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Abstract

Objective To examine the bidirectional effects of objectively measured nighttime sleep and sed-

entary activity among toddlers. Method Actical accelerometer data were analyzed for 195

toddlers participating in an obesity prevention trial (mean age ¼ 27 months). Toddlers wore the

accelerometers for up to 7 consecutive days. Nighttime sleep was defined as the number of

minutes asleep between the hours of 8 pm and 8 am the following morning. Sedentary behavior

(in minutes) was defined using previously established Actical cut points for toddlers. Variables

were lagged and parsed into latent within- and between-person components, using dynamic struc-

tural equation modeling (DSEM). Results Toddlers spent an average of 172 min (�3 hr) in seden-

tary activity and slept an average of 460 min (�8 hr) per night. An autoregressive cross-lagged mul-

tilevel model revealed significant autoregression for both sleep and sedentary activity. Cross-

lagged values revealed that decreased sleep predicted increased next-day sedentary activity, and

sedentary activity predicted that night’s sleep. For 89% of the sample, the within-person standard-

ized cross-lagged effects of sleep on sedentary were larger than the cross-lagged effects of seden-

tary on sleep. Conclusions Results suggest that, on average, nighttime sleep is a stronger pre-

dictor of subsequent sedentary behavior (compared with the reverse), and this is the case for the

majority of toddlers. Findings highlight the importance of interindividual associations between

sleep and sedentary activity. The present study is an example of how DSEM methods can be used

to ask questions about Granger-causal cross-lagged relations between variables, both within and

between individuals.
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Sleep and physical activity exist on a continuum of
movement; both have been independently associated
with children’s health (Chaput et al., 2017; Downing,
Hnatiuk, & Hesketh, 2015; Tremblay et al., 2011). On
average, shorter (vs. longer) sleep duration has been asso-
ciated with higher adiposity, poorer emotional regula-
tion, impaired growth, and higher risk of injuries in
toddlers (Chaput et al., 2017). On average, more (vs.

less) sedentary behavior has been linked to higher weight
status, worse fitness, lower self-esteem and prosocial be-
havior, and lower academic achievement (Kuzik &
Carson, 2016; Kuzik et al., 2017; Tremblay et al., 2011).

Limited research has assessed relations between
sleep and sedentary behavior, particularly among
young children (Kuzik et al., 2017). Short nighttime
sleep duration has been associated with more
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sedentary behavior in cross-sectional studies (Busto-
Zapico, Amigo-V�azquez, Pe~na-Su�arez, & Fern�andez-
Rodr�ıguez, 2014). Sleepiness may decrease motivation
to engage in active play and physical activity and in-
crease the likelihood of sedentary behaviors, such as
screen time (Magee, Caputi, & Iverson, 2014).
Alternatively, sedentary behavior (including screen
time) may lead to poor nighttime sleep quality and
short sleep duration (Chaput et al., 2017; Taveras,
Rifas-Shiman, Oken, Gunderson, & Gillman, 2008).
Many studies that have examined sleep and sedentary
behavior have been cross-sectional, preventing exami-
nation of directionality and relative strength of the re-
lationship between them (Chaput et al., 2017).
Longitudinal designs would enable us to examine the
bidirectionality of this relationship and answer the
questions: Does previous night’s sleep predict next-
day sedentary behavior and/or does daytime sedentary
behavior predict that night’s sleep? As well as address
questions about relative strength of these relation-
ships: Is sleep a stronger predictor of sedentary behav-
ior or is sedentary behavior a stronger predictor of
sleep?

Sedentary habits (including screen time) have been
shown to persist during early childhood (0–5 years)
and from early childhood to middle childhood (6–
12 years) (Jones, Hinkley, Okely, & Salmon, 2013),
suggesting that establishing healthy sedentary behav-
iors early in life may protect against both proximal
and future negative health behaviors.

Nighttime sleep, specifically, has been linked to bet-
ter emotional regulation and increased physical activ-
ity among young children (Chaput et al., 2017).
Previous research has typically focused on sleep over a
24-hr period (Hirshkowitz et al., 2015), which may
neglect the specific importance of nighttime sleep con-
solidation, as toddlers begin to sleep through the night
and gradually spend less time asleep overall. This de-
cline is especially marked during the second year of
life, as children develop circadian rhythm patterns
(Acebo et al., 2005; Bernier, B�elanger, Bordeleau, &
Carrier, 2013; Mindell, Meltzer, Carskadon, &
Chervin, 2009). Nighttime sleep specifically has been
associated with sedentary behavior in infants
(Vijakkhana, Wilaisakditipakorn, Ruedeekhajorn,
Pruksananonda, & Chonchaiya, 2015) and physical
activity among toddlers (Hager, Calamaro, et al.,
2016), with no studies examining them both along a
continuum of movement. Therefore, it is important to
specifically examine nighttime sleep, given the emerg-
ing development of sleep consolidation in
toddlerhood.

