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Abstract

Recent technical advances have enabled transcriptomics experiments at an unprecedented scale, 

and single-cell profiles from neural tissue are accumulating rapidly There has been considerable 

effort to use these profiles to understand cell diversity, primarily through unsupervised clustering 

and differential expression analysis. However, current practices to validate these findings vary. In 

this review, we describe recent efforts to evaluate clusters from single-cell RNA-sequencing data, 

and provide a framework for considering current evidence and practices in terms of their capacity 

to establish principles of cell biology. Single-cell RNA-sequencing has already transformed 

neuroscience. By facilitating detailed comparative and genetic perturbation analyses, it may 

provide the tools to uncover fundamental mechanisms of neural diversity throughout the tree of 

life.

Introduction

Single-cell RNA-seq (scRNA-seq) experiments use transcriptional profiling to characterize 

cells, sometimes grouping them into inferred cell types based on profile similarity [1]. 

Recent technical advances have increased the scale of scRNA-seq, making it feasible to 

profile thousands of cells in a single assay [2]. Already, studies of the nervous system span 

multiple species, anatomical regions, and developmental stages (e.g., [3-8]), and large scale 

efforts from consortia such as the Human Cell Atlas [9], the Brain Initiative Cell Census 

Network [10], and the CeNGEN project [11] only promise to increase the amount of 

available data. Many of these studies are focused on the same task, namely the classification 

of cells into types. However, because of the high degree of noise [12], the use of ad hoc 
methodology [13], and the lack of any unifying theory about what constitutes a cell type 

[14] it is important to assess how well scRNA-seq expression profiles replicate as an initial 

step toward their validation.

Indeed, the validation of single-cell clusters remains in its infancy, and in this review we aim 

to provide a framework for evaluating scRNA-seq clusters based on current practices in the 

field (see schematic, Figure 1). We note that this framework operates at the level of clusters, 

and we do not explicitly comment on the existence of specific cell types or subtypes, as 
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definitions have yet to be established. In our view, evidence for scRNA-seq clusters can be 

divided into three levels, each of increasing consequence for establishing principles of cell 

biology: (i) replicability of expression levels, (ii) generalization to orthogonal data, and (iii) 

mechanistic validity. Assessments at each of these levels confirm robustness to particular 

classes of variation, discussed in further detail in the following.

i. Replicability of expression levels

ScRNA-sequencing has become a convenient method for characterizing heterogeneity in 

biological systems, yet there are many sources of both technical and biological variation that 

can influence whether an experimental result is replicable. Technical variation may result 

from differences in library preparation protocols (e.g., 5’, 3’ or full-length mRNA capture, 

the inclusion of unique molecular identifiers, linear or PCR-based amplification); differences 

in sequencing depth; or differences in sample handling (e.g., dissociation procedures may 

affect cell viability, the probability of doublets, or the expression of immediate early genes). 

Biological variation is expected between cells, between individuals, and as a result of 

experimental selection procedures, such as sorting cells based on marker expression, or 

isolating RNA from nuclei. When comparing across datasets, further interpretive variation 

exists from the use of different clustering methods to group cells within each dataset 

Importantly, because scRNA-seq requires destructive sampling of cells, standard 

experimental design approaches for disentangling technical and biological sources of 

variability are not applicable. In the following we discuss the evaluation of scRNA-seq 

results across sources of technical and biological variation, and how these evaluations can 

provide insight into the replicability of inferred cell groupings.

i.i. Comparing expression profiles

The simplest way to compare two expression profiles is to plot one against another in a 

sample-sample scatterplot, and to calculate the Pearson or Spearman rank correlation 

coefficient In these plots, each point represents a gene and its position is determined by the 

gene’s expression level in each of the samples. In general, correlations between RNA-seq 

samples are high even when the samples are quite distinct biologically [15], because genes 

have fairly consistent expression levels. These correlations are typically very significant 

(e.g., p<10−10) because there are many data points (genes). Correlation is a fairly crude 

measure of sample replicability, and in bulk RNA-seq there have been efforts to encourage 

the use of visualizations and quality control (QC) measures that are more sensitive to 

distributional changes, such as Bland-Altman plots [16]. However, as long as both positive 

and negative cases are considered, sample-sample scatterplots can be useful for exploratory 

QC.

