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ABSTRACT  The nucleolus is a prominent subnuclear compartment, where 
ribosome biosynthesis takes place. Recently, the nucleolus has gained atten-
tion for its novel role in the regulation of cellular stress. Nucleolar stress is 
emerging as a new concept, which is characterized by diverse cellular insult-
induced abnormalities in nucleolar structure and function, ultimately leading 
to activation of p53 or other stress signaling pathways and alterations in cell 
behavior. Despite a number of comprehensive reviews on this concept, 
straightforward and clear-cut way criteria for a nucleolar stress state, regard-
ing the factors that elicit this state, the morphological and functional altera-
tions as well as the rationale for p53 activation are still missing. Based on lit-
erature of the past two decades, we herein summarize the evolution of the 
concept and provide hallmarks of nucleolar stress. Along with updated infor-
mation and thorough discussion of existing confusions in the field, we pay 
particular attention to the current understanding of the sensing mechanisms, 
i.e., how stress is integrated by p53. In addition, we propose our own empha-
sis regarding the role of nucleolar protein NPM1 in the hallmarks of nucleolar 
stress and sensing mechanisms. Finally, the links of nucleolar stress to human 
diseases are briefly and selectively introduced. 
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INTRODUCTION 
The nucleolus is a subnuclear compartment, which is pri-
marily known for its role in ribosome biosynthesis. Within 
nucleoli, genes for ribosomal RNA (rDNA) are arranged in 
arrays of tandem repeats, precursors of ribosomal RNA 
(rRNA) are transcribed by the RNA polymerase I (Pol I) and 
processed, before the ribosomal proteins are incorporated 
and ribosomal subunits are assembled. However, during 
the past two decades, researchers have demonstrated that 

this is in fact an organelle having multiple complex func-
tions. Several lines of evidence have revealed the most 
intriguing novel role of the nucleolus as a sensor for vari-
ous cellular stresses, eventually leading to the concept of 
‘nucleolar stress’. Numerous studies have listed triggers for 
nucleolar stress, characterized morphological and func-
tional alterations, and dissected the molecules that induce 
activation of p53 signaling or other stress-responsive 
pathways. While these studies enriched our understanding 
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Abbreviations: 
Act.D – Actinomycin D, 
AD – Alzheimer’s disease, 
AML – acute myeloid leukemia, 
ARF – alternative reading frame, 
CBS – cystathionine-β-synthase, 
DFC – dense FC,  
FC – fibrillar center, 
GC – granular component, 
KO – knockout, 
PD – Parkinson’s disease, 
Pol I – RNA Polymerase I 
rDNA – ribosomal DNA, 
RP – ribosomal protein, 
rRNA – ribosomal RNA,  
TF – transcription factor. 
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of the general features of nucleolar stress, many questions, 
especially those regarding the sensing mechanism, remain 
unanswered. In this review we summarize the literature 
describing the evolution of the concept, focusing on the 
hallmarks and the sensing mechanisms for nucleolar stress. 
We will also discuss some key ambiguities in this field. 

 

THE NUCLEOLUS: A MULTIFUNCTIONAL ORGANELLE 
AND ITS ROLE IN CELLULAR STRESS 
Starting in the 1990s, evidence has gradually accumulated that 
transcripts other than rRNAs can be produced and processed in 
the nucleolus [1]. Indeed, a world of small nucleolar RNAs 
(snoRNAs) was discovered; these small RNAs are important for 
modifications of rRNA, tRNA and many small nuclear RNAs [2]. In 
addition, the nucleolus was also found to functionally interact 
with Cajal bodies, other nuclear sub-compartments, to promote 
non-ribosomal RNA species maturation [3]. Around the new mil-
lennium proteomics approaches were massively applied, which 
led to the identification of over 4500 nucleolar proteins in the 
nucleolus, of which only 30% have a clear relationship with ribo-
some biogenesis [4]. This intriguingly showed that the nucleolus is 
involved in such diverse cellular events as signal recognition parti-
cle assembly, cell cycle regulation, DNA replication and repair, 
control of aging, response to viral infection, modulation of te-
lomerase, and others [5, 6]. Overall, these clues indicate that the 
nucleolus is a multifunctional organelle. 

