
ClinPhen extracts and prioritizes patient phenotypes directly 
from medical records to expedite genetic disease diagnosis

Cole A. Deisseroth#1, Johannes Birgmeier, MS1, Ethan E. Bodle, MD2, Jennefer N. Kohler, 
MS, LCGC3, Dena R. Matalon, MD2, Yelena Nazarenko, BA4, Casie A. Genetti, MS, CGC5, 
Catherine A. Brownstein, MPH, PhD5, Klaus Schmitz-Abe, PhD5, Kelly Schoch, MS, CGC6, 
Heidi Cope, MS, CGC6, Rebecca Signer, MS, CGC7, Undiagnosed Diseases Network, Julian 
A. Martinez-Agosto, MD, PhD7,8,9, Vandana Shashi, MBBS, MD6, Alan H. Beggs, PhD5, 
Matthew T. Wheeler, MD, PhD3,10, Jonathan A. Bernstein, MD, PhD2, and Gill Bejerano, 
PhD#1,2,4,11

1Department of Computer Science, Stanford University, Stanford, CA, USA;

2Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA;

3Stanford Center for Undiagnosed Diseases, Stanford, CA, USA;

4Department of Biomedical Data Science, Stanford University, Stanford, CA, USA;

5The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston 
Children’s Hospital, Harvard Medical School, Boston, MA, USA;

6Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA;

7Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, 
USA;

8Department of Pediatrics, Division of Medical Genetics, David Geffen School of Medicine at 
UCLA, Los Angeles, CA, USA;

9Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA;

10Department of Medicine, Stanford School of Medicine, Stanford, CA, USA;

11Department of Developmental Biology, Stanford University, Stanford, CA, USA.

# These authors contributed equally to this work.

Abstract

Correspondence: Jonathan A. Bernstein (Jon.Bernstein@stanford.edu) or Gill Bejerano (bejerano@stanford.edu). 

URLs
ClinPhen is publicly available at http://bejerano.stanford.edu/clinphen as a noncommercial, free-to-download tool.

ELECTRONIC SUPPLEMENTARY MATERIAL
The online version of this article (https://doi.org/10.1038/s41436-018-0381-1) contains supplementary material, which is available to 
authorized users.

DISCLOSURE
The authors declare no conflicts of interest.

HHS Public Access
Author manuscript
Genet Med. Author manuscript; available in PMC 2019 July 03.

Published in final edited form as:
Genet Med. 2019 July ; 21(7): 1585–1593. doi:10.1038/s41436-018-0381-1.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://bejerano.stanford.edu/clinphen
https://doi.org/10.1038/s41436-018-0381-1


Purpose: Diagnosing monogenic diseases facilitates optimal care, but can involve the manual 

evaluation of hundreds of genetic variants per case. Computational tools like Phrank expedite this 

process by ranking all candidate genes by their ability to explain the patient’s phenotypes. To use 

these tools, busy clinicians must manually encode patient phenotypes from lengthy clinical notes. 

With 100 million human genomes estimated to be sequenced by 2025, a fast alternative to manual 

phenotype extraction from clinical notes will become necessary.

Methods: We introduce ClinPhen, a fast, high-accuracy tool that automatically converts clinical 

notes into a prioritized list of patient phenotypes using Human Phenotype Ontology (HPO) terms.

Results: ClinPhen shows superior accuracy and 20× speedup over existing phenotype extractors, 

and its novel phenotype prioritization scheme improves the performance of gene-ranking tools.

Conclusion: While a dedicated clinician can process 200 patient records in a 40-hour workweek, 

ClinPhen does the same in 10 minutes. Compared with manual phenotype extraction, ClinPhen 

saves an additional 3–5 hours per Mendelian disease diagnosis. Providers can now add ClinPhen’s 

output to each summary note attached to a filled testing laboratory request form. ClinPhen makes a 

substantial contribution to improvements in efficiency critically needed to meet the surging 

demand for clinical diagnostic sequencing.
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INTRODUCTION

Every year, 7 million children worldwide are born with severe genetic diseases.1 Diagnosing 

these conditions involves determining which of numerous genetic variants is causing the 

patient’s symptoms. Proband-only exome sequencing typically results in 100–300 rare 

coding variants of unknown significance.2 A clinician spends an average of 54 minutes 

evaluating each variant3 until the causative one is identified (Fig. 1). As sequencing 

technology improves, the number of clinical applications skyrockets, with 100 million 

human genomes expected to be sequenced by 2025 (ref. 4). With this surging demand, 

manual variant curation by a limited pool of experienced clinicians and curators creates a 

bottleneck in the diagnostic process.