One thoughtful implementation of sample-sample comparison looks to recapitulate bulk 

expression profiles from merged single cells (e.g., [17,18]). Here, the biological signal is 

held constant (cell identity) to assess different technical approaches (bulk or single cell 

RNA-seq). Average expression profiles of groups of ten or more cells are often observed to 

be quite consistent with bulk profiles, even when their individual signals are much more 

variable (e.g., [18,19]). The observed cell-to-cell variability in scRNA-seq data is sometimes 
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used as evidence for the existence of cell subtypes, and it is exploited by clustering 

algorithms to group cells into putatively biologically meaningful classes, even though it is 

also consistent with technical noise [20]. In spite of this limitation, clustering analyses have 

proven irresistible in the single-cell field, with studies routinely reporting that biologically 

relevant tissue heterogeneity has been ‘revealed’ by scRNA-seq [5,17-19,21]. We discuss the 

evaluation of these clusters below.

i.ii. Evaluating clusters

The assessment of scRNA-seq clusters follows two main strategies. The first strategy is to 

use multiple clustering pipelines to analyze a given data set, or to re-cluster data subsets, and 

determine how well the new clusters align with the original results (e.g., [19,22]). Here, 

almost all technical and biological sources of variation within the data are held constant In 

general, replicability analyses can only provide insight into the type of variation that is being 

sampled from. Because this strategy tests for in silico replication, it can only speak to the 

robustness of the results with respect to the parameter choices used for analysis. 

Consequently, results of these analyses are often good, likely because methods are only 

lightly calibrated to the data to begin with [23,24].

The second strategy is to perform additional experimental replicates and see whether clusters 

contain samples from all replicates. More formally, this is an assessment of whether the 

identified cell clusters replicate across batches, assuming the biological makeup of the 

replicate experiments can be held constant In scRNA-seq the most pernicious batch effects 

appear to arise during the preparation of sequencing libraries from cellular RNA [25,26], 

similar to what was previously observed for bulk RNA-seq [27]. In practice, this means that 

all cells prepared in a single 10x Chromium well, or on a single Fluidigm C1 chip, will tend 

to have higher within-batch correlations than across-batch, possibly due to ambient RNA 

[28] or other biochemical factors (reagents, temperature, etc.). This has prompted the 

invention of ‘cell hashing’ techniques that use barcoded antibodies to label samples so that 

they can be pooled in a given reaction (e.g., tumor and normal) [29]. While useful, increased 

sample multiplexing does not provide a measure of the robustness of results to sources of 

technical variation. To address this, one successful approach has been to generate multiple 

scRNA-sequencing libraries from biological replicates, and then validate clusters based on 

their reproducibility. This approach prevents the over-interpretation of clusters attributable to 

technical variation, such as differences in the fraction of the transcriptome that is assayed 

[30]. A prominent example comes from the landmark Drop-seq paper, where the authors 

aimed to transcriptionally characterize the retina [31]. Here, over forty thousand cells were 

profiled across seven batches, where each batch contained pooled retinal tissue from four to 

six mice. The authors identified thirty-nine clusters, and noted that all but one sampled 

proportionately from all batches. The cluster that failed to replicate more broadly appeared 

to contain non-retinal cell markers, suggesting a potential dissection artifact yielding cell 

type ascertainment bias. This experimental design and analysis strategy successfully 

separates replicable clusters from likely technical artifacts.

An extension of the second strategy is to assess cluster robustness across additional sources 

of biological or technical heterogeneity [32]. Comparisons between nuclear and whole-cell 
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scRNA-seq, for example, have shown that cells of the same inferred type have broadly 

concordant expression profiles, with some explainable differences, such as the proportion of 

reads mapping to introns [33-35]. Comparisons may also be performed across published 

datasets, either to map cluster identity with respect to an external reference [36,37] or to 

determine the degree of evidence for putative subtypes, toward the goal of achieving field-

wide consensus [38]. This approach has the advantage of sampling more broadly across all 

aspects of sample preparation and analysis, which are generally held constant within a 

laboratory. Cross-dataset analysis of expression clusters has a history in cancer, where 

independent groups aimed to verify cancer subtypes by comparing average profiles across 

studies [39]. Among single-cell studies, clusters derived from newly generated data are 

sometimes compared to previously reported clusters, treating prior results as post-hoc 

validation data (e.g., [40,41]). Cross-dataset comparisons of coarse-grained cell classes are 

often straightforward. As an example, Habib et al compared the clusters from their nuclear 

Drop-seq of mouse cortex and hippocampus to those characterized by the Allen Brain Atlas 