In parallel, many researchers noticed that some nucleolus-
enriched proteins are frequently shuttled between the nucleolus 
and nucleoplasm. Remarkably, a number of nucleolar proteins 
translocate to the nucleoplasm in response to various stress con-
ditions [7-13]. This phenomenon was initially observed when 
ribosome biogenesis was blocked by Actinomycin D (Act.D), a Pol I 
inhibitor [14], and soon thereafter was also found in cells exposed 
to cytotoxic agents [9, 15], viral proteins [16], ultraviolet radiation 
[10, 17], heat shock [15] and agents inducing DNA damage [18, 
19], apoptosis or senescence [20-22]. 

The links between the nucleolus and cellular stress were 
eventually proposed based on the findings that the nucleolus 
participates in regulating the abundance of the stress responsive 

protein p53 [7, 23-28]. In summary, the notion that the nucleolus 
plays a role in regulating cellular stress states represents at least 
two aspects of the same idea: p53 activation by nucleolar proteins. 
One hypothesis emphasizes that the nucleolus is a sensor for 
cellular stresses, in which stress-induced nucleoplasmic transloca-
tion of nucleolar proteins, such as NPM1 [29-31] and GLTSCR2 
[32] initiates p53 activation. The other hypothesis proposes the 
engagement of ribosomal proteins (RPs) mainly RPL5 [33], RPL11 
[34] and RPL23 [35], or nucleolus-resident proteins (e.g. ARF [36] 
among others) in p53 interaction with its negative regulator 
MDM2, but placing less emphasis on their translocation.  

 

THE DEFINITION AND EVOLUTION OF THE CONCEPT OF 
NUCLEOLAR STRESS 
Although the term ‘nucleolar stress’ is increasingly used, the exact 
description varies and (still) evolves, thus a precise definition has 
not yet been universally approved. The term was originally re-
ferred to the stressful events that impair the homeostasis of ribo-
some biogenesis and activate the cellular stress response. There-
fore, nucleolar stress has also been referred to as ‘ribosomal 
stress’ or ‘ribotoxic stress’ [37-40], as typical inducers are the Pol I 
inhibitor Act.D [14], or aberrant expression of nucleolar proteins 
[25], which also impair ribosomal function. In general, nucleolar 
stress is now used to describe various stressor-induced impair-
ments in nucleolar morphology and function that ultimately lead 
to disturbances in cell homeostasis through activation of p53 or 
other stress signaling (Figure 1). 

The idea that cell cycle progression may depend on some as-
pect of ribosome biogenesis was first implied in early studies on 
the cell cycle [41]. In higher eukaryotes, Volarevic proved that 
deletion of RPS6 in the liver of adult mice abolished 40S ribosome 
biogenesis and inhibited cell proliferation following partial hepa-
tectomy [42]. Identifying the correlation of interference of the 
nucleolar protein Bop1 and p53-dependent cell cycle arrest, 
Pestov et al. proposed that perturbation in ribosome biogenesis 
may cause nucleolar stress, leading to cell cycle arrest in a p53-
dependent manner [25]. Indeed, this model of nucleolar stress, 
probably the first of its kind, is consistent with many observations 
under diverse p53-activating stressors [28, 29, 43]. 

 

FIGURE 1: Schematic illustration of nu-
cleolar stress. Various stressors induce 
nucleolar stress, accompanied by mor-
phological changes and functional de-
fects, ultimately resulting in activation of 
p53 signaling pathway and altered cell 
behavior. 
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The pioneering work conducted by Rubbi and Milner signifi-
cantly solidified the notion of nucleolar stress [29]. They aimed at 
resolving the puzzle of how signals in a large variety of cellular 
stress situations can be integrated by a single molecule, namely 
p53. A common phenomenon in all p53-inducing stresses is nu-
cleolar disruption. Based on a comparative meta-analysis of di-
verse stimuli that activate p53 signaling and induce nucleolar 
alteration, they hypothesized that the impairment of nucleolar 
function might stabilize p53. In fact, activation of p53 is induced 
by a wide range of cellular stresses, aside from the Pol I inhibitor 
Act.D, which all cause disruption of nucleolar organization. The 
translocation of nucleophosmin (NPM1, or B23), an abundant 
nucleolar protein that is the most frequently reported to move to 
the nucleoplasm and cytoplasm upon various cellular insults was 
set as the criterion for nucleolus disruption. Rubbi and Milner 
demonstrated that NPM1 translocation, or nucleolus disruption 
following micropore UV irradiation over the nucleoli occurs prior 
to and independent of p53 induction. Alternatively, p53 response 
can be induced by interfering with nucleolar function using an 
antibody against the nucleolar protein UBF (upstream binding 
factor) in the absence of any genotoxic insult. Therefore, the 
model they proposed was the only one that could provide a unify-
ing and coherent explanation for the action of all known p53-
stabilizing agents. 
 

