMI as covariates), assuming an additive linear model 

for associating genotype dosage with viral abundance. We generated a distribution of null 

association P-values for each viral feature by shuffling sample labels for viral abundance 

(1000 permutations), retaining the minimum association P-value for that feature, across all 

markers. We estimated the empirical FDR by comparison of each observed association P-

value with a distribution of null association P-values generated separately for each viral 
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feature (1000 permutations of viral abundance labels). DNA markers with an empirical 

association FDR < 0.25 were classified as vQTLs for that specific viral feature in the context 

of that brain region.

AD GWAS enrichments for virus network eQTLs—We identified cis-acting ( < 1 

MB) DNA markers that associate with gene expression (cis-eQTL) separately for each brain 

region. Within each region, we included data from donors with paired whole exome 

sequencing and RNA-seq data. We used the Matrix eQTL(Shabalin, 2012) software package 

to identify DNA variants associated with normalized gene expression (controlling for age, 

sex, ethnicity, RNA-seq batch, RIN and PMI as covariates), assuming an additive linear 

model for associating genotype dosage with gene expression. We classified DNA markers 

with an association FDR < 0.1 as cis-eQTL, and used these to define the set of markers that 

are collectively associated with each virus/host subnetwork. For each virus, we pooled host 

interactions from all four tissues, classified each according to direction (i.e. “virus to host” 

or “host to virus”), and sign of correlation (i.e. positively or negatively correlated with viral 

abundance), and then calculated enrichments for AD risk-associated loci(Lambert et al., 

2013) using the versatile gene-based association study (VEGAS) approach(Liu et al., 2010b, 

Mishra et al., 2015).

Estimating cell type fractions from RNA-seq—We used CIBERSORT(Newman et 

al., 2015) to deconvolute RNA-seq samples (MSBB) into estimated fractions for major brain 

cell types (neurons, astrocytes, microglia, endothelial cells, oligodendrocytes and 

oligodendrocyte precursor cells). This requires an independent reference panel of presumed 

relevant cell-types, usually derived from transcriptomic studies of individual cell types. We 

utilized a single cell RNA-seq dataset generated by Darmanis et al(Darmanis et al., 2015), 

using 138 individual samples derived from the cortex of middle-aged adults (age range: 47 – 

63 years) representing a variety of brain cell types (astrocytes n=52, neurons n=43, 

oligodendrocytes n=19, endothelial n=15, microglia n=7, oligodendrocyte precursor cells 

n=2). Genes with at least 1 count per million mapped reads(Robinson et al., 2010) in at least 

n sample libraries were retained, where n=the size of the smallest group of cell types. We 

then subset this single cell type expression, and the MSBB expression to the set of unique 

gene identifiers present in both, and supplied these as inputs to CIBERSORT, identifying 

signature genes according to default parameters: kappa: 999, qvalue: 0.3, min: 50, max: 150, 

quantile normalization=disabled, and specifying 1000 permutations.

Molecular and functional enrichment analysis—Gene set enrichments for discrete 

groups of genes (i.e., virus-host subnetworks networks) were calculated using Fisher’s exact 

text, and one-sided P-values (to identify over-representation of genesets) were adjusted using 

the Benjamini-Hochberg method(Benjamini et al., 1995). Gene sets used throughout the 

enrichment analysis were derived from a combination of publicly available sources, such as 

the molecular signatures database(Subramanian et al., 2005), brain specific gene sets curated 

from publicly available data(Miller et al., 2011), protein-protein hubs interactor sets(Chen et 

al., 2012), Mirtarbase(Hsu et al., 2011) and ChipSeq based transcription factor target 

sets(Lachmann et al., 2010).
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Transcription factor motif enrichments in the promoters of preclinical AD network drivers 

were calculated based on position weight matrix matching within the gene promoter for each 

driver (defined as the region within 2000 basepairs of the transcription start site) using 

MatInspector(Cartharius et al., 2005).