Although clinicians must make the final diagnosis, the process leading up to it can be greatly 

expedited by computational tools. Tools such as ANNOVAR,5 M-CAP,2 VEP,6 and SnpEFF7 

can filter out likely benign variants, and narrow down the candidate gene list. Phrank,8 

hiPhive,9 Phive,10 PhenIX,11 and other automatic gene-ranking tools12–19 improve the 

efficiency of evaluating the candidate genes. These algorithms require a list of patient 

phenotypes from a phenotype ontology (notably, the Human Phenotype Ontology, or 

HPO20). They use these phenotypes to rank a provided list of candidate genes in order of 

estimated likelihood of causing the patient’s phenotype. Consequently, clinicians may reach 

a diagnosis faster by going down the computer’s ranked list.
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However, comparable tools for automatically encoding phenotypes mentioned in the 

patient’s clinical notes are lacking. While gene-ranking tools can considerably shorten the 

lengthy manual review of a gene list,3 their ability to do so depends on the careful input of 

coded phenotypes (see below). Manual encoding of phenotypes is a slow and unstructured 

process, making gene-ranking tools difficult for clinicians to adopt.

Existing natural language processing tools that identify patient phenotypes were not 

designed to expedite Mendelian disease diagnosis.21–27 Many such tools only look for 

indications of specific phenotypes or diseases.26,28,29 Others report all of the phenotypes 

they can find—including negated phenotypes (“The patient does not have symptom X”), 

unrelated findings in family members (“The patient’s mother has symptom X”), and 

phenotypes mentioned while discussing a differential diagnosis (“Patients with disease W 

often have symptom X”).23,27 Two general purpose phenotype extractors, cTAKES25 and 

MetaMap,21 do aim to extract only the phenotypes that apply to the patient, but they are not 

optimized for a high-volume workflow. They have relatively slow runtimes and suboptimal 

accuracy. Importantly, they do not indicate which phenotypes may be more useful in 

establishing a diagnosis. A patient’s clinical notes can mention over 100 phenotypes, but for 

disease diagnosis, clinicians typically list only the ones they think will help diagnosis the 

most.30

Here, we introduce ClinPhen: a fast, easy-to-use, high-precision, and high-sensitivity 

alternative to existing phenotype extractors. ClinPhen scans through a patient’s clinical notes 

in seconds, and returns phenotypes that help generanking tools rank the causative gene 

higher than they would with manually identified phenotypes. Using several cohorts of 

diagnosed patients, we show how to expedite the diagnosis of Mendelian diseases by letting 

gene-ranking tools run directly on phenotypes extracted from the clinical notes by ClinPhen.

MATERIALS AND METHODS

Overview of ClinPhen

ClinPhen extracts phenotypes from free-text notes and translates them into terms from the 

Human Phenotype Ontology (HPO), a structured database containing 13,182 human disease 

phenotypes (Fig. 2, Supplementary Methods).

To extract HPO terms from the clinical notes, ClinPhen first breaks the free text into 

sentences, subsentences, and words. ClinPhen normalizes inflected words using the Natural 

Language Toolkit (NLTK) Lemmatizer.31

Subsequently, ClinPhen matches subsentences against phenotype names and synonyms 

(Supplementary Methods). Rather than looking for continuous phrases, ClinPhen checks if 

the subsentence contains all words in the given synonym. For example, “Hands are large” 

will match the HPO phenotype “Large hands.” For efficiency, ClinPhen passes the clinical 

documents into a hash table that maps words to the subsentences that contain them.