Much of the literature concerning sleep and phys-
ical activity has used subjective methods to examine
differences between children (Downing et al., 2015).
In a recent systematic review of sedentary behavior

in children under 4 years, all studies (n¼24) used
parent-reported screen time as a proxy for sedentary
behavior, with the majority reporting only television
time (rather than other electronic devices), and no
studies used objective measures of sedentary behav-
ior (Downing et al., 2015). Only recently have stud-
ies begun to use accelerometry to objectively
examine sedentary behavior among toddlers
(Gubbels, Van Kann, Cardon, & Kremers, 2018;
Lee et al., 2017; Santos et al., 2017). Similarly, a re-
cent systematic review of sleep in children under 4
found that 70% of studies used parental report to
assess sleep duration (Chaput et al., 2017), despite
well-documented evidence that parent report overes-
timates sleep duration, compared with objective
measures (Girschik, Fritschi, Heyworth, & Waters,
2012). Research on both sleep and sedentary behav-
ior has generally focused on identifying person-level
characteristics (i.e., age, gender, socioeconomic sta-
tus, and physical environment) that are related to
activity on a typical day, with little attention to in-
dividual activity on a specific day (Cushing et al.,
2017). Identifying individual-level fluctuating predic-
tors of activity from day to day may be particularly
relevant among children with alterations to their
typical behavior (Cushing et al., 2017), such as
experiencing or recovering from an illness.

Accelerometry is the most common method for ob-
jectively assessing physical activity and sedentary be-
havior and is increasingly used for sleep assessment
(Quante et al., 2015). Although many modern acceler-
ometers collect information relating to activity over
time, data are often collapsed and temporal processes
and dynamics are neglected (Hamaker & Wichers,
2017). If temporal information is examined, interest-
ing and important questions can be asked about
within-person contingencies regarding sleep and
movement. Examples within pediatric psychology lit-
erature include research examining the effects of sleep
on next-day moderate-to-vigorous physical activity
(MVPA) among overweight youth (Krietsch,
Armstrong, McCrae, & Janicke, 2016). Examining
the unidirectional effects of sleep on movement, but
not the bidirectional effects of movement on sleep,
this study found that less sleep predicted increased
MVPA the following day.

Cushing et al. (2017) aimed to study the bidirec-
tional effects of individual fluctuations in affect and
activity. Using separate multilevel analyses, they found
bidirectional relations between individual-level fluctu-
ations in affect and sedentary behavior (Cushing et al.,
2017). This approach examined both average effects
(e.g., “What is the relation between affect and activity
on average?”) and random variability (e.g., “How
consistent is this effect across people?”). This multile-
vel approach provided initial evidence that affect and
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movement are bidirectionally related within individu-
als but could not determine the relative magnitude of
effects (e.g., “Does affect predict activity more than
activity predicts affect?”).

To answer this question, many psychological
researchers turn to cross-lagged models. In this ap-
proach, two or more variables are measured at two or
more occasions and the cross-lagged associations are
compared (controlling for effects the variables at pre-
vious time points have on themselves) (Schuurman,
Ferrer, de Boer-Sonnenschein, & Hamaker, 2016). By
taking multiple repeated measures and fitting them to
a cross-lagged model, we can examine the association
between variables while taking into account the time
ordering of the process (Schuurman et al., 2016).
Accelerometry data can be analyzed as longitudinal
data if the time patterns are kept intact (i.e., by not
collapsing data over time to obtain a single estimate
of activity for an individual). This process enables
analyses to address the bidirectional nature of activity
(e.g. “Does sleep predict sedentary behavior more
than sedentary behavior predicts sleep?”). Systems
where variable “x” predicts future variables of “y”
are referred to as “Granger Causality” (Granger,
1969) and have been widely applied in economics lit-
erature but only sparsely used in psychological re-
search (Hamaker & Wichers, 2017). Though not true
causality, comparing the relative strength of the cross-
lagged associations can provide direction for future
study and add clarity to theory (Schuurman et al.,
2016).

We can also ask questions about the tendency of a
variable to remain in a particular state. This stability,
or “inertia”, can be thought of as the “carryover” of a
variable, defined as the autoregression of that variable
(one occasion predicting the subsequent occasion)
(Hamaker & Wichers, 2017). For example, “Does last
night’s sleep predict tonight’s sleep?” When data are
collected multiple times from the same person, it is
necessary to account for this carryover or stability
(through modeling autoregression) before considering
bidirectional effects or external predictors (Hamaker
& Wichers, 2017). Thus, it is necessary to ask “Does
today’s activity predict tonight’s sleep above and be-
yond last night’s sleep?”

Although cross-lagged models have been used to
study such effects, these models estimate the average
effect between people. Although alternatives have
been proposed to separate out within- and between-
person differences (Berry & Willoughby, 2017;
Hamaker, Kuiper, & Grasman, 2015), such models
do not generalize to any specific individual (i.e., they
only estimate fixed slopes; the average across people).
Multilevel models (as used in Cushing et al., 2017;
Krietsch et al., 2016) allow for the separation of
within-person dynamics and between-person

differences (i.e., random slopes) (Schuurman et al.,
2016), but often require a single outcome measure,
and thus are unable to compare bidirectional effects.
Dynamic structural equation modeling (DSEM) com-
bines multilevel analyses while allowing for examina-
tion of paths typical of crossed-lagged autoregressive
models. DSEM is a framework that combines multile-
vel modeling, structural equation modeling, time-
series modeling, and time-varying effects modeling
(Asparouhov, Hamaker, & Muth�en, 2018). Structural
equation models can handle multiple dependent varia-
bles and, thus, are suited for examining cross-lagged
models and bidirectional effects.