THE HALLMARKS OF NUCLEOLAR STRESS 
Following the principle of cellular events in response to stress 
conditions, we describe the following elements as the hallmarks 
of nucleolar stress. 
 
Ribosome biogenesis insults and a wide range of stimuli as 
stressors  
Ribosome biogenesis comprises multiple steps accomplished in 
three distinct subnucleolar components, from Pol I transcription 
initiation to pre-rRNA processing and ribosomal assembly. Any 
error that causes disturbance in ribosome biogenesis will lead to 
nucleolar stress.  

In fact, deletion or aberrant expression of a number of ribo-
somal proteins induce p53 stabilization and activation via disrup-
tion of ribosome biogenesis: Pestov et al. found that perturbation 
of the nucleolar protein Bop1 activity could induce ribosome bio-
genesis impairment, followed by a p53-dependent cell cycle arrest 
[25]. Genetic inactivation of TIF-1A, a basal transcription initiation 
factor for Pol I, leads to nucleolar disruption, cell cycle arrest and 
p53-mediated apoptosis [44]. Depletion of importin 7 (IPO7) or 

exportin 1 (XPO1) proteins impairs ribosome biogenesis and also 
initiates p53-dependent cell cycle arrest [45]. Microinjection of 
specific monoclonal antibodies against transcription factor UBF 
inhibits rRNA transcription and leads to p53 stabilization [29]. 
Overall, systematic screening analysis revealed an extensive con-
nection of p53 stabilization with nucleolar disruption induced by 
ribosomal protein depletion [46]. 

The chemotherapeutic agent Act.D is the mostly used nucleo-
lar stress inducer. It may inhibit three individual RNA polymerases 
at different concentrations [47]. It is believed that Act.D can in-
duce DNA damage and inhibit general transcription at high con-
centrations, such as 430 nM, but selectively inhibits Pol I and in-
duces ribosomal stress at low dose like 5 nM [34]. 

Strikingly, as summarized by Rubbi and Milner, stressful con-
ditions that can induce p53 activation can all induce nucleolar 
stress: these include UV light, hypoxia, heat shock, nucleotide 
depletion and various chemotherapeutic agents [29]. These stimu-
li were confirmed to simultaneously induce nucleolar stress and 
p53 activation by subsequent studies [48, 49]. The rationale that 
stressors of diverse nature can all induce nucleolar stress has not 
been adequately discussed, thus has remained unknown for a 
long time. Recently we found that common cellular insults that 
are able to induce p53 activation can also induce the translocation 
of NPM1, a hallmark of nucleolar stress, in a reactive oxygen spe-
cies (ROS)-dependent manner. Moreover, our study added nutri-
ent starvation and direct exposure to hydrogen peroxide (H2O2) to 
the growing list of nucleolar stress inducers [31]. 

In summary, the reported factors that induce nucleolar stress 
can be classified into two categories: canonical and non-canonical. 
The former points to those affecting homeostasis of ribosome 
biogenesis, whereas the latter includes a wide range of general 
cellular insults (Figure 2). 

 
Nucleoplasmic translocation of nucleolar proteins 
Unlike membrane-limited organelles, there is no structural barrier 
between the nucleolus and the surrounding nucleoplasm. As a 
consequence, any soluble molecule can potentially traffic in and 
out of the nucleolus in a relatively free manner. This shuttling 
might occur at basal levels under non-stressful ‘resting’ conditions, 
but is significantly increased under various stress conditions. Nu-
cleolar stress causes a lot of nucleolar molecules to redistribute in 
the nucleus, or in other words, to be released from the nucleolus 
to the nucleoplasm. This translocation or redistribution is thus 
considered as an indicator of nucleolar stress. 
 