After identifying phenotypes, ClinPhen decides if each mentioned phenotype applies to the 

patient. If, for instance, a sentence contains words such as “not” or “cousin,” ClinPhen does 
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not associate with the patient any phenotypes mentioned in the sentence (Fig. 2). ClinPhen 

also ignores phenotypes that are commonly found in the patient population (Supplementary 

Methods).

For each HPO phenotype, ClinPhen counts the number of occurrences in the clinical notes, 

and saves where in the notes it first appears. ClinPhen returns a sorted list of all HPO 

phenotypes found, with the most- and earliest-mentioned phenotypes at the top (Fig. 2).

Training ClinPhen to recognize phenotypes in free-text notes

Real patient cases used to improve and test ClinPhen—ClinPhen was trained and 

tested on six sets of real patient data from four different medical centers. The training set 

(clinical notes of 25 patients with undiagnosed but presumed genetic diseases from Stanford 

Children’s Health [SCH]) was used to improve the accuracy of ClinPhen; the STARR set 

(5000 random patients from Stanford’s STARR database32) was used to train ClinPhen’s 

phenotype-frequency filter (Supplementary Methods); the Stanford test set (clinical notes, 

genetic data, and diagnoses of 24 diagnosed patients from SCH) was used to test the 

accuracy and runtime of ClinPhen, as well as the performance of gene-ranking tools when 

using ClinPhen’s phenotypes; and the Manton test set (21 diagnosed patients from the 

Manton Center for Orphan Disease Research, at Boston Children’s Hospital) was used to 

independently verify the findings from the Stanford test set. The Duke and University of 

California-Los Angeles (UCLA) test sets (14 and 15 diagnosed individuals, respectively), 

from the respective Undiagnosed Diseases Network (UDN) sites, were used to test the 

performance of gene-ranking tools when using ClinPhen’s phenotypes in realistic “off-label” 

settings: notes from the Duke site were taken from PDFs rather than text files, and converted 

to text without any manual correction (to preserve full automation) using an optical character 

recognition (OCR) program;33 while the UCLA test set included only one clinical note per 

patient (other sets had 4–5 notes per patient, on average). In all cases, only notes created by 

clinical genetics and pediatrics providers before documentation of the patient’s diagnosis 

were used. Patient characteristics were similar across the four test sets, with average age at 

last note of 7, 9, 13, and 15. All but one disease diagnosis were unique per center, and only 

seven diseases were repeated across the different centers. Clinical and genetic data were 

obtained under research protocols approved by the Stanford institutional review board (IRB), 

Harvard IRB, and National Human Genome Research Institute (NHGRI) central IRB for the 

UDN. Informed consent was obtained from all participants.

Testing the accuracy of ClinPhen’s extracted phenotypes—To test the accuracy of 

the extracted phenotypes, we produced for each patient in the Stanford test set a gold 

standard set of phenotypes called the All set: a nonphysician and a licensed physician 

blinded to ClinPhen’s development independently extracted phenotypes from the clinical 

notes. The physician recorded only the phenotypes that he considered useful for diagnosis 

(i.e., more likely to pertain to a genetic disease, such as skeletal abnormalities, as opposed to 

allergies) to generate the Clinician phenotype set. The nonphysician recorded all of the 

phenotypes he found, regardless of predicted usefulness. The physician then verified the 

nonphysician’s identified phenotypes to be correctly interpreted and applicable to the 

patient. These verified phenotypes, plus those in the Clinician set, made up the All 
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phenotype set. We ran each automatic phenotype extractor on the patient’s clinical notes, 

and measured the extractor’s precision and sensitivity by comparing the extracted 

phenotypes with the All set.

We compared the All set with the phenotypes returned by ClinPhen, across the Stanford test 

set. Due to the nature of HPO, the presence of a phenotype in a patient implies the presence 

of all ancestor phenotypes. For instance, the term “Seizures” is an ancestor node of the term 

“Grand mal seizures”: a patient presenting with grand mal seizures must also present with 

seizures. The “closure” of a set of HPO terms S consists of S plus all ancestors of the terms 

in S up to “Phenotypic abnormality” (HP:0000118). We compared the extracted phenotypes 

with the true phenotypes using the closures of the two sets.