The current study used the DSEM framework to
create a multilevel bivariate autoregressive cross-
lagged model to examine sleep and sedentary behavior
among toddlers. The model comprises a time-series
model at Level 1 that describes the within-person pro-
cesses and at Level 2 that describes the between-
person differences (Hamaker & Wichers, 2017). The
aim of the current study was to examine and compare
the bidirectional relations between nighttime sleep
and next-day sedentary behavior among toddlers. We
hypothesized that, on average, decreases in previous
night sleep would predict increases in sedentary be-
havior the following day and that sedentary behavior
would likewise predict the following night’s sleep. We
further hypothesized that sleep would be a stronger
predictor of sedentary behavior than the reverse.
Finally, we hypothesized that there would be signifi-
cant between-person variability around the autore-
gressive effects for sedentary behavior and nighttime
sleep.

Method

Sample
The current study used baseline data from a larger
randomized controlled trial aimed at obesity preven-
tion. Biological mothers of ambulatory toddlers (age
12–32 months) were recruited from two clinical sites:
suburban Special Supplemental Nutrition Program for
Women, Infants, and Children (WIC) and urban
Pediatric Ambulatory Center. Both sites served low-
income, WIC-eligible (income <185% of poverty)
families living in the surrounding communities. The
suburban site was selected based on the racially di-
verse population it served, and the pediatric clinic was
selected to sample low-income urban communities.
Recruitment sites differed in location (suburban vs. ur-
ban) and the Pediatric Ambulatory Center served a
greater proportion of African American families.
Toddler eligibility criteria included at term birth with
birth weight �2,500 g and no known congenital prob-
lems or disabilities. There were no weight inclusion
criteria for toddlers or mothers. Eligible children were
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recruited while participating in routine well-child vis-
its. The study was approved by university and state in-
stitutional review boards. All mothers provided
written informed consent. Baseline assessments were
conducted over two visits (1 week apart) by trained
evaluators. At the first visit, mothers completed self-
administered, computer-based questionnaires using
voice-generating software and accelerometers were
placed on the toddlers. During the second visit, accel-
erometers were removed. A total of 509 families were
approached to participate—27 families actively re-
fused, 174 passively refused, 4 were ineligible, and 27
were not randomized to the study. A total of 277 eligi-
ble mother–toddler dyads were recruited and com-
pleted the measurements. Self-reported income was
used to calculate a poverty ratio based on 2009 thresh-
olds determined by the US Census Bureau (2009).
Based on income and family size, families were classi-
fied as either being above or below the poverty thresh-
old as defined by the 2009 US Census Bureau.

Accelerometry
The Actical accelerometer (Philips Respironics) is a de-
vice with an omnidirectional sensor that can measure
movement in one plane and can detect movements in
the 0.5- to 3-Hz range. Voltage generated by the sen-
sor is amplified and filtered via analog circuitry. The
amplified and filtered voltage is passed into an analog
to a digital converter, and the process is repeated 32
times per second (32 Hz). The resulting 1-s value is di-
vided by four, then added to an accumulated activity
value (activity counts) for the 1-min epoch (Pfeiffer,
Mciver, Dowda, Almeida, & Pate, 2006). Acticals
were placed on the child’s nondominant ankle, supe-
rior to the lateral malleolus, with a nonremovable,
reinforced hospital band. Similar device placement has
been used to detect sleep and physical activity among
young children and shown to be significantly corre-
lated with the gold standard of sleep measured by pol-
ysomnography (Galland, Kennedy, Mitchell, &
Taylor, 2012; Sadeh, Acebo, Seifer, Aytur, &
Carskadon, 1995) and direct observation of activity
(Hager, Gormley, et al., 2016), respectively. The
Actical is small, lightweight, and waterproof. It is
worn during bathing, sleep, and play without interfer-
ence. Toddlers wore the accelerometer next to the skin
under socks for 7 consecutive days. Activity counts
were collected in 1-min intervals (called “epochs”).
During the second visit, the band was removed.
Actical software (version 2.12) was used for data re-
duction. Only complete days (i.e., full 24-hr periods)
with a daily average of 80 counts per minute were in-
cluded in the analysis. For toddlers with more than 7
days of data, data were truncated after 7 days. Sleep
was parsed from activity using the Sadeh algorithm
(Sadeh et al., 1995). The Sadeh algorithm classifies

each epoch as asleep or awake. The formula for the
Sadeh algorithm is:

