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Abstract
SAS and other popular statistical packages provide 
support for survey data with sampling weights. For 
example, PROC MEANS and PROC LOGISTIC in SAS 
have their counterparts PROC SURVEYMEANS and 
PROC SURVEYLOGISTIC to facilitate analysis of data 
from complex survey studies. On the other hand, 
PROC MEANS and many other classic SAS procedures 
also provide an option for including weights and yield 
identical point estimates, but different standard errors 
(SEs), as their corresponding survey procedures. This 
paper takes an in-depth look at different types of 
weights and provides guidance on use of different SAS 
procedures.

Introduction
All popular SAS procedures support use of 
weights, such as the classic PROC MEANS, 
PROC GLM and PROC LOGISTIC. To 
facilitate analysis of survey study data, 
SAS also provides an array of procedures 
with a ‘SURVEY’ prefix, such as the PROC 
SURVEYMEANS, PROC SURVEYREG and 
PROC SURVEYLOGISTIC. As the latter 
are designed and developed specifically 
for survey study data, weights reflecting 
sampling and non-response are an inte-
gral part of these procedures. A common 
question is which SAS PROC to use when 
analysing survey study data involving 
sampling weights. Although they produce 
identical point estimates, the classic SAS 
procedures and their SURVEY counterparts 
generally yield different SEs, which in some 
cases lead to quite different p-values and 
conclusions. In this document, we discuss 
conceptual differences underlying the 
different types of weights and their implica-
tions in statistical methods developed touse 
the different SAS procedures. Although 
we focus on SAS in this paper, the discus-
sions also apply to other statistical packages 
such as R and SPSS. For ease of exposition, 
we focus on the PROC MEANS and PROC 

SURVEYMEANS and illustrate our consider-
ations with real and Monte Carlo simulated 
data. These same considerations will also 
apply to other SAS procedures for multiple 
variable analyses such as PROC LOGISTIC 
versus PROC SURVEYLOGISTIC; however, 
here we will focus on univariate analyses.

Types of Weights and Methods Underlying 
SAS PROC MEANS and PROC SURVEYMEANS
Within these two procedures, the weights 
have different uses and meaning. Weights 
used in PROC MEANS are designed to 
address violations of ‘homoscedasticity’, 
a key assumption underlying many statis-
tical methods such as inference for popu-
lation means with the current context and, 
more generally, regression analysis. In 
linear regression models, ‘the best linear 
unbiased estimate’ (BLUE) is the most 
popular estimate. The BLUE estimate has 
the smallest variance among all competing 
estimates that are a linear combination of 
observations. However, if the assumption 
of homoscedasticity is not met, BLUE will 
generally be biased. In some cases, weights, 
a series of known constants for each of the 
observations, can be used to address such 
violations, or heteroscedasticity.

Note that regularised estimates, such as 
the popular ‘least absolute shrinkage and 
selection operator’ (LASSO), have become 
increasingly popular in recent years due to 
the surge of high-dimensional data arising 
in biomedical and online social media 
research. Although these estimates are 
generally biased, the bias is typically small. 
Moreover, when the number of indepen-
dent variables exceeds the sample size in 
regression models, it is no longer possible to 
obtain unbiased estimates. Thus, the class of 
BLUE estimates becomes irrelevant in such 
applications.
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Within the context of inference for the population 
mean, the sample mean is a BLUE estimate, if all obser-
vations have the same population mean and variance 
in addition to being independent, representing the 
so-called ‘independently and identically distributed’ 
(i.i.d.) sample. If the observations do not have the same 
variance, that is, a violation of the homoscedasticity 
assumption, the sample mean is no longer a BLUE esti-
mate, even though it is still an unbiased estimate of the 
population mean. As the usual sample variance formula 
and t-statistic are both based on the i.i.d. assumption, 
the sample variance no longer describes the variability 
of the sample mean and t-statistic cannot be used to 
provide valid inference about the population mean. For 
example, a 95% CI based on the sample variance and 
t-statistic no longer covers the population mean 95% 
of the time. In most cases, causes of such heteroscedas-
ticity are unknown and other statistical methods must 
be used to provide valid inference about the population 
mean, such as by using estimating equations (see below 
for details and examples). In some studies, hetero-
scedasticity is due to aggregating data, in which case 
weights can be used to ‘correct’ the type of heterosce-
dasticity so that the usual sample variance and t-statistic 
can continue to provide valid inference.