For each patient in the Stanford test set, we found the closure of the All set and that of the 

phenotype set returned by ClinPhen. True positives (TP) were defined as the nodes present 

in both the All and ClinPhen closures. False positives (FP) were defined as the nodes only 

present in the ClinPhen closure. False negatives (FN) were defined as the nodes only present 

in the All closure. Standard definitions of precision (TP/TP + FP) and sensitivity (TP/TP + 

FN) were used.

We used bootstrapping to calculate a 95% confidence interval around the average precision. 

For each of 1000 trials, we randomly selected (with replacement) a cohort of patients equal 

to the size of the original cohort, and determined the average phenotype extraction precision 

across the random cohort. We then sorted the 1000 precision values. The confidence interval 

was defined to be between the 2.5th and the 97.5th percentiles. The confidence interval 

around the average sensitivity was calculated similarly.

Because the phenotype extractors cTAKES and MetaMap output Unified Medical Language 

System (UMLS) terms, while all gene-ranking tools require HPO terms, we converted 

UMLS terms to HPO using the UMLS Metathesaurus.34

Measuring phenotype extraction times of clinicians and automatic phenotype 
extractors—For each patient in the Stanford test set, 3 licensed clinicians (blinded to 

ClinPhen development) timed themselves reading through the clinical notes, manually 

extracting the phenotypes that they considered useful for diagnosis and finding their 

matching HPO terms. These times served as reference points for how long a clinician would 

take to manually extract phenotypes from clinical notes. We also timed each of the automatic 

phenotype extractors when running them on the same clinical notes. The phenotypes 

extracted by one clinician across all patients comprised a Clinician set.

To determine runtimes of automatic phenotype extractors, we ran all three extractors on a 

2017 15-inch MacBook Pro with macOS High Sierra version 10.13.5 operating system and a 

2.9-GHz intel core i7 processor, with 16 GB (2133 MHz) of memory.

Verification of ClinPhen results on patients from different clinical centers—To 

verify our findings on a patient test set from a different clinical center, we additionally 

performed the above tests— precision and sensitivity testing, determining the optimal 

number of phenotypes for gene ranking, comparing extraction times with other gene-ranking 
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algorithms and clinicians, and comparing automatic gene-ranking algorithm performance 

using automatically and clinician-extracted pheno-types—on a set of patients from the 

Manton Center at Boston Children’s Hospital. We also tested the gene-ranking performance 

of Phrank using ClinPhen, cTAKES, or MetaMap on patients from the UDN sites at Duke 

and UCLA.

RESULTS

ClinPhen extracts the most accurate phenotype sets

We compared the accuracy of three tools that automatically extract patient phenotypes from 

clinical notes: ClinPhen, cTAKES, and MetaMap. We tested for precision and sensitivity by 

comparing each extractor’s returned phenotypes to the clinician-approved All phenotype set 

(defined above).

Across the Stanford test patients, cTAKES had an average precision of 57%, and MetaMap 

56%. ClinPhen had a superior average precision of 78%. cTAKES had an average phenotype 

sensitivity of 57%, and MetaMap 71%. ClinPhen had a superior average phenotype 

sensitivity of 71.6% (Fig. 3a).

Automatic extraction of phenotypes accelerates Mendelian disease diagnosis

Limiting the number of extracted phenotypes leads to better results with 
automatic gene-ranking methods—A patient undergoing genome sequencing can 

present hundreds of candidate genes containing potentially deleterious variants,2 and each 

gene can take an hour to evaluate.3 Gene-ranking tools expedite the process of finding the 

causative gene by sorting the genes based on how well their associated phenotypes match 

the patient’s presentation. The closer the causative gene is to rank 1, the sooner clinicians 

will find it. The rankings depend on a provided list of patient phenotypes, meaning that the 

ideal phenotype set for diagnosis is the one that helps gene-ranking tools rank the causative 

gene close to the top. We show that this goal is better accomplished not by the full set of 

patient phenotypes, but by a subset thereof.