PS ¼ 7:601� 0:065MW5 – 1:08NAT – 0:056SD6
� :703lnðACTÞ

where PS is the probability of sleep; MW5 is the aver-
age number of activity counts during the scored epoch
and a window of five epochs preceding and following
the scored epoch; NAT is the number of epochs with
an activity level of >50 but <100 activity counts in an
11-min window, including the scored epoch and the
five epochs preceding and following the scored epoch;
SD6 is the standard deviation of the activity counts
during the scored epoch and the five preceding epochs;
and ln(ACT) is the natural logarithm of the number of
activity counts during the scored epoch þ 1. If PS is
>0, the epoch is scored as asleep; otherwise, it is
scored as awake. Nighttime sleep was defined as the
sum of 1-min sleep epochs occurring between the
hours of 8 pm and 8 am the following morning. This
definition of nighttime sleep was based on methods
used in previous research on nighttime sleep among
young children (Ma et al., 1993; Rigda, McMillen, &
Buckley, 2000; So, Michael Adamson, & Horne,
2007) and recent survey research indicating that the
average toddler bedtime is between 8 pm and 9 pm
and awake time is between 6:30 am and 8 am
(Mindell et al., 2016). The upper limits of those win-
dows were selected to maximize the potential sleep
that could reasonably be considered “nighttime.”
Sedentary behavior (in minutes) was defined using pre-
viously established Actical cut points for toddlers
(Hager, Gormley, et al., 2016). Cut points for counts
per minute were 0–40 (sedentary), 41–2,200 (light),
and �2,201 (MVPA). Activity cut points were only
applied to epochs scored as “awake” per the Sadeh al-
gorithm; thus, minutes of sedentary activity are sepa-
rate from any daytime napping.

Data Analysis
Descriptive statistics were conducted using IBM SPSS
(Version 25). DSEM was conducted in Mplus Version
8.1 (Muth�en & Muth�en, 2015). The model was run
using a Bayes full-information estimator with nonin-
formative priors and no auxiliary variables. This ap-
proach produces results similar to full information
maximum likelihood. We used 50,000 computed
Markov chain Monte Carlo iterations, of which every
10th was recorded for estimation purposes. Data were
assumed to be missing at random. Evidence for this as-
sumption were based on t-tests of demographic factors
associated with missingness and Little’s missing
completely at random (MCAR) test. A Bayesian ap-
proach was used because it is flexible with regard to
model specification and allows the bivariate model to
be run simultaneously (Schuurman et al., 2016). In
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addition, Bayesian modeling allows for calculation of
standardized regression coefficients that account for
uncertainty about the new quantities, (Schuurman
et al., 2016) and treats missing data as additional un-
known quantities for which a posterior distribution
can be estimated. Variables were parsed into latent
within- and between-person components and lagged
to control and estimate the impact of previous obser-
vations on subsequent outcomes (Hamaker &
Wichers, 2017). An autoregressive lag-1 (AR-1) multi-
level model was conducted predicting the outcomes of
toddler sedentary behavior and nighttime sleep. A vi-
sual representation of the model is presented in
Figure 1. It is worth clarifying the meaning of previous
and current occasion, given the inherent lagged rela-
tions between nighttime sleep and next-day sedentary
behavior. As an example, if the current nighttime sleep
on Sunday (time “t”) is defined as sleep starting on
8 pm Sunday night to 8 am Monday morning, previ-
ous night sleep would be the previous sleep window
from 8 pm Saturday night to 8 am Sunday morning (t-
1; lag 1). In this example, current day at time “t”
would refer to sedentary behavior on Sunday. Thus, to
estimate the effects of sedentary behavior on subse-
quent nighttime sleep, current sleep at time “t” (on
Sunday night) is regressed upon what appears to be
current-day sedentary behavior at time “t” (on
Sunday; lag 0), but which actually precedes sleep on
Sunday night in time. To estimate cross-lagged effects
of nighttime sleep on sedentary behavior, current sed-
entary behavior (time “t”) is regressed on nighttime
sleep at the previous occasion (t-1; lag 1). The corre-
sponding Mplus code is included in the supplementary
materials (Supplementary 1).

Results

Data were processed from 195 Acticals. Missing
Actical data (n¼ 82) were primarily owing to partici-
pant refusal to wear the Actical (n¼ 31/82, 37.8%) or
having too few days to process (i.e., less than 2 full
days, thus no data on nighttime sleep) (n¼38/82,
46.3.4%). The remaining missingness was owing to
unexplained experimenter error (5/82, 6.1%), partici-
pants losing the Actical (3/82, 3.7%), device malfunc-
tion (3/82, 3.7%), or not having an available Actical
at the time of data collection (2/82, 2.4%). T-tests
revealed that demographic factors (including toddler
gender, age, body mass index [BMI] z-score, maternal
age, or poverty) were not associated with Actical re-
fusal or missing Actical data (p > .05). In addition,
Little’s MCAR test was nonsignificant v2(38) ¼
46.795, p ¼.16. Toddlers in the final sample wore the
Actical for an average of 5.36 days (SD ¼ 1.76). The
majority of the sample was African American (71.7%)
and male (55.5%) (Table I). Seventy-eight percent of
the sample reported an annual income below $30,000.
Families recruited from the urban site were more likely
to be African American, v2(3) ¼ 129.13, p < .001,
and younger and report lower income (p>.05) com-
pared with the suburban site. There were no signifi-
cant recruitment site differences in toddler nighttime
sleep, sedentary behavior, toddler BMI z-score, or
missing data (p > .05). Baseline demographic varia-
bles are presented in Table I.