Example 1
Consider taking a random sample of 100 subjects from a 
population of interest and let ‍yi‍ denote an outcome of 
interest from the ‍i‍th subject. Such a sampling scheme is 
often called ‘simple random sampling’. Let ‍µ = E

(
yi
)
‍ 

denote the population mean and ‍σ
2 = Var

(
yi
)
‍ denote 

the population variance, where ‍E
(
yi
)
‍ denotes the math-

ematical expectation of ‍yi‍ and ‍Var
(
yi

)
= E

(
yi − E

(
yi

))2 .‍. 
We are interested in estimating the population mean ‍µ‍.

Under simple random sampling, the 100 observations 

‍yi‍ form an i.i.d. sample, from which the sample mean ‍̂µ
‍, sample variance ﻿‍σ̂2‍, variance ‍̂σ

2
µ‍ (SE ‍̂σµ‍) of the sample 

mean and t-statistic can be computed:


‍

µ̂ = 1
100

(
y1 + y2 + ... + y100

)
= 1

100

100∑
i=1

yi,

σ̂2 = 1
100−1

[(
y1 − µ̂

)2 +
(
y2 − µ̂

)2 + ... +
(
y100 − µ̂

)2
]

= 1
100−1

100∑
i=1

(yi − µ̂)2,

σ̂2
µ = σ̂2

100 ,

t = µ̂
σ̂µ

. ‍

(1)


The above statistics can be used to calculate CIs or 

test hypotheses of interest. For example, to test if the 
population mean is 0, we specify the hypothesis as:

	﻿‍ H0 : µ = 0 vs Ha : µ ̸= 0 .‍�

We can readily use the value of the t-statistic ‍
t = µ̂

σ̂µ ‍ to 
compute the p-value or construct a 95% CI.

Now suppose that we average the first 20 and last 10 
observations and replace the first 20 and last 10 obser-
vations by their averaged counterparts:

	﻿‍ y1−20, y21, K, y90, y91−100,‍�

where ‍̄y1−20‍ and ‍̄y91−100‍ denote the averaged first 20 
and last 10 observations. We can recalculate all the statis-
tics in Equation (1) using the two averaged outcomes 
plus the remaining 70 observations:



‍

µ̂ = 1
72

(̄
y1−20 + y21 + ... + y90 + ȳ91−100

)
,

σ̂2 = 1
72−1

[(̄
y1−20 − µ̂

)2 +
(
y21 − µ̂

)2 + ...

+
(
y90 − µ̂

)2 +
(̄
y91−100 − µ̂

)2 ,

σ̂2
µ = σ̂2

72 ,

t = µ̂
σ̂µ

.
‍

(2)

Although the sample mean ‍̂µ‍ in Equation (2) is still an 
unbiased estimate of μ, the other statistics no longer have 
the same interpretations as their counterparts in Equa-
tion (1); ﻿‍σ̂2‍ is no longer an estimate of ‍σ2‍, ‍̂σ

2
µ‍ (or ‍σµ‍) is no 

longer an estimate of the variability of the sample mean 

‍̂µ‍, and ‍
t = µ̂

σ̂µ ‍ no longer follows the t-distribution. This is 
because although ‍̄y1−20‍ and ‍̄y91−100‍ still have the same 
population mean, they no longer have the same variance 
as the remaining 70 observations:

	﻿‍

E
(̄
y1−20

)
= E

(̄
y91−100

)
= E

(
yi

)
= µ, 21 ≤ i ≤ 90,

Var
(̄
y1−20

)
= σ2

20 ,   Var
(̄
y91−100

)
= σ2

10 ,   Var
(
yi

)
= σ2,

21 ≤ i ≤ 90. ‍�

(3)

Thus, the reduced 72 observations do not meet the 
homoscedasticity assumption and all the statistics, except 
for the sample mean μ, do not have the same meaningful 
interpretations as their counterparts in Equation (1).