For genetic disease diagnosis, a good phenotype set accurately reflects the patient’s 

presentation, but an optimal phenotype set reflects only the phenotypes that likely pertain to 

a genetic disease. Phenotypes caused by a common cold can mislead gene-ranking tools, and 

make the causative gene harder to identify. ClinPhen, as far as we are aware, is the first 

phenotype extractor to account for this caveat.

After identifying all phenotypes, ClinPhen removes the phenotypes that occur frequently in 

a large unselected patient population (Supplementary Methods), and prioritizes remaining 

phenotypes by number of occurrences in the notes (phenotypes that likely pertain to a 

genetic disease are usually mentioned multiple times, and in multiple notes), then by earliest 

occurrence in the notes (expert clinicians often begin a note with a summary of the 

phenotypes that seem striking and indicative of a genetic disease).

To determine the ideal number of top-priority phenotypes to give to gene-ranking tools, we 

ran ClinPhen on the Stanford test patients’ clinical notes, and filtered the extracted 
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phenotypes down to the n highest-prioritized phenotypes, for every number n from 1 to 100 

inclusive. Each set of n highest-priority phenotypes was used as input to four automatic 

generanking algorithms: Phrank,8 hiPhive,9 Phive,10 and Phenix.11 For each phenotype 

count(n)/gene-ranking tool pairing, we found the average causative gene rank across the test 

patients (Fig. 3b).

The higher-performing gene-ranking tools (Phrank, hiPhive, and PhenIX) ranked the 

causative genes higher at phenotype maxima below 10 (n < 10). Phrank, the highest-

performing of these, yielded the best causative gene rankings at a phenotype maximum of 3. 

It was thus approximated that the three highest-priority phenotypes returned by ClinPhen 

generally lead to the best causative gene rankings.

Across the Stanford test patients (with an average of 291 candidate genes per patient), 

Phrank ranked the causative gene at an average rank of 13.4 with unfiltered ClinPhen 

phenotypes, and 9.5 with ClinPhen’s three top-priority phenotypes (lower number means 

better ranking).

As an alternative to prioritizing phenotypes using the above scheme, we tried prioritizing 

phenotypes by their information content, a metric that estimates how indicative a phenotype 

is of a genetic disease based on the number of genes known to cause the phenotype (higher-

information content phenotypes are prioritized higher8). However, this prioritization scheme 

was found to result in inferior gene-ranking performance (Supplementary Figure 2a).

Gene-ranking tools perform better when using automatically extracted 
phenotypes compared with human-extracted phenotypes—To show that 

ClinPhen saves time in the overall diagnostic process, we set out to show that Phrank does 

not rank causative genes higher when using manually extracted phenotypes.

We compared two manual extraction techniques: manually subsetting all mentioned 

phenotypes to those that a clinician thinks are most likely to help with the diagnosis30 

(represented by the Clinician phenotype set), and listing all mentioned patient phenotypes, 

whether or not they are likely to help with the diagnosis (represented by the All phenotype 

set). The Clinician and All phenotype sets were generated for each test patient.

The Stanford test patients were each run through the automatic gene-ranking tool Phrank 

using each of five phenotype sets: the All set, the Clinician set, the three top-prioritized 

phenotypes returned by ClinPhen, the phenotypes returned by cTAKES, and the phenotypes 

returned by MetaMap (Fig. 3c). Running Phrank with the All set yields an average causative 

gene rank of 14.3, using the Clinician set yields 12.9, and using ClinPhen’s three top-

prioritized phenotypes yields 9.5 (lower number means better ranking). Assuming a clinician 

examines a ranked gene list from top to bottom, spending an average of one hour evaluating 

the variants in each gene for their potential to have caused the patient’s phenotypes,3 using 

the three top-prioritized ClinPhen phenotypes (instead of manually extracted phenotypes) as 

input to an automatic generanking tool can save 3–4 hours per case in the diagnostic process.

ClinPhen is much faster than previous tools or clinicians′ manual work—A 

good phenotype extractor runs in a short amount of time. More clinical notes take longer to 
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read through, and some patients have far more clinical notes than others do. Therefore, 

automatic extractors that quickly extract HPO phenotypes from long collections of clinical 

notes are ideal.