The multilevel model unstandardized effects and
variances are presented in Table II and their paths
(corresponding to the associated symbols) are repre-
sented in Figure 1. The current model explained

Figure 1. Multilevel cross-lagged autoregressive model for sedentary behavior and nighttime sleep.
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28.7% of the within-person variability in nighttime
sleep and 34.7% of the within-person variance in sed-
entary behavior.

Attractor/Inertia Effects (Autoregression)
The multilevel AR-1 model allows researchers to esti-
mate the average “inertia” of a variable (effect of a
variable on itself from the preceding observation, lag
1) in the population, as well as for individuals in the
sample. An autoregressive value close to 0 implies a
strong attraction dynamic; meaning, after a high or
low score, the individual will quickly recover to their
equilibrium or “set point” (i.e., typical level of sleep
or sedentary behavior). In contrast, an autoregressive
value closer to 1 implies more carryover from one mo-
ment to the next, reflecting regulatory weakness. A
child with a high sedentary autoregressive value would
be likely to have several consecutive days in a row
with high or low sedentary behavior above or below
their set-point/equilibrium. Negative values of the
autoregressive term have a different interpretation, be-
cause they imply reflexive back-and-forth shifting be-
tween scores above and below the equilibrium (called
antipersistance) (De Haan-Rietdijk, Gottman,
Bergeman, & Hamaker, 2016). Antipersistance might

manifest as a sawtooth pattern where a night of short
sleep is followed by a night of excessive sleep greater
than that toddler’s typical nighttime sleep.

In the current study, the autoregressive value for
sedentary behavior was both positive and significantly
different from 0 (B¼0.174, 95% confidence interval
[CI] .070 to 0.277) (see uSed! Sed, Figure 1,
Table II), indicating low carryover and no antipersist-
ance. More specifically, sedentary behavior appears to
have properties of an attractor dynamic, meaning that
after a day of high or low sedentary activity, a child is
likely to quickly return to his/her set point or equilib-
rium of typical sedentary activity the following day.
This can present confusion when using standardized
hypothesis testing, where regression coefficients are
compared with a null value of 0. In an autoregressive
model, 0 represents attraction to the set point, and no
inertia. Zero is the strongest attraction an autoregres-
sive dynamic can have. Readers are referred to Butner
(2017) for a more in-depth explanation of attractors
in autoregressive dynamic models.

The autoregressive value for sleep was positive and
significantly different from 0 (B¼0.193, 95% CI
0.057 to 0.329) (see uSleep! Sleep, Figure 1 and
Table II), indicating previous night sleep predicts sub-
sequent night sleep. Because the value is relatively
close to 0, this indicates that after a night of more or
less sleep than typical (i.e., a perturbation to the sys-
tem), a child will return relatively quickly to their
baseline “set point” on the following night.

Cross-Lagged Effects
Cross-lagged unstandardized values revealed that, on
average, when comparing across individuals, toddlers
with less than average nighttime sleep engaged in
more sedentary behavior the following day (B ¼
�0.178, 95% CI �0.231, �0.126) (see uSleep! Sed,
Figure 1 and Table II). Furthermore, sedentary

Table I. Sample Demographics, n¼195

Mean/% SD

Toddler age (months) 20.3 5.6
Toddler gender (male) 55.4%
Living at or below poverty line 70.2%
Toddler BMI z-score 0.50 1.1
Race/Ethnicity

African American 71.7%
Caucasian 26.2%
Other 2.1%

Days of Actical data 5.36 1.72
Average sedentary behavior (min) 171.67 39.6
Average nighttime sleep (min) 460.23 85.86

Table II. Unstandardized Effects

B Posterior SD 95% CI LL 95% CI UL

Means
Sleep l Sleep 468.04* 7.31 453.72 482.45
Sedentary l Sed 170.81* 3.51 163.95 177.67

Slopes
Sedentary!Sleep uSed!Sleep �0.30* 0.11 �0.51 �0.09
Sleep! Sedentary uSleep!Sed �0.18* 0.03 �0.23 �0.13

Autoregression
Sedentary uSed!Sed 0.17* 0.05 0.07 0.28
Sleep uSleep!Sleep 0.19* 0.07 0.06 0.33

Variances
Sleep W l Sleep 2889.43* 738.20 1655.89 4555.18
Sedentary W l Sed 858.25* 190.12 533.95 1284.63
Sedentary!Sleep W u Sed!Sleep 0.30* 0.12 0.12 0.58
Sleep! Sedentary W u Sleep!Sed 0.04* 0.01 0.02 0.07
Autocorrelation sleep W u Sleep ! Sleep 0.20* 0.05 0.12 0.31
Autocorrelation sedentary W u Sed! Sed 0.10* 0.03 0.05 0.17

*significance is based on the Credible Interval (CI) not containing zero
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behavior predicted sleep that night (B ¼ �0.301, 95%
CI �0.510 to �0.329) (see uSed! Sleep, Figure 1 and
Table II). Thus, overall, there was a pattern of less
night sleep being followed by increased sedentary be-
havior the following day, in addition to increased sed-
entary behavior predicting decreased sleep at the next
occasion.