Inferring causal relationships between viral abundance and biomolecular, 
clinical and neuropathological traits—We applied a causal inference paradigm to 

multiple aspects of the analysis performed in this study, to determine directed relationships 

between viral abundance, with a variety of host traits, including molecular (e.g. gene or 

protein expression), clinical (clinical dementia rating) and neuropathological (Neuritic 

plaque density, Braak and Braak score) traits. We used a statistical framework introduced by 

Millstein et al(Millstein et al., 2009), which offers a causal inference test (CIT) that tests the 

hypothesis that a molecule (such as the normalized abundance of a viral species, or of a 

specific viral genomic feature) is mediating a causal association between a DNA locus (such 

as a vQTL for that specific virus), and some other quantitative trait (such as the expression 

of host genes that are correlated with the vQTL and the viral abundance). Causal 

relationships can be inferred from a chain of mathematical conditions, requiring that for a 

given trio of loci (L), a potential causal mediator (G) and a quantitative trait (T), the 

following conditions must be satisfied to establish that G is a causal mediator of the 

association between L and T:

a. L and G are associated

b. L and T are associated

c. L is associated with G, given T

d. L is independent of T, given G

Although CIT includes tests for linkage (conditions a and b), to control the number of 

candidate L / G / T trios that are submitted to the CIT function, we perform multiple pre-

filtering steps, which are aimed at establishing association between L and G, and L and T, 

before we submit a particular trio for CIT. Association between L and G is established in the 

course of the viral QTL analysis (described above), where we classify variants with an 

association FDR < 0.1 as a vQTL for that specific viral feature. If T is a molecular species 

(gene expression, protein expression), nominal association between L and T is established 

using matrix eQTL(Shabalin, 2012) retaining candidate T molecules (for that specific 

vQTL) with an association P-value < 0.05.

Although CIT outputs what is ostensibly a P-value, it is actually the highest P-value of the 

four constituent hypothesis tests, reflecting each of the conditions required to establish 

causal mediation. This results in a non uniform CIT P-value distribution under null 

conditions, which can make appropriate multiple test correction unreliable. To overcome 

this, we employed a permutation based approach to assess the significance of candidate 

causal relationships, where candidate traits (T) are randomly shuffled, separately within each 

genotype dosage group (0, 1 or 2) for each permutation. The false discovery rate was 

estimated by counting the proportion of permutations (1000 per trio) with a CIT P-value 

lower than the test CIT P-value.
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To minimize the number of false positive inferences, we performed two separate tests for 

each candidate trio. We tested models that include the viral feature (G) as causal for the host 

trait (T) (“causal model”) and separately, the G being regulated by the T (“reactive model”). 

We required that for G to be classified as regulating T, its permutation based FDR for the 

causal model be < 0.05, and reactive model be > 0.05. Conversely, for a G to be classified as 

being regulated by a T, we required that the FDR for the reactive model be < 0.05, and > 

0.05 for the causal model.

Transcription Factor Regulatory Network Analysis—The conceptual framework for 

the transcriptional regulatory network using TReNA was described previously(Pearl et al., 

2017). Briefly, DNase Hypersensitivity (DHS) fastq files from ENCODE for all available 

brain samples were downloaded and aligned using the SNAP method(Zaharia et al., 2011). 

Two alignments were performed using seed size 16 and 20 as the sequence data was 

typically > 50 bp in length. The peak calling algorithm F-seq was used to identify regions of 

open chromatin(Boyle et al., 2008). Footprinting algorithms for Wellington(Piper et al., 

2013) and HINT(Gusmao et al., 2016) were generated using default parameters. For each 

individual gene model, footprints within the proximal promoter (+/−5 kb of the transcription 

start site) were considered as priors in assessing the relationship between the expression of 

the transcription factor and target gene. Using the R package trena(Ament et al., 2017), 

which utilizes several LASSO regression techniques, Pearson and Spearman correlation, and 

random forest to prioritize a list of putative transcription factor regulators for each gene. 