(ABA) using Smart-seq2 of the mouse cortex [19], finding positive correlations between 

cells of the same broad type (e.g., microglia) [42]. To map their results at finer resolution, 

the authors opted to take a machine learning approach, training a random forest classifier 

from their own GABAergic data to re-classify inhibitory clusters from the ABA, reporting 

the proportion of cells from each of the twenty-three ABA clusters to be associated with the 

eight Habib labels. While all of the clusters from the ABA were classified as one of the 

Habib labels, most Habib labels contained cells from multiple ABA clusters, suggesting 

differences in cluster resolution between the two datasets. Notably, three of the eight Habib 

clusters were not clearly associated with any particular ABA clusters. Although there are 

many thousands of cells in this comparison, the analysis here has an effective ‘n’ of two. In 

the absence of additional data, such as additional matched datasets (i.e., nuclear Drop-seq 

and Smart-seq2 of the same areas), or some other orthogonal validation to define ground-

truth, it is impossible to say whether the observed failure of replicability is technical or 

biological. However, these results highlight the importance of critical evaluation of 

clustering results, and the difficulty of cross-dataset comparisons.

In general, three main issues plague cross-dataset analysis: heterogeneity of class structure 

between datasets (i.e., cell type proportions), including missing cell types; feature selection, 

typically of genes; and evaluation of dataset independence. Differences in dataset structure, 

including missing cell types, can have important consequences for cross-dataset comparison, 

particularly when model fitting (sometimes ‘manifold learning’) is performed with respect to 

within-dataset variability [43,44]. If two datasets are being merged, but they contain non-

overlapping or only partially overlapping cell types, clusters that are quite distinct may 

incorrectly align to one another, generating clusters that contain a mixture of cell types. This 

is the primary failure mode of these approaches. Large class imbalances may also bear on 

the metrics used for evaluation [45]. Previous attempts to solve issues of feature selection 

and class structure between single-cell datasets have used machine learning approaches, as 

described above [22,42]. While these models are powerful and provide a deep summary of 

the data they are trained on, the primary challenges of machine learning – avoiding 

overfitting and improving interpretability [46] – are particularly problematic in the context 

of single-cell data, where artifacts may easily be confounded with biology. These issues also 
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plague more recent approaches for data fusion in scRNA-seq [43,44,47-51]. In addition, 

establishing dataset independence is crucial for accurate interpretation of cross-study results, 

informing the degree to which a result may be considered validating. For example, we 

previously compared data from the ABA with that from Paul et al [52], and found almost 

perfect replicability of the Sst-Chodl interneuron profile [38]. However, we later learned that 

these two studies employed the same mouse line for their analyses [53], suggesting that this 

result is less surprising than it might appear. This is a clear example of non-independence, 

but there are likely to be cryptic dependencies between datasets due to their reliance on 

established marker genes, making this a difficult issue to solve.

Ultimately, while there are many complexities associated with cross-dataset analysis, we 

would emphasize that the outlook is bright Our work provided the first formal evaluation of 

single-cell RNA-seq data from the brain, indicating that approximately half of the inferred 

interneuron subtypes from three high profile publications were almost perfectly replicable 

[38]. This approach has since been adopted to characterize cell identity early in development 

[40,41], as well as across species [54], finding strong evidence of cluster replicability in each 

case. We anticipate that the availability of benchmark datasets from large consortia in 

combination with other comprehensive data resources [6,7], will soon allow for very detailed 

investigation of transcriptional variation within and across clusters, as well as the interaction 

of these profiles with other sources of biological and technical variability. We note that 

although approaches for joint analysis can often be quite complex, the reliance on mutual 

nearest neighbors is a recurrent theme [38,43,50]. Nearest neighbor or neighbor voting 

approaches have been shown to be useful across a wide range of machine learning tasks [55] 

and likely account for most of the performance of even very sophisticated approaches for 

joint modeling. Together, these data and analyses will enable the field to define consensus 

cluster profiles, which can then be assessed across additional modalities, and investigated for 

gene drivers, and evolutionary conservation, discussed in the following.