Standardized Estimates
To compare the relative strength of cross-lagged
effects and answer the question “does sleep predict
next-day activity more than the reverse”, we examined
the within-person standardized cross-lagged coeffi-
cient (averaged over cluster) (Schuurman et al., 2016).
In the current study, the standardized effect of seden-
tary behavior on nighttime sleep was b ¼ �.185 (95%
CI �.278 to �.094), whereas the standardized effect
of nighttime sleep on sedentary behavior was b ¼
�.322 (95% CI �.403 to �.236). These values are
standardized and averaged over cluster, indicating
that in the current sample, the average within-person
effect of sleep on sedentary behavior was stronger
than the effect of sedentary behavior on sleep.

However, there was individual-level variation in
the strength of the relationship between nighttime
sleep and sedentary behavior across individuals. The
standardized cross-lagged effect of nighttime sleep on
sedentary was such that 95% of the Bayesian posterior
draws for the average within-person effect were be-
tween �.403 and �.236, and 97% of the toddlers had
a negative coefficient. The within-person standardized
effect of sedentary behavior on sleep was such that
95% of the sample was expected to have a within-
person effect between �.278 and �.094, and 92% of
the toddlers had a negative average coefficient of sed-
entary behavior predicting nighttime sleep. This
implies that for most toddlers in the sample, increased
sedentary behavior predicts less sleep that night (and
less sleep predicts more next-day sedentary behavior).
However, there was significant variability around
these effects. Therefore, examining the fixed effects
only may be misleading. Indeed, a common criticism
of single-level cross-panel designs is that they evaluate
the average effects across individuals and ignore po-
tential meaningful individual differences (Schuurman
et al., 2016).

Therefore, to further investigate if nighttime sleep
predicted more variability in sedentary behavior com-
pared with the inverse (sedentary on sleep) within an
individual, we examined the average cross-lagged
coefficients for each individual in the sample. We cal-
culated the proportion of the sample for whom the in-
dividual-level coefficients of nighttime sleep on
sedentary were larger than the coefficients of seden-
tary on sleep. To compare the magnitude (separate
from direction) of the relations, absolute values of the

cross-lagged estimates were used to avoid negative/
positive loadings potentially canceling each other out
(Schuurman et al., 2016). For 89% of the current sam-
ple, the within-person standardized cross-lagged
effects of nighttime sleep on sedentary behavior were
larger than the cross-lagged effects of sedentary behav-
ior on nighttime sleep. This indicates that not only is
the average cross-lagged effect of nighttime sleep on
sedentary behavior stronger than the cross-lagged ef-
fect of sedentary on sleep, but that this is the case for
the majority of children in the sample.

Similarly, we examined the within-person standard-
ized autoregressive coefficient (again, averaged over
cluster) to compare the relative strength of the autore-
gressive effects and answer the question “Does seden-
tary behavior have more carryover compared with
nighttime sleep?” Standardized within-person level
autoregression estimates were .177 (95% CI .068 to
.291) for sleep and .170 (95% CI .073 to .265) for
sedentary behavior. To further explore the relative
magnitude of the attractor/inertia dynamics, standard-
ized autoregressive values were examined for each
participant. Nighttime sleep values ranged from
�.601 to .953. Absolute values in this case represent
the strength of the attraction (with values closer to 0
being stronger attractors). The absolute value of
autoregressive terms ranged from <.001 (very strong
attractor) to .953 (weak attractor). Again, the autore-
gressive term being close to 1 indicates the strength of
the attraction or repulsion, and the negative sign iso-
lates if the pattern overshoots the set point in a saw-
tooth pattern (antipersistance) (Butner, 2017). For
sleep, 14% of the sample had an autoregressive value
below 0, indicating some level of antipersistance. A
negative value implies that there is a set point for aver-
age nighttime sleep, but the children vacillate around
their set point. Following a perturbation of sleep on a
given night, sleep the following night overshoots the
set point. Tangibly, this would be a night of short
sleep followed by a night of relatively long sleep, but
an eventual return to average baseline sleep.

For sedentary behavior, 10% of the toddlers in the
sample had a negative autoregression value, indicating
antipersistance. Absolute values for autoregressive
estimates ranged from .002 to .546. When comparing
the relative strength of the autoregressive terms, 53%
of toddlers in the sample had an autoregressive value
closer to 0 for nighttime sleep compared with seden-
tary behavior, indicating a quicker return to baseline
levels following a perturbation.

Discussion

The aim of the current study was to examine and com-
pare the strength of the bidirectional relations between
nighttime sleep and sedentary behavior among
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toddlers. In doing this, we aimed to demonstrate the
value of using a multilevel model to study Granger-
causal cross-lagged relations between outcomes.