Scores from all these approaches were scaled and projected into PCA space and their 

principle components added together to produce a single composite score (pcaMax). This 

approach was applied to each of the RNA-seq datasets generated within the AMP-AD 

consortium to generate networks used for the virus / host analyses herein.

Kinase enrichment analysis of candidate virus-TF associations were performed as described 

in “Molecular and functional enrichment analysis”, while subsetting the gene background to 

the set of 569 TF within the scope of the TF networks.

DATA AND SOFTWARE AVAILABILITY

Viral abundance estimates, and scripts to reproduce results can be accessed at: https://

www.synapse.org/#!Synapse:syn12177270.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Common viral species frequently detected in normal, ageing brain

• Increased HHV-6A and HHV-7 in brains of subjects with Alzheimer’s disease 

(AD)

• Findings were replicated in two additional, independent cohorts

• Multiscale networks reveal viral regulation of AD risk, and APP processing 

genes
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Figure 1: Multiomic evaluation of Alzheimer’s Disease associated virome
(a) This study was performed in two phases, an initial exploration into the earliest network 

changes associated with preclinical AD, which identified multiple shifts in network biology 

consistent with viral perturbations and prompted a systematic, multiomic evaluation of viral 

biology on larger data sets focused on clinical AD. (b) Regulatory networks built across EC 

and HIP samples showed differences in gene drivers for preclinical AD vs. control networks 

(c) including many AD associated genes, (d) although drivers exclusive to each network 

shared functional characteristics, such as association with viral biology, and (e) promoter 

enrichments for the same C2H2 zinc finger transcription factors binding motifs. (f) G-

quadruplex sequence motifs were strongly enriched in the promoters of the drivers “lost in 

preclinical AD”, and those “gained in preclinical AD”, however (g) drivers “lost in 

preclinical AD” had much higher G-Quadruplex density in introns, exons and 3’-UTR. (h) 
Genes with high G-Quadruplex density in these locations were uniformly down regulated in 

the EC of preclinical AD and AD samples, suggesting some significant alteration of G-

Quadruplex regulation. (i) To investigate the possibility of an AD-associated virome, we 

incorporated clinical, neuropathological, RNA, DNA and proteomic data from individuals 

with clinical AD (and controls) across four brain regions to (j-k) identify and characterize 

viral activity associated with AD biology, (l) highlighting Roseoloviruses HHV-6A and 

HHV7. (Region abbreviations: EC: entorhinal cortex, HIP: hippocampus, MTG: medial 

temporal gyrus, PC: posterior cingulate cortex, SFG: superior frontal gyrus. VCX: visual 

cortex)
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Figure 2: Differential abundance of viral RNA and DNA in AD
Multiregional comparison between AD vs. controls of viral RNA and DNA, summarized to 

the level of (a,c) full viral sequences, and (b,d) viral genomic features. Meta-analysis of 

differential abundance of viral RNA in AD (e-f), incorporating post-mortem brain RNA-seq 

data from the MSBB, ROS, MAP and MAYO TCX consortium studies also revealed 

increased HHV-6A and HHV-7 in AD.

(P-values shown in cells with FDR < 0.1, Features with a meta-analysis FDR < 0.1 shown in 

e-f)
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Figure 3: Viral abundance associates with AD clinical and neuropathology traits
Multiregional associations between abundance of viral genomic feature RNA and clinical 

and neuropathological traits. Viral features with significant (FDR < 0.1) associations across 

multiple traits or brain regions are shown. (P-values shown in cells with FDR < 0.1).
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Figure 4: Viral QTL detection and association with AD genetics
(a) Host DNA markers significantly associated (FDR < 0.25) with viral abundance were 

classified as vQTL for that feature-tissue combination. (b) Top multi-viral vQTL 

associations, with overlapping gene symbols and associated viruses. (c) Top vQTL 

associations where vQTL is also a cis-eQTL for at least one host gene. (d) Sequence kernel 

association test to evaluate whether vQTL markers are also associated with AD traits. (e) 
Virus level vQTL sets for HHV-6A were highlighted most strongly, (f) whereas viral feature 

level associations implicated features from HHV-6A and HSV-1.