FIGURE 2: Stressors eliciting nu-
cleolar stress. Two categories of 
nucleolar stress inducers are direct 
ribotoxic insults and a wide range 
of cellular insults. 
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NPM1 
NPM1 (also known as B23, nucleophosmin, numatrin or NO38) is 
the most abundant protein in the nucleolus [50, 51] and under 
diverse scenarios can dynamically shuttle both within nucleoli and 
between the nucleolus and the nucleoplasm or the cytoplasm [52-
54]. The known functions of this protein include the interaction 
with a plethora of macromolecules, for instance, Rb in the nucleus 
[55] and BAX in the cytoplasm [56], and chaperoning activity pro-
tecting proteins from aggregation in the crowded nucleolar envi-
ronment [57, 58]. At exit of mitosis, NPM1, among other riboso-
mal processing proteins, undergoes bidirectional traffic between 
incipient nucleoli and perinucleolar bodies, which may contribute 
to nucleolar assembly in early G1 phase [59]. NPM1 is also re-
sponsible for the nuclear export of ribosomal protein L5 [53]. 

Studies on NPM1 nucleoplasmic translocation are mostly 
based on contributions made by Busch, Chan and Yung [52]. Alt-
hough the concept of nucleolar stress had not been proposed by 
then, the conditions under which they found NPM1 nucleoplasmic 
translocation belonged to general cellular stress or typical ribo-
somal stress. With immunofluorescence technology, they first 
found that upon 48 hours serum-free medium starvation, NPM1 
was diminished in nucleoli and appeared in the nucleoplasm, 
whereas refeeding of serum-containing medium relocated NPM1 
protein to nucleolus [60], indicating a reversible nucleoplasmic 
translocation capability of NPM1. They also noticed that riboso-
mal transcription inhibitors, such as Act.D, were all able to induce 
NPM1 nucleoplasmic translocation [52]. 

Furthermore, a wide range of anticancer agents aside from 
specific inhibitors also induce NPM1 nucleoplasmic translocation, 
including the inosine-5'-monophosphate (IMP) dehydrogenase 
inhibitor tiazofurin [61], DNA topoisomerase II (topo II) inhibitors 
doxorubicin and daunomycin [8, 62], topo I inhibitors mitomycin C 
and camptothecin [63, 64], phosphatidylinositol kinase inhibitor 
toyocamycin [65] and JAK/STAT3 inhibitor cucurbitacin B [21]. 
Even an iron chelator deferoxamine which showed anti-
proliferation effects [66], UV radiation [30], viral infection [30], 
hypoxia and oxidative stress (H2O2) [31] all lead to nucleoplasmic 
translocation of NPM1. 

Among the observations of nucleoplasmic translocation of 
NPM1, a great part described the association of this event with 
p53 signaling activation. Using the anti-cancer drug daunomycin, 
Chan et al. found a relationship between NPM1-translocation and 
apoptosis [62]. Then, Rubbi et al. elegantly proved a relationship 
between NPM1 translocation and p53 activation using different 
doses of UV irradiation in nucleolar areas and different anti-
cancer drugs [29]. Furthermore, Kurki et al. found that UV irradia-
tion-induced p53 activation was dependent on NPM1 interaction 
with HDM2, suggesting that NPM1 activates p53 in a regulated 
fashion [30]. Recently, we uncovered a redox mechanism of 
NPM1 for sensing nucleolar stress that causes p53 accumulation 
and activation [31]. 

Therefore, as a most frequent event, NPM1 translocation 
should be regarded as a conspicuous hallmark of nucleolar stress. 
Other nucleolar proteins 
The following nucleolar proteins exhibit nucleoplasmic transloca-
tion under particular types of nucleolar stresses. However, their 
translocations are not yet explored as universally under many 
stress conditions as NPM1. 