Consistent with previous literature, results indi-
cated a bidirectional relation between nighttime sleep
and sedentary activity (Chaput et al., 2017). Previous
studies linking sedentary behavior to sleep have often
relied on parent- or self-reported screen time as a
proxy for sedentary behavior (Downing et al., 2015),
and the current study builds on these results by using
objective measures of sleep and sedentary behavior.

Results indicate that when toddlers have a day of
high sedentary behavior, they are more likely to expe-
rience decreased nighttime sleep that night. In addi-
tion, if a toddler has less nighttime sleep, they will be
more sedentary the following day. The average rela-
tion between nighttime sleep and next-day sedentary
behavior was stronger than the reverse, and this was
the case for the majority (89%) of toddlers in the sam-
ple. However, the strength of the relation between
sleep and sedentary behavior varied across
individuals.

With regard to carryover effects (i.e., inertia), both
sleep and sedentary behavior showed relatively low in-
ertia or carryover on average. However, nighttime
sleep had slightly more carryover from one day to the
next compared with sedentary behavior, and this was
the case for the majority (53%) of toddlers in the sam-
ple. This means that if toddlers experience decreased
sleep on one night, they are likely to experience some
carryover the following night, but quickly return to
their baseline level of sleep. Sedentary behavior had
similar attractor dynamics (i.e. low inertia or carry-
over), meaning a deviation from typical sedentary be-
havior is followed by a relatively quick return to
typical sedentary behavior the following day.
However, significant between-person random vari-
ability around the strength of the carryover/inertia
effects indicates that not all toddlers in the sample
returned to their typical level of sleep or sedentary ac-
tivity quickly or at the same rate. Some toddlers had
relatively strong carryover from one day to the next.
For toddlers with high carryover, a night of disrupted
sleep is followed by continued nights of disrupted
sleep before eventually returning to baseline.
Furthermore, for 47% of the toddlers in the sample,
sedentary behavior was actually more stable and had
less carryover than sleep. The ability to capture these
interindividual differences in a within-person process
is an advantage of the multilevel analysis, which
allows for each individual to have their own estimate
of autoregression/carryover. If we were to only exam-
ine the average fixed effects of carryover (as in a cross-
lagged panel model), we might erroneously conclude
that sleep and sedentary behavior are relatively stable;
however, this would only be true for a subset of the

sample. A next step in this research could be to explain
and predict these between-person differences in carry-
over (e.g. Why are some toddlers likely to have multi-
ple nights of disrupted sleep while others return
quickly to their baseline after disrupted sleep? And are
toddlers with higher carryover (i.e., regulatory weak-
ness) more likely to become overweight?).

The current article builds on intensive longitudinal
models published in the Journal of Pediatric
Psychology by Cushing et al. (Cushing, Brannon,
Suorsa, & Wilson, 2014; Cushing et al., 2017). Like
Cushing et al. (2017), the current study examined sed-
entary behavior (which is often understudied) and
modeled within- and between-person variability. The
current study extends these findings by examining
multiple outcomes in a unified model that accounts
for autoregression. Therefore, the cross-lagged effects
in the current study can be interpreted as the effect of
nighttime sleep on sedentary behavior (or vice versa)
accounting for the previous occasions.

In addition, the current study demonstrates a
method by which to compare the relative strength of
both cross-lagged and autoregressive paths. In sub-
stantive terms, we were able to detect that, averaged
across individuals, nighttime sleep had slightly more
carryover or inertia from one day to the next com-
pared with sedentary behavior. We can interpret this
inertia term as a dynamic trend such that when night-
time sleep is perturbed from a toddler’s set point, poor
sleep will carry over into following nights before even-
tually returning to equilibrium. Future research can
use the DSEM technique to model this inertia to ask
questions about the length or magnitude of these hy-
pothetical cycles (i.e., how long do bouts of disrupted
sleep typically last) as well as questions about individ-
ual differences that predict inertia (i.e., What charac-
teristics are associated with a child who has more
difficulty recovering from a night of decreased sleep?).

The current study is novel in several ways. A
strength of the current study is the objective (acceler-
ometer) methods to measure sleep and sedentary be-
havior, a method that is underutilized in pediatric
psychology literature (Cushing et al., 2014).
Furthermore, sleep and sedentary behavior in toddlers
are often understudied topics (Downing et al., 2015).
The study is further unique in that it treats accelerom-
eter data as intensive longitudinal data, and directly
compares the bidirectional cross-lagged effects be-
tween the multiple outcomes of sleep and sedentary
behavior simultaneously in a unified autoregressive
model.