Several methods are available to address heteroscedas-
ticity and its impact on variance estimation and associated 
p-values. For example, bootstrap and Jackknife resam-
pling methods are commonly implemented in various 
statistical packages and can be used to provide valid 
inference in this case. A modern alternative is estimating 
equations (EE), which do not involve resampling of the 
observations and provide a more efficient approach. In 
this example, where the source of heteroscedasticity is 
known to be caused by averaging some of the observa-
tions, weights can be used to ‘correct’ this special type of 
heteroscedasticity.

As seen in Equation (3), the variance of the first averaged 
20 observation ‍̄y1−20‍ differs from the other 70 observations 

by a factor of ‍
1
20‍ and the variance of the last averaged 10 

observation ‍̄y91−100‍ differs from the other 70 observations 

by a factor of ‍
1
10‍. By taking the inverse of these numbers as 

weights for the two respective averaged observations,

	﻿‍ w1 = 20, w72 = 10,   wi = 1, 2 ≤ i ≤ 71,‍�

and applying such weights to the sample mean and vari-
ance in Equation (2), we obtain a weighted sample mean 
and sample variance, along with the variance (SE) of the 
weighted sample mean and t-statistic:
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	﻿‍

wg =
72∑
i=1

wi = w1 + w2 + ... + w72 = 20 + 70 + 10 = 100,

µ̂ = 1
wg

(
72∑
i=1

wiyi

)
= 1

100 (20ȳ1−20 + y21 + ... + y90 + 10ȳ91−100),

σ̂2 = [ 1
wg−1

72∑
i=1

wi(yi − µ̂)2]

= 1
100−1 [20(ȳ1−20 − µ̂)2 + (y21 − µ̂)2 + ...

+(y90 − µ̂)2 + 10(ȳ91−100 − µ̂)2],

σ̂2
µ = σ̂2

wg
= σ̂2

w100
,

t = µ̂
σ̂µ

.
‍

� (4)
By comparing Equation (2) and (4), we see that each 

averaged observation receives more weight than the 
original observation and the weighted is equal to the 
number of subjects within the averaged outcome. Also, 
the mean variance estimates are defined by the sum of 
the weights, ‍wg = 100‍, which is the same as the original 
sample size. Thus, with the weights, the 72 observations 
in Equation (4) carry the same ‘weight’ as the original 
100 observations. For example, in the sample mean 
(variance), ‍̄y1−20‍ is weighted 20 times more than each 
original observation, allowing it to have the same effect 
as the first 20 observations on the estimated mean (vari-
ance). The t-statistic ‍

t = µ̂
σ̂µ ‍ in Equation (4) follows the 

same t-distribution for inference about the population 
mean.

In Example 1, the heteroscedasticity has a particular 
form:

	﻿‍ Var(yi) = σ2
wi

, is a constant ‍�
The approach to use weights to correct for heterosce-

dasticity and construct weighted estimates not only works 
for inference about the population mean in this example 
but also for more complex regression models. For 
example, weighted ordinary least squares (WOLS) uses 
the same approach to address this type of heteroscedas-
ticity for linear regression. Since the weighted approach 
here and WOLS in regression setting yield the same point 
and variance estimate as the maximum likelihood (ML) 
method (when the outcome is assumed to follow a normal 
distribution), we will refer to the weighted approach here 
as the WOLS/ML method throughout the rest of the 
discussion.

In SAS, the second procedure under consider-
ation, PROC SURVEYMEANS, addresses conceptually 
different issues arising from complex survey sampling. 
For the simple random sample as in Example 1, the 
usual sample mean, sample variance, variance (SE) of 
the estimate and t-statistic provide valid inference about 
the population mean. In this case, PROC MEANS and 
PROC SURVEYMEANS yield identical point estimates 
and SEs. In most survey studies, more complex sampling 
strategies are used to more efficiently obtain more reli-
able estimates. Stratified random sampling is a popular 
alternative to simple random sampling when sampling 

heterogeneous populations. Although still yielding the 
same point estimate, the two SAS PROCs will generally 
produce different SEs with this type of sampling. We 
illustrate such difference using data from the Ice Cream 
Example in the SAS SURVEYMEANS Procedure docu-
ment, SAS/STAT V.9.2.1 2