(Panels e-f show associations for any viruses/viral features that were implicated in viral 

differential RNA abundance, P-values < 0.05 shown in cells)
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Figure 5: Viral regulation of AD associated host networks
(a) Integration of vQTL with viral abundance, and host gene expression was used to infer 

directed virus / host subnetworks. (b) Virus / host gene network sizes for viruses with 

interactions detected in multiple tissues (c) Host genes that are most frequently perturbed by 

viruses (d) Host genes upregulated by HHV-6A are enriched for a heterogeneous set of AD 

risk and biomarker associated genes. Shown here is the HHV-6A / AD-associated gene 

subnetwork, and detected interactions with additional viruses. (e-g) Brain cis-eQTLs 

associated with expression of specific virus/host networks are enriched for AD GWAS risk 

loci.

(P-values shown in cells with FDR < 0.1)
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Figure 6: Viral mediation of neuronal loss in AD
(a) Cell fraction estimates in the MSBB RNA-seq data, linking cell fractions with (b) AD 

traits, and (c) viral RNA abundance. (d) HHV-6A was negatively correlated with neuronal 

fraction, while also at increased abundance in the STG. (e-f) Causal inference testing 

identified HHV-6A vQTL associated with neuronal fraction, which also have their effect 

mediated by HHV-6A sequences. (g) Neuronal loss network of host genes regulated by 

HHV-6A, which also exert an effect on neuronal fraction, includes MIR155HG. Gene label 

size is inversely proportional to the smallest AD risk P-value for its associated cis-eQTL. (h-
i) We initially prioritized miR-155 during our analysis of the preclinical AD networks, due 

to strong associations between known miR155 gene targets, and a variety of multiregional 

AD and preclinical AD transcriptomic changes, as well as differential drivers of the 

preclinical AD network. (j-l) Four month old miR-155-KOxAPP/PS1 produce increased 

cortical β-amyloid plaques and oligomers compared with APP/PS1 mice. (m) We 

hypothesized that HHV-6A inhibition of miR-155 might cause a disinhibition of miR-155 

targets. Cortical RNA-seq of miR-155KO vs. WT mice demonstrated significant overlap 

between genes upregulated (FDR < 0.1) in the absence of miR-155, and host genes detected 
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as upregulated by HHV-6A in the virus/host networks. (n) Gene set enrichments for 

miR-155-KO vs. WT differentially expressed genes identified multiple enrichments (FDR < 

0.1) consistent with a role for miR-155 in neuronal loss.
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Figure 7: Viral perturbation of transcription factor regulatory networks
(a) Comparison of virus/host networks with diverse TF-Target networks built from multiple 

independent AD data sets, to identify virus / TF network enrichments. (b) Examination of 

the concordance of effect exerted by associated virus and TF upon target genes, and (c) 
summarization of results across all TF-target networks (d) to identify unanimous virus/TF 

associations. (e) Kinase enrichment analysis of the most strongly implicated TF identified 

several kinases that we also detected as regulated by HHV-6A, with known associations to 

AD and HHV-6A, indicating a potential mechanism for viral co-option of TF networks in 

AD.
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Figure 8: Multiomic evaluation of AD associated virome implicates Roseoloviruses HHV-6 and 
HHV-7
(a) Summarized associations for each virus to diverse aspects of AD biology. Multiple 

viruses appear to have significant impacts on AD associated biology, particularly HHV-6A, 

HHV-7 and HHV-6B. (b) Findings from this study indicate complex relationships between 

viral and host factors that are likely to be relevant across a range of time scales and organ 

systems. Key biological processes that have been highlighted are shown, along with top 

candidate molecular mediators.
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