The current study suggests that sleep and sedentary
behavior are dynamically linked. If results are repli-
cated, it suggests that interventions to address night-
time sleep may be influential for reduction of
sedentary behavior and vice versa. Providers should be
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aware of this potential relationship especially in the
context of assessing sleep. In addition to asking
parents during toddler checkups about toddler sleep
quality and duration, amount of sedentary behavior,
such as screen time, may be important to assess as well.
More specifically, if toddlers are having sleep problems,
it may help to assess screen time and other sedentary
behaviors. Many healthy sleep practices can help to
achieve age-appropriate amounts of sleep, including
having a consistent bedtime routine and removing
screens from children’s bedrooms (Mindell, Li, Sadeh,
Kwon, & Goh, 2015). Incorporating such strategies to
target sleep may prove beneficial in the context of obe-
sity interventions to reduce sedentary behavior.
Ensuring that toddlers get adequate nighttime sleep
may reduce sedentary behavior and help maintain a
healthy weight. Similarly, if toddlers are partaking in
less sedentary behavior and screen time, they may ob-
tain adequate nighttime sleep duration (Ikeda, Kaneita,
Kondo, Itani, & Ohida, 2012; Magee et al., 2014).
Ultimately, the link between nighttime sleep and seden-
tary behavior may help explain findings linking sleep
and obesity in young children (Busto-Zapico et al.,
2014; Magee et al., 2014; Taveras et al., 2008).

Conclusions from the current study should be inter-
preted in the context of several limitations.
Standardized comparison of cross-lagged effects
shows that a parameter is statistically stronger, but
not more important. Therefore, it is not clear from
such a model that manipulation of nighttime sleep
would necessarily lead to change in sedentary behav-
ior. In addition, the current study used only up to
7 days of data. More time points are needed to directly
examine trends or cycles in future studies (Schultzberg
& Muth�en, 2017). The current study had data loss as
a result of participant refusal to wear the Actical.
Although we used novel strategies to minimize data
loss (i.e., using nonremovable bands and waterproof
accelerometers), there may be additional strategies
(i.e., incentives based on Actical days of wear) to max-
imize data retention in community samples. Although
no demographic variables were related to participant
refusal to wear the Actical, future research should
strive to maintain greater data retention. Alternative
multiple imputation strategies and auxiliary variable
approaches may also be helpful (Enders, 2017;
Graham, 2003) in light of emerging literature regard-
ing multiple imputation in multilevel models with ran-
dom slopes. In addition, the current study did not
directly examine the impact of daytime napping.
Although estimations of sedentary activity were sepa-
rate from daytime sleep, daytime naps represent a por-
tion of the movement continuum. Future studies can
use the DSEM model to examine the dynamics of tod-
dler napping behaviors as they relate to physical activ-
ity and nighttime sleep.

Given the novelty of the DSEM models used in the
current study, several unresolved issues warrant con-
sideration. An initial consideration is that the strength
of lagged relationships depends on the interval be-
tween observations (Gollob & Reichardt, 1987),
meaning that future studies may reach different con-
clusions about the reciprocal nature and the “causal
dominance” of nighttime sleep and sedentary behav-
ior, depending on the interval of time selected. This
phenomenon (known as the “lag problem”) implies
that simply because we modeled sedentary behavior
and nighttime sleep at the level of a single day, it does
not mean that the variables necessarily exert an influ-
ence on each other only at this interval (Hamaker,
Asparouhov, Brose, Schmiedek, & Muth�en, 2018).
Different conclusions might be reached if researchers
examine the dynamics between activity and sleep
within a single day (i.e., does morning nap influence
sedentary activity that afternoon).

Another way in which estimating dynamic relations
can be complicated is through the presence of cycles
(Liu & West, 2016). There may be monthly, weekly,
and daily movements up and down in nighttime sleep
and sedentary behavior, which could have led to spuri-
ous lagged relationships between variables. The
VAR(1) model used in the current study assumes sta-
tionarity, that the dynamics between variables remain
stable (Bringmann, Ferrer, Hamaker, Borsboom, &
Tuerlinckx, 2018). However, this may not necessarily
be the case when cycles exist. This might be particu-
larly relevant for nighttime sleep and activity, given
the potential effects of weekend/weekday cycles, sea-
sonality, and developmental changes. Indeed, the cur-
rent study did not examine cycles or trends (owing to
limited sample size), which may have impacted results.
More advanced time-varying-vector-autoregressive
models (Bringmann et al., 2018) could be used to ex-
plore such potential trends and cycles in future studies.
Ultimately, additional developments in the emergent
area of dynamic systems modeling could impact cur-
rent interpretation of study results in the future.

Passive sensors such as accelerometers can provide
objective data with limited participant burden.
Because passive sensors allow multiple points of data
for a given individual, they can be treated as intensive
longitudinal data (rather than collapsed to a single
point across time). Although the current study only ex-
amined nighttime sleep, accelerometry can be used to
measure additional aspects of sleep (i.e. sleep effi-
ciency and sleep latency) that may be related to activ-
ity. The use of DSEM in pediatric research for
intensive longitudinal data allows us to answer ques-
tions about the relative strength of bidirectional rela-
tions such as those between nighttime sleep and
sedentary behavior. Future studies can use DSEM
methods to predict autoregression (inertia) or model it
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as an independent variable (i.e., does high carryover
for nighttime sleep predict weight gain). The present
study is an example of how DSEM methods can be
used to ask questions about Granger-causal cross-
lagged relations between variables, both within and
between individuals. Such methods can ideally inform
personalized interventions in the future.
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