Example 2
In the Ice Cream study, researchers are interested in 
how much students in a junior high school spend weekly 
on ice cream. The junior high school has a total of 4000 
students distributed in grades 7, 8, and 9 as follows:

	﻿‍

nh =





1824 if h = 1 (Grade 7)

1025 if h = 2 (Grade 8),

1151 if h = 3 (Grade 9)

N = N1 + N2 + N3 = 40, 000.

‍�
where the three different grades represent three strata 

indexed by h;, ‍Nh‍ denotes the number of students in 
the hth stratum and ﻿‍N ‍ denotes the population size. To 
address this question, 40 students are selected from the 
study population using a stratified random sampling; a 
random sample of 20, 9 and 11 students is taken from 
the three strata:

	﻿‍

nh =





20 if h = 1(Grade 7)

9 if h = 2(Grade 8),

11 if h = 3(Grade 9)

n = n1 + n2 + n3 = 40.

‍�
The distribution of the three grades in the sample is

	﻿‍

πST
h = nh

n =




20
40

(
50.0%

)
if h = 1 (Grade 7)

9
40

(
22.5%

)
if h = 2 (Grade 8)

11
40

(
27.5%

)
if h = 3 (Grade 9)

,

‍�

(5)

If the 40 students were sampled under simple random 
sampling, the distribution of the grades would be:

	﻿‍

πh = Nh
N =




1824
4000

(
45.6%

)
if h = 1(Grade 7)

1025
4000

(
25.6%

)
if h = 2(Grade 8)

1151
4000

(
28.8%

)
if h = 3(Grade 9)

,

‍�

(6)

By comparing Equation (5) and (6), we see that grade 
7 is over-represented while the other two grades are 
under-represented in the study sample. Thus, the usual 
sample mean of the whole sample will be biased towards 
Grade 7. To obtain an estimate of mean weekly spending 
on ice cream for this junior high school, we must use 
sampling weights to reduce the over-representation of 
Grade seven and increase the under-representation of 
other two grades.

To correctly include a sampling weight, it must be 
the inverse of the sampling probability that a subject 
is selected from the population. For simple random 
sampling, this probability is approximated by the sampling 

fraction, ‍f =
n
N = 40

4000‍, which is constant. Similarly, the 
sampling weight for each randomly sampled subject is 

‍
wi = 1

f =
4000
40 ‍

, is also constant, regardless of grade. 

Under stratified sampling, the sampling fraction is no 
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Table 1  Comparison of PROC MEANS and PROC 
SURVEYMEANS for Ice Cream data in Example 1

PROC MEANS
PROC 
SURVEYMEANS

Mean: 9.141 Mean: 9.141
SE: 0.858 SE: 0.532

longer constant and both this fraction and the sampling 
weight depend on the strata:



	
‍

fh = nh
Nh

=




20
1824 if h = 1 (Grade 7)

9
1025 if h = 2 (Grade 8)

11
1151 if h = 3 (Grade 9)

, whi = 1
fh

, 1 ≤ i ≤ nh, 1 ≤ h ≤ 3 .

‍
� (7)

The sampling weight ‍whi‍ in this case counterbalances 
the effect of oversampling or undersampling of a stratum, 
allowing for unbiased estimation of the population mean.

Let ‍yhi‍ denote the spending on ice cream by a student 
in stratum i in the sample. We can apply the weighted 
mean in Equation (4) to estimate the mean spending 
on ice cream by the students in the junior high school μ 
(the formula looks slightly different because of the added 
notation for stratification):

	﻿‍

wgg =
3∑

h=1

nh∑
i=1

whi =
20∑
i=1

1824
20 +

9∑
i=1

1025
9 +

11∑
i=1

1151
11 = 4000,

µ̂ = 1
wgg

(
3∑

h=1

nh∑
i=1

whiyhi

)
= 1

4000

(
1824
20

20∑
i=1

y1i + 1025
9

9∑
i=1

y2i + 1151
11

11∑
i=1

y3i

)
,
‍

� (8)