ii. Generalization to orthogonal data

As described above, scRNA-seq has been remarkably useful for identifying clusters that may 

represent cell types or subtypes. Yet historically, cell type definitions in neuroscience have 

been multimodal, requiring multiple strands of evidence to establish cell identity [56]. In 

light of this, it is common to assess the external validity of single-cell clustering results by 

performing experiments that can provide orthogonal information, such as imaging to assess 

spatial localization of marker genes [52], morphological reconstructions [19], retrograde or 

anterograde tracing [57], or electrophysiological recordings [58]. These data generally 

derive from different cells than those that were profiled with sequencing, though there are a 

number of examples of multimodal registration from the same cell (e.g., [59-61]). In the 

following, we discuss examples of three prominent types of orthogonal data used to provide 

evidence for neuronal clusters: spatial localization, connectivity, and epigenomic profiles.

ii.i. Spatial localization

A primary goal of scRNA-seq experiments is to discover novel marker genes that can 

distinguish between clusters of samples. Markers are useful because they can act as a 
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“Rosetta stone”, enabling multimodal investigation of cell function through genetic targeting 

approaches, and they are typically identified through differential expression analysis. Often, 

the simplest follow-up experiment is to assess their spatial co-localization, particularly 

because established atlases can provide an initial filter on selected genes. While marker co-

localization cannot definitively prove the existence of novel cell types, it provides validation 

that their co-expression is not a technical artifact of scRNA-seq. Certain spatial patterns 

known to reflect functional or developmental specification, such as layer-restricted 

distributions among neurons in the cortex, can also suggest shared lineages.

To avoid relying on a small number of markers or on profiles from dissociated cells, recent 

work has aimed to assess transcription in intact tissue, either through highly multiplexed 

RNA fluorescence in situ hybridization (FISH) [62,63] or with in situ sequencing [64]. Here 

there are different limitations from those of scRNA-seq, related to microscopy and spatial 

constraints. For example, determining optimal parameters regarding probe design and 

optical density may be quite specific to the tissue to be assayed, which lengthens start-up 

time for the application of these protocols across biological contexts. Thus, while highly 

promising, these techniques have yet to be adopted widely.

ii.ii. Connectivity

Understanding the wiring diagram of the brain has been the major goal of systems 

neuroscience, and there have already been a number of interesting developments to link 

neuronal connectivity to transcription. In mouse, a handful of studies have used retrograde 

tracers or viral injections, sometimes in combination with transgenic approaches, to 

selectively target cells for scRNA-seq based on their projections to a single location 

[19,21,57,65,66]. An approach that assays connectivity more broadly by using molecular 

barcodes, MAPseq [67], has recently been combined with in situ sequencing of barcodes and 

FISH (BARseq) [68]. In initial analyses of BARseq data, projection profiles have been 

clustered and compared to their laminar distributions, showing that cells from the same 

location can have highly divergent connectivity profiles, and, notably, the authors failed to 

detect a layer 2/3 projection class that was predicted from gene expression [19]. Yet, it is 

difficult to determine what to expect when comparing clusters from projection profiles and 

from gene expression: one-to-one relationships may provide evidence that expression is 

associated with functional distinctions between samples, but they need not occur. Higher 

degrees of multiplexing, or the evaluation of newly defined cluster markers, will facilitate 

more comprehensive comparisons of projection mapping techniques to scRNA-seq data, 

helping to formalize and test hypotheses about the link between molecular and projection 

identity.

ii.iii. Epigenomics

Patterning of gene expression in different cell types is attributed to the ‘epigenome’ – all of 

the modifications to DNA that do not alter its sequence, but may be associated with 

differences in activity. New methods have made it possible to examine chromatin 

accessibility [69] and DNA methylation [70-72] in single cells, or even to assay expression 

and epigenetic profiles at once [73]. In a recent study of the human brain, single-nucleus 

chromatin accessibility and expression profiles were successfully combined to identify 
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putative regulatory regions [74], though the authors noted that the epigenomic data could not 

resolve finer cell subtypes. Because epigenomic techniques are genome-wide rather than 

transcriptome-wide they provide very sparse data, which present a challenge. Yet these early 

results are promising: if epigenomic techniques can be used to map enhancers, they may 

contribute toward a mechanistic understanding of cell diversity, discussed next.