The Stanford test patients had an average of four free-text, prediagnosis clinical notes per 

patient. Three clinicians timed themselves manually extracting phenotypes from each 

patient’s notes. On average, manual phenotype extraction took the clinicians 701 seconds 

per patient. Running cTAKES took an average of 114 seconds, and MetaMap 58.5 seconds.

The time taken to extract a patient’s phenotypes scaled with the amount of text to read 

through: for the longest collections of notes, it took over 1000 seconds to produce the 

Clinician set, over 500 seconds to run cTAKES, and over 100 seconds to run MetaMap. 

ClinPhen, uniquely, maintained a nearly constant runtime of 3.68 seconds per patient, even 

when run on the longest collections of clinical notes (Fig. 3d). On average, ClinPhen is more 

than 15 times faster than the fastest current extractor.

Replication of findings on patients from different clinical centers—We repeated 

the above tests on patient data from an independent cohort of diagnosed patients from the 

Manton Center for Orphan Disease Research at Boston Children’s Hospital (see above).

ClinPhen extracts the most accurate phenotypes on cohort from different 
center—Across the Manton test patients, cTAKES and MetaMap had average precisions of 

65% and 64%, respectively. ClinPhen significantly outperformed both at a precision of 

75.8%. cTAKES and MetaMap had average phenotype sensitivities of 58% and 72%, 

respectively. ClinPhen had an average phenotype sensitivity of 72.6% (Supplementary 

Figure 1a).

Limiting number of phenotypes confirmed to yield better gene rankings—The 

Manton patients had an average of 267 candidate genes. Without limiting the phenotypes, 

ClinPhen yielded an average causative gene rank of 14.7. Setting ClinPhen’s phenotype limit 

to 3 resulted in an average causative gene rank of 8.6 (Supplementary Figure 1b). As with 

the Stanford test set, causative gene ranks generated by the Exomiser algorithms (hiPhive, 

Phive, and PhenIX) for the Manton test set were better when the number of phenotypes 

output by ClinPhen was limited below 10. Again, prioritizing and limiting extracted 

phenotypes by their information content degraded automatic gene-ranking performance 

(Supplementary Figure 2b).

ClinPhen-extracted phenotypes confirmed to improve the performance of 
automatic gene-ranking tools—As with the Stanford test set, Phrank performed best 

with ClinPhen’s three highest-priority phenotypes, yielding an average causative gene rank 

of 8.6. Using other sources of phenotypes (all mentioned phenotypes, clinician-extracted 

phenotypes, cTAKES phenotypes, and MetaMap phenotypes) resulted in lower averages of 

13.4, 13.0, 16.5, and 15.4, respectively (Fig. 4a). Data derived from the Manton test set 

suggest that using the three top-prioritized ClinPhen phenotypes (instead of manually 

extracted phenotypes) as input to Phrank can save roughly 4–5 hours per case in the 

diagnostic process.
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We performed the same test on the automatic extractors using data from patients at the Duke 

and UCLA UDN sites. For the Duke test set (with an average of 259 candidate genes), 

cTAKES’ phenotypes yielded an average Phrank rank of 17.0, MetaMap’s yielded 19.3, and 

ClinPhen’s top three phenotypes yielded an average rank of 11.3 (Fig. 4b). For the UCLA 

test set (with an average of 287 candidate genes), cTAKES’ phenotypes yielded an average 

Phrank rank of 6.9, MetaMap’s yielded 9.8, and ClinPhen’s top three phenotypes yielded an 

average rank of 4.8 (Fig. 4c).

ClinPhen confirmed to extract phenotypes in less than 5 seconds—The Manton 

patients’ records had an average of five free-text clinical notes per patient. On these, 

ClinPhen ran in an average of 3.64 seconds per case. Both cTAKES and MetaMap were 

more than 20× slower on average, running in an average of 114 seconds and 74.7 seconds, 

respectively. As with the Stanford test set, ClinPhen’s runtime did not noticeably scale with 

the length of the record, while those of cTAKES and MetaMap did.