Nucleolin, alias C23, a DNA and RNA binding protein, is essen-
tial for pre-RNA transcription, folding, processing and assembly 
[67]. Cyclin-dependent kinase inhibitor roscovitine induced both 
nucleolin translocation and nuclear accumulation of p53 [7]. Nu-
cleostemin that functions in pre-RNA processing was also translo-
cated to the nucleoplasm under doxorubicin and Act.D treatments 

in neonatal rat cardiomyocytes, which occurred concurrently with 
p53 accumulation [20]. 

PICT1, also called glioma tumor-suppressor candidate region 
gene 2 (GLTSCR2), a candidate tumor suppressor, is translocated 
to the nucleoplasm in response to hypoxia or Act.D treatment and 
enhanced p53 stability through ARF-independent direct physical 
interaction with p53 [32]. 

 
Morphological descriptions for nucleolar stress 
According to the classical ‘tripartite’ model, the three main events 
for ribosome biogenesis, i.e., pre-rRNA transcription, processing, 
and ribosomal subunit assembly, are reflected in three distinct 
subnucleolar compartments named the fibrillar center (FC), the 
dense fibrillar component (DFC), and the granular component 
(GC). It is generally accepted that pre-rRNA is transcribed from 
rDNA in the FC or at the border between the FC and DFC. FCs are 
enriched in components of the RNA Pol I machinery, such as UBF, 
whereas the DFC harbors pre-rRNA processing factors, such as the 
snoRNAs and snoRNP proteins, fibrillarin and Nop58. Both the FC 
and the DFC are surrounded by the GC, where pre-ribosome sub-
unit assembly takes place (reviewed in [5, 68]). The morphology 
and size of nucleoli are linked to nucleolar activity, which are inev-
itably altered under stress conditions, showing a variety of reor-
ganization. 

The widely used descriptions of morphological alterations in 
nucleolar stress are based on immunostaining using fluorescence-
labeled antibodies against known markers of the nucleolus, such 
as NPM1, fibrillarin, and UBF, that visualizes their redistribution 
under nucleolar stress conditions. Typically, under Act.D treat-
ment, these nucleolar marker proteins aggregate in different 
regions, migrate towards the nucleolar periphery, or even distrib-
ute to the nucleoplasm, finally forming distinct staining structures, 
the nucleolar caps, and spots or foci that spread in the nucleo-
plasm. Nucleolar caps are shaped around the nucleolar remnant; 
they can be also formed by nucleoplasmic proteins (mostly RNA-
binding proteins) or the Cajal body marker, coilin [69]. 

These kinds of morphological alterations have been designat-
ed as ‘nucleolar segregation’ or ‘nucleolar disintegration’ to re-
flect a state of loss of nucleolar integrity. As reviewed by Boulon 
et al., segregation is characterized by the condensation and sub-
sequent separation of the FC and GC, together with the formation 
of nucleolar caps [49]. Nucleolar segregation is thought to be 
different from nucleolar fragmentation which occurs following 
inhibition of either RNA Pol II (but not I) or protein kinases [7, 70] 
and leads to unraveling of the FC. Viral infections can also cause 
specific changes in nucleolar morphology, such as an increase in 
nucleolar size [71]. 

Nucleolar segregation has emerged as an indicator of nucleo-
lar stress induced by, in particular, agents that cause rDNA dam-
age and rRNA transcription impairment [72-74]. For instance, 
chemotherapeutic agents that inhibit rRNA transcription and early 
processing steps, but not late processing steps, lead to the loss of 
nucleolar integrity, which is marked by NPM1 translocation to the 
nucleoplasm [75]. Meanwhile, after chemotherapeutic agent 
treatment that mostly inhibit early and late rRNA processing steps, 
fibrillarin and the ribosomal biogenesis factor pescadillo are trans-
located into distinct morphological subnuclear structures, namely 
nuclear spots and nucleolar caps structures or even form ‘neck-
lace’ structures (especially for fibrillarin) [75]. Interestingly, it was 
noticed that the nucleolar integrity was maintained for drugs 
without inhibitory activity on ribosome biogenesis [76]. 

A more frequently used term for morphological alteration is 
‘nucleolar disruption‘ that was initiated by Rubbi and Milner, 
meaning the dispersion of the nucleolar structure [29]. Notably, 
this  morphological  description is  characterized by the release  of  
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nucleolar proteins, in particular, NPM1, to the nucleoplasm