iii. Mechanistic validity: Perturbation and evolutionary conservation

In the previous section we described current practices to gain additional evidence for clusters 

identified by singlecell RNA-seq. These experiments are valuable because they tend to have 

different sources of noise than scRNA-seq, so their alignment to single-cell clusters suggests 

robustness to technical variation. However, because they are purely observational, they are 

necessarily limited in their capacity to provide causal information about the mechanisms that 

drive variation within and across cell clusters. Ultimately, the goal of scRNA-seq should not 

be to simply define replicable profiles across more and more data modalities, but rather to 

understand why they are replicable. Requiring this level of understanding clarifies the 

limitations of external validation through orthogonal data, and specifies what remains to be 

done: perturbation experiments. This is the gold-standard for experimental biology, but it has 

yet to be consistently applied as a test of the validity of scRNA-seq clusters, likely because 

mechanistic experiments can be difficult to design and execute. To our knowledge, there 

have been at least two studies that knocked down cluster-specific genes and validated their 

impact on cell fate. Both were performed in the planarian Schmidtea Mediterranea, and the 

approach was likely feasible because of the organism’s inherent regenerative capacity 

[75,76]. Eventually, with enough basic understanding of transcription factor and regulatory 

information, causal modeling may allow for in silico experimentation [77]. A more 

immediate solution may be found with the implementation of technologies that integrate 

pooled genetic perturbation screens with single-cell sequencing [78-80].

Taking this further, we suggest that cross-species analysis in combination with genetic 

perturbation is likely to provide the most nuanced view of factors driving cell identity. 

Though few cross-species analyses of neural singlecell data have been performed, most have 

focused on mouse and human expression [54,81]. The examination of a wider variety of 

species, and particularly non-model systems where genetic and environmental diversity can 

be assayed, will provide greater insight into the pathways that underlie cell specialization. In 

this direction, recent work examined the evolution of mammalian neocortex through 

comparative study of reptilian pallium, finding evidence that GABAergic interneurons are 

ancestral to both reptiles and mammals, indicating conservation of interneuron diversity [5]. 

An impressive investigation into the cell type repertoire of the cnidarian Nematostella 
vectensis found that neurons were enriched for genes originating at multiple evolutionary 

times, and that a subset of gene orthologs conserved in mouse, nematode (C. elegans) and 

Nematostella all showed neuronal expression specificity, though gene-gene co-expression 

relationships were distinct [8]. Taking inspiration from these studies, we envision that future 

comparative single-cell analyses will incorporate phylogeny, gene age, and natural history to 

an ever greater degree, allowing us to answer questions like: Did similar cell-types evolve 

independently? Over what interval did a given type arise? What pressures led to the 

diversification of cell types? Do all cell types have adaptive significance? Decreasing 
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sequencing costs, and efficient gene targeting with CRISPR should enable comparative 

study of a wide variety of species so that we can move beyond phenomenology toward a 

more holistic understanding of cell phenotypes.

Conclusions

Currently, the meaning of “cell type” is richly debated, and thresholds for cluster assignment 

within any pipeline or acting on any single data set feel arbitrary and premature. We have 

deliberately avoided this debate in this review by focusing on current practices in single cell 

transcriptomics, and providing a framework for considering reports of replicability in the 

context of their explanatory capacity. Moving forward, we believe that meta-analysis across 

laboratories and species will become increasingly important Moreover, explicitly 

considering degree of conservation of cell phenotypes opens up the possibility of 

formalizing definitions of cell type. The analogy to species can be useful to consider: it is 

sometimes practical to treat species as discrete entities, and sometimes it is not Likewise, at 

some scales, cell types will be meaningful as discrete entities, but because their existence 

over evolutionary time is the product of incremental modification, at other scales, it may be 

more suitable to consider them along a continuum [82]. As comparative genomics and 

functional genetics join forces with single-cell analysis, not only will we begin to see what 

replicates, but we will also see what doesn’t. More importantly, we will know how and why 

the difference occurs.
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Highlights

• Single-cell RNA-sequencing has been used to profile neural cells in many 

organisms.

• Cell expression clusters are often treated as potential cell types or subtypes.

• Cluster validation requires multiple strands of evidence.

• Mechanistic and evolutionary studies may reveal principles of cell diversity.
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Figure 1 - ScRNA-seq replicability from transcriptional profile to external validity to mechanism 
and beyond.
Expression profiles can be compared (A-top left) to characterize replicability or clustered 

(A-top middle) to find groups of similar expression profiles, also visible as groupings of 

cells (A-top right) when the data is summarized via dimension reduction. New datasets 

should show the same clusters (A-bottom left), which can then be assessed for similarity 

(A-bottom right). External validity may be partially established by examining spatial 

localization of markers (B-left), connectivity (B-middle) or epigenomic profiles (B-right). 
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Studies of genetic perturbation (C-left) and conservation (C-right) provide insight into the 

molecular and evolutionary mechanisms that drive expression diversity.
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