Again, three clinicians (the same as above) manually extracted phenotypes from notes 

associated with the Manton patients. On average, they compiled a phenotype list in 969 

seconds, 266× slower than ClinPhen (Supplementary Figure 1d).

DISCUSSION

Automatic gene-ranking tools expedite genetic disease diagnosis, but currently require 

manually encoding reported patient phenotypes into phenotype ontology terms. We show 

here that an automatic phenotype extractor, ClinPhen, produces an accurate phenotype list in 

under 5 seconds, and potentially saves 3–5 hours of candidate gene evaluation per case.

Most of the diagnosis time saved by ClinPhen stems from its unique ability to prioritize the 

more-relevant extracted phenotypes. Phenotypes that are likely not caused by a genetic 

disease can delay a diagnosis. While clinicians use their intuition to filter out these 

phenotypes, automatic phenotype extractors until now have not done such filtering. Future 

research can attempt to tackle distinguishing and perhaps differentially weighting 

phenotypes with either genetic or environmental factors. While current generanking tools we 

are aware of do not use phenotypes reported in the proband’s family, extracting these 

correctly may incentivize their incorporation. Attempting to diagnose a case from a handful 

of the seemingly most telltale phenotypes is common among practitioners.30 However, to the 

best of our knowledge, this is the first work that explicitly tries to estimate an automated 

method to both prioritize and subset to an optimal number of phenotypes. When limiting 

ClinPhen’s output to the most-mentioned, then earliest-mentioned phenotypes, automatic 

gene-ranking algorithms rank the causative gene higher than they would using unfiltered 

phenotypes, phenotypes ranked by information content,8 or even phenotypes hand-picked by 

a clinician. ClinPhen enables clinicians to search through 3–5 fewer genes per case, 

potentially reaching a diagnosis hours sooner.3 Such step-ups in efficiency are needed to 

meet the high demand and rapid production of diagnostic sequencing data, as well as 

facilitate periodic case reanalysis.
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ClinPhen is available at http://bejerano.stanford.edu/clinphen. It can be immediately 

incorporated into clinical practice. For example, its output can be added to the clinical note 

sent to the testing laboratory along with the filled request form. Compared with other 

phenotype extractors, ClinPhen produces more accurate HPO phenotypes in a shorter 

amount of time. We optimized ClinPhen to extract HPO terms, commonly used to describe 

patients with Mendelian diseases.24,35,36 Rapidly growing databases like OMIM37 use HPO 

terms to describe tens of thousands of disease-phenotype associations. ClinPhen could be 

used to accelerate the growth of these databases by quickly analyzing patients’ clinical notes 

and finding new disease-phenotype associations at a rate unachievable by clinical experts.

The large number of undiagnosed patients1,14 with presumed Mendelian diseases 

necessitates an efficient diagnostic process. The diagnostic process for rare diseases is 

continually expedited with the help of computer systems that analyze genetic data and 

prioritize findings.2,38 With the help of ClinPhen, clinicians can handle large batches of 

patients, and accurately diagnose each case 3–5 hours sooner, advancing the future of 

precision medicine.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Steps to diagnose a patient with a Mendelian disease using automated gene-ranking 
algorithms.
The patient’s genotypic information is encoded using standard formats (variant call format 

[VCF] file, candidate causative gene list) and a list of patient phenotypes encoded as 

ontology terms. Extensive tool support exists for obtaining candidate causative variants and 

genes from an exome sequence. Tool support for obtaining an appropriate list of encoded 

patient phenotypes from the patient’s clinical notes is limited. Encoded phenotypes are 

currently acquired by manually reading through the patient’s clinical notes and recording the 

phenotypes found as their IDs in a phenotype ontology. We introduce ClinPhen, a tool that 

automates phenotype extraction from clinical notes, optimized to accelerate patient 

diagnosis. SNV single-nucleotide variant.
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Fig. 2. ClinPhen sentence analysis process.
ClinPhen splits the clinical notes into sentences, and those sentences into subsentences. It 

then finds phenotypes whose synonyms appear in the subsentences. A high-precision, high-

sensitivity, rule-based natural language processing system decides which phenotypes 