However, the variance ‍̂σ
2
µ‍, or SE ‍̂σµ‍, calculated according 

to Equation (4), no longer estimates the variability of the 
estimate ‍̂µ‍ of the mean. Unlike the weights in Example 
1, sampling weights in this example are used to address 
different sampling probabilities between the strata. Even 
under homoscedasticity, that is, a common variance of ‍yhi‍ 
across all three strata, we still need to use the weighted 
mean in Equation (8) to estimate the correct population 
mean.

Note that if a sample of n is taken from a population of 

size ﻿‍N ‍, the probability for the first subject sampled is ‍
1
N ‍, 

the probability for the second sampled is ‍
1

N−1‍ and so on. 
So, the sampling probabilities for the sampled subjects 
are not constant and given by:

	﻿‍
1
N , 1

N−1 , 1
N−2 , · · · 1

N−n .‍�
In most survey studies, n is much smaller than N, so 

‍N− n‍ is well approximated by N. Thus, for all practical 
purposes, the sampling probability for a random sample 
of n subjects is the sampling fraction, ‍f =

n
N ‍. Also, unlike 

the weights applied in Example 1, sampling weights in 
Example 2 sum to the total population size. However, a 
sampling weight is a unit-free quantity and can be multi-
plied by any number without affecting the statistics. For 
example, by dividing the weights in Equation (8) by 
N=4000, they sum to one and the estimate:

	

‍
µ̂ =

(
3∑

h=1

nh∑
i=1

whi
N yhi

)
= 1824

4000×20

20∑
i=1

y1i + 1025
4000×9

9∑
i=1

y2i + 1151
4000×11

11∑
i=1

y3i,
‍

�

which is the same as the one in Equation (8).
Shown in table 1 are the weighted means and SEs from 

the PROC MEANS and PROC SURVEYMEANS for the 
Ice Cream data. The weighted means are the same, but 
the SEs are quite different from the two PROCs.

The difference in SEs between the two SAS PROCs 
above is the result of a different statistical approach used 
to compute the SE in PROC SURVEYMEANS. Unlike the 
WOLS/ML variance estimate in the PROC MEANS which 
is specific to weights selected to address heteroscedas-
ticity, the variance estimate from PROC SURVEYMEANS 
is derived by estimating equations, or Taylor series expan-
sion, which is valid for any types of weights, including 
weights computed in PROC MEANS, sampling weights 
for survey studies, non-response weights and combina-
tions of such weights.

For the stratified sampling in Example 2, the estimating 
equation variance (SE) of the weighted mean is given by:

	﻿‍
σ̂2
µ = 1

wgg

H∑
h=1

nh
nh−1

[
nh∑
i=1

w2
hi

(
yhi − µ̂

)2 − 1
nh

( nh∑
i=1

whi

(
yhi − µ̂

))2
]

.
‍�
(9)

If applying the WOLS (ML) variance estimate in Equa-
tion (3), the variance of the weighted mean is:

	﻿‍
σ̂2
µ = 1

wgg

[
1
H

H∑
h=1

1
nh−1

nh∑
i=1

whi

(
yhi − µ̂

)2
]

.
‍�

(10)

The different variance estimates in Equations (9) and 
(10) can yield quite different SEs as shown by the Ice 
Cream data in Example 2.

Thus, when analysing survey data involving sampling 
weights, PROC SURVEYMEANS must be used to provide 
valid variance (SE) estimates. As noted above, the esti-
mating equation approach also provides valid inference 
for all other types of weights. The next example shows 
that this variance estimate also applies when weights are 
used to address heteroscedasticity.

Implications of using the wrong PROC with a weight 
versus a sampling weight: a Monte Carlo simulation
In the case of homoscedasticity weights, the choice of 
PROC MEANS or PROC SURVEYMEANS and asso-
ciated variance estimates is facilitated as either will 
give valid and consistent results. We must underscore 
that this is true only when the weight used is in fact a 
homoscedasticity (heteroskedasticiy-correction) weight 
and not sampling weight.

Example 3
In this example, we perform Monte Carlo simulations 
to show that the estimating equation variance estimate 
is also valid when used to deal with heteroscedasticity 
in the data.

To simulate a sample with heteroscedasticity, 
we consider a normal distribution consists of five 
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Table 2  Comparison of PROC MEANS and PROC 
SURVEYMEANS for simulation study

PROC MEANS SAS PROC SURVEYMEANS

Mean: 1.000 Mean: 1.000
SE (WOLS/ML): 0.000183
SE (empirical): 0.000184

SE (EE): 0.000183

EE, estimating equation; ML, maximum likelihood; WOLS, 
weighted ordinary least squares.

subpopulations: all with the same (population) mean 
μ=1, but different variances:

	﻿‍ yhi ∼ N
(
µ, σ2

whi

)
, µ = σ2 = 1, whi = 1

h+2 , 1 ≤ h ≤ 5.‍
� (11)

When sampled from this five-component mixture, ‍yhi
‍, the variance of the observation varies depending on 
the subpopulation sampled:

	﻿‍

Var
(
yhi

)
= σ2

whi
= σ2

1
h+2

=
(
h + 2

)
σ2




3σ2 if h = 1

4σ2 if h = 2

5σ2 if h = 3

6σ2 if h = 4

7σ2 if h = 5‍�

By using the weights, ‍whi = 1
h+2‍, we can use the 

weighted mean, WOLS/ML variance (SE) of the 
weighted mean and t-statistic in Equation (2) and (4) 
used in PROC MEANS to make inference about the 
mean μ. Alternatively, we can also apply the estimating 
equation (EE) variance estimate in Equation (9) to 
compute variance (SE) of the weighted mean using 
PROC SURVEYMEANS. Although the two variance esti-
mates look quite different, they are both consistent esti-
mates of the variance of the weighted mean ‍̂µ‍.

To demonstrate this using Monte Carlo simulations, 
we perform the following steps:
a.	 Simulate a sample of 25 000 ‍yhi‍’s from Equation (11), 

with 5000 ‍yhi‍’s from each subpopulation;
b.	Compute the estimate ‍̂µ‍ and two variance estimates of 

‍̂µ‍ according to Equation (4) and (9):

	﻿‍

Point Estimate : µ̂ = 1
wgg

H∑
h=1

nh∑
i=1

whiyhi = 1
wgg

5∑
h=1

500∑
i=1

whi yhi,

wgg = ( 1
3 + 1

4 + 1
5 + 1

6 + 1
7 ) × 500 = 546.43,‍�

	﻿‍

WOLS/ML Variance of µ̂ : σ̂2
WOLS/ML = 1

wgg

[
1
H

H∑
h=1

1
nh−1

nh∑
i=1

whi
(

yhi − µ̂
)2
]

= 1
546.43

[
1
5

5∑
h=1

1
500−1

500∑
i=1

whi
(

yhi − µ̂
)2

]
,
‍

� (12)

	
‍

EE Variance of :

σ̂2
EE = 1

w2
gg

H∑
h=1

nh
nh−1

[ nk∑
i=1

whi(yhi − µ̂)2 − 1
nh

nk∑
i=1

whi(yhi − µ̂))2
]

= 1
(546.43)2

5∑
h=1

500
500−1

[
500∑
i=1

w2
hi(yhi − µ̂)2 − 1

500

( nk∑
i=1

whi(yhi − µ̂)
)2

]
.
‍

�

(c) Repeat Step (a) and (b) M=2000 times;
(d) For each Monte Carlo iteration, let ‍̂µ

(
m
)
‍ denote the 

estimate and ‍̂σ
2
(
m
)

WOLS/ML‍ and ‍̂σ
2
(
m
)

EE ‍ denote the two variance 
estimates;

(e) Compute the Monte Carlo mean ‍̂µemp‍ and empirical 
variance ‍̂σ

2
emp‍ of the estimate ‍̂µemp‍:

	﻿‍
µ̂emp = 1

M

M∑
m=1

µ̂
(

m
)
, σ̂2

emp = 1
M

M∑
m=1

(
µ̂
(

m
)
− µ̂emp

)2
.
‍� (13)

(f) Compute the two variance estimates averaged over 
the 2000 Monte Carlo simulations:

	﻿‍

σ̂2
WOLS/ML = 1

M

M∑
m=1

σ̂
2
(

m
)

WOLS/ML = 1
2000

2000∑
m=1

σ̂
2
(

m
)

WOLS/ML,

σ̂2
EE = 1

M

M∑
m=1

σ̂
2
(

m
)

EE = 1
2000

2000∑
m=1

σ̂
2
(

m
)

EE .
‍�

(14)


The Monte Carlo mean and variance above provide 

a benchmark to assess and compare performances of 
estimates. The Monte Carlo sample variance is also 
known as the empirical variance of the estimate, since it 
measures the variability of the estimate and is a consis-
tent estimate of the variance of the asymptotic distribu-
tion of the estimate.

If the method for estimating the mean is correct, the 
Monte Carlo mean ‍̂µemp ‍ should be close to the popula-
tion mean μ=1. Likewise, if a variance estimate is consis-
tent, its Monte Carlo average in Equation (13) will be 
close to the empirical version ‍̂σ

2
emp ‍ and vice versa.

Shown in table  2 are the weighted mean and SEs 
from the WOLS/ML, EE and empirical variance esti-
mates. The WOLS/ML and EE SEs are virtually iden-
tical (difference is 2.67×10−8‍2.67× 10−8‍) and both are 
extremely close to the empirical SE.

Therefore, for non-sampling weights such as weights 
selected to address heteroscedasticity, the EE variance 
estimate still describes the sampling variability of the 
estimate, as illustrated by the simulation study above. 
The EE variance estimate is more general, as it also 
provides valid inference for more complex weights such 
as those used for sampling and non-response bias, while 
WOLS/ML based variance formulas cannot be applied 
to all types of weights.

We would like to point out that the EE can also be 
used to address heteroscedasticity when a correction 
weight is not available. In many studies, the cause of 
heteroscedasticity is unknown and weights cannot be 
computed. In this case, the WOLS/ML approach no 
longer applies. But, even without a known heterosce-
dasticity weight, the EE still provides valid variance esti-
mates. For example, when applied to the simulated data 
in Example 3 without weights, the estimated population 
mean is 0.9996, which is quite close to 1. The Monte 
Carlo average of the EE SE, 0.0002, is also quite close to 
the empirical error, 0.000185. Both the EE and empir-
ical SEs in this case are a bit larger than their weighted 
counterparts, which is consistent with the property that 
the weighted mean is the BLUE, that is, the estimate 
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Table 3  Monte Carlo mean, empirical, WOLS/ML and EE 
SE

WOLS/ML EE

Mean 9.14 9.14
SE (WOLS/ML): 1.36
SE (empirical): 0.726

SE (EE): 0.726

EE, estimating equation; ML, maximum likelihood; WOLS, 
weighted ordinary least squares.

with the smallest standard error among all estimates 
that are a linear combination of the observations.

In the next Example, we use simulated data to show 
thatwhen using survey weights, the WOLS/ML variance 
estimate can have severe bias and the EE variance estimate 
must be used to provide valid inference about the popu-
lation mean.

Example 4
We use the Ice Cream Example as the setting to simu-
late the outcome (spending) for each student. First, 
we compute sample means and sample variances for 
each of the three strata (grade). Next, we construct the 
population distribution as a three-strata normal mixture 
using these sample means as the population means for 
the three strata and an averaged sample variance as the 
common population variance for all the strata. We then 
estimate the population mean using a weighted mean 
and compare the two variance estimates.

Specifically, let h denote the index strata and ‍yhi‍ denote 
spending of ith student sampled from the hth stratum. 
Let ‍µh‍ denote the population mean of the hth stratum:

	﻿‍

µh =




µ1 = 5.0 if h = 1 for Grade 7

µ2 = 15.4 if h = 2 for Grade 8

µ3 = 10.1 if h = 3 for Grade 9

,

‍�
where 5, 15.4 and 10.1 are the sample means of the 

corresponding strata in the Ice Cream Example. Let 
‍σ2 = 28.9‍ denote the common variance of ‍yhi‍ across all 
strata (average of three strata variances). Let ‍Nh‍ denote 
the population size and ‍nh‍ denote the sample size of the 

‍hth‍ stratum. We assume that ‍yhi‍ follows a three-compo-
nent mixture with the mean ‍µh‍ and variance ‍σ2‍:

	﻿‍

yhi ∼ N
(
µh, σ2

)
, 1 ≤ i ≤ Nh, 1 ≤ h ≤ 3,

Nh =




1824 if h = 1 for Grade 7

1025 if h = 2 for Grade 8

1151 if h = 3 for Grade 9

,

‍�
As in the Ice Cream Example, a sample of n=40 is taken 

from the population with strata sample size following the 
following distribution:

	﻿‍

nh =





20 if h = 1 for Grade 7

9 if h = 2 for Grade 8

11 if h = 3 for Grade 9

,

‍�
The total population size ﻿‍ N ‍ and overall population 

mean μ are given by:

	﻿‍

N = N1 + N2 + N3 = 1824 + 1025 + 1151 = 4000,

µ = π1µ1 + π2µ2 + π3µ3

= 1824
4000 × 5 + 1025

4000 × 15.4 + 1151
4000 × 10.1 = 9. 1325,‍�

where ‍πh‍ is the proportion of the hth stratum size to the 
total population size. Under stratified random sampling, 

the sampling weights are used to estimate the overall 
population mean μ:

	﻿‍

whi =




1824
20 if h = 1 for Grade 7

1025
9 if h = 2 for Grade 8

1151
11 if h = 3 for Grade 9

,

‍�
To reduce sampling variability in Monte Carlo esti-

mates, we set Monte Carlo replication size to M=10 000. 
For each Monte Carlo iteration, let ‍̂µ

(
m
)
‍ denote the esti-

mate and ‍̂σ
2(m)
WOLS/ML‍ and ‍̂σ

2(m)
EE ‍ denote the WOLS/ML and 

EE variance estimates from the mth simulated data. We 
compute the Monte Carlo sample mean ‍̂µ(emp),‍, empir-
ical variance ‍̂σ

2
emp‍ and averaged variance estimates ‍̂σ

2
WOLS/ML‍ 

and ‍̂σ
2
EE ‍ from the two methods the same way as in (13) 

and (14).
Shown in table 3 are the Monte Carlo mean, (empir-

ical) SE and SEs from the two variance estimates along 
with the empirical SE. As expected, the Monte Carlo 
mean is nearly identical to the population mean μ=9.1325 
and the averaged EE SE ‍̂σEE ‍ is identical to the empirical 
version ‍̂σemp‍.

Discussion
In this paper, we focused on sampling and homosce-
dasticity weights, discussed the conceptual difference 
between the two and illustrated the implications of the 
conceptual difference in SEs of estimated population 
means though analytic expressions and Monte Carlo 
simulations. We have demonstrated that homoscedasticity 
weights have very specific applications. Our experiences 
with SAS and other popular packages indicate that if 
weights are available as an option in a procedure such as 
SAS PROC MEANS, they are typically of the homoscedas-
ticity type. Such procedures should not be used for any 
other types of weights such as sampling weights. Sampling 
weights must only be used in survey specific procedures 
such as SAS PROC SURVEYMEANS, as PROC MEANS 
will not compute the correct SE and will show substantial 
bias even in large samples. In contrast, procedures such 
as SAS PROC SURVEYMEANS are more general and will 
compute the correct SE when using both sampling and 
homoscedasticity weights. In the case of heteroscedas-
ticity, estimating equation methods for calculating the 
SE can even compute the correct variance estimate if a 
researcher does not have access to a known homoscedas-
ticity weight, correcting for potential distortions in the SE 
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that can result from this violation. We recommend that 
researchers identify the type of weight they are using and 
understand the implications of using the weight within 
common analytic programs such as SAS, as incorrect 
application of weights can have important consequences 
for research analyses.
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