correspond to true mentions and which are false positives. Because the third sentence 

contains the flag word “father,” for instance, it is assumed that this sentence does not refer to 

the patient, and any phenotype synonyms found in the sentence will not be associated with 

the patient. ClinPhen sorts the identified phenotypes first by how many times they appeared 

in the set of notes (descending), then by the index of the first subsentence in which they 

were found (ascending), and then by Human Phenotype Ontology (HPO) ID (ascending).
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Fig. 3. Performance of all extraction methods.
(a) Comparison of the extractors’ precision and phenotype sensitivity (higher bars mean 

higher accuracy). We compared the average precision and sensitivity values of ClinPhen, 

cTAKES, and MetaMap, using patients from the Stanford test set as subjects, and the All set 

(all of the phenotypes found manually and confirmed by a physician to apply to the patient) 

as the correct phenotypes. The average (column) and 95% confidence interval (calculated 

using bootstrapping with 1000 trials) of the precision and sensitivity values across all 

patients are displayed for each extractor. ClinPhen achieves the highest average precision 

and sensitivity. (b) Causative gene-ranking performance of each gene-ranking tool when run 

with different numbers of phenotypes returned by ClinPhen (lower number means better 

causative gene rankings). ClinPhen was run on the clinical notes of the Stanford test set, and 

the gene-ranking tools were called with the patient’s genetic information and the n highest-

priority (most-mentioned, first-occurring) extracted phenotypes, with n running from 1 to 

100 inclusive. The average causative gene rank across all patients was taken for each 

phenotype count limit (n)/gene-ranking tool pairing. The better-performing gene-ranking 
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algorithms rank the causative gene higher when run with a few (around 3) high-priority 

phenotypes than with all extracted phenotypes. (c) Phrank’s causative gene-ranking 

performance across all extraction methods (lower numbers mean better causative gene 

rankings). We compared the causative gene ranks obtained by running Phrank on the 

Stanford test set with various extracted sets of phenotypes (All manually found, physician-

verified phenotypes [All] versus a subset of phenotypes considered by a physician to be 

useful for diagnosis [Clinician] versus automatically extracted phenotypes using various 

methods). Phrank ranks are sorted lowest to highest for each extractor. Phrank performs 

better when run with ClinPhen’s 3 highest-priority phenotypes (the most-mentioned, 

earliest-occurring phenotypes in a patient’s clinical notes) than when run with other 

phenotype sets, manually or automatically extracted. (d) Extractor runtime comparison on 

each patient (lower number means faster runtime). We measured the runtime of each 

extractor (ClinPhen, cTAKES, and MetaMap) on each patient’s clinical notes, in seconds. 

For each patient, we also measured the time three clinicians took to manually scan through 

the same notes read by the automatic extractors, and encode the phenotypes considered 

useful for diagnosis. Each data point is one patient whose clinical notes were scanned by one 

of the extractors (or clinicians). The horizontal position is the total number of words in the 

patient’s clinical notes. The vertical position is the time taken for the extractor to run on the 

notes (logarithmically scaled). While MetaMap’s runtime scales linearly and cTAKES’ 

runtime scales exponentially with the total length of the clinical notes, ClinPhen runs in 

near-constant time, and is 15–20× faster than the next fastest tool. All automatic extraction 

tools are much faster than manual extraction.

Deisseroth et al. Page 16

Genet Med. Author manuscript; available in PMC 2019 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Replication with patient data from three additional centers.
The same test used to generate Fig. 3c (running Phrank on each patient’s data, given each 

extracted set of phenotypes, and then sorting the causative gene ranks) was performed using 

(a) Manton Center patients, (b) Duke Undiagnosed Disease Network (UDN) patients 

(optical character recognized [OCRed] without manual correction from PDF), and (c) 

University of California-Los Angeles (UCLA) UDN patients (which had a single consult 

clinical note per patient) to evaluate the performance of the automatic extractors (ClinPhen, 

cTAKES, MetaMap). ClinPhen (red line) outperforms other automatic phenotype extractors 

when its phenotypes are used as input to automatic gene-ranking algorithms (as it did with 

the Stanford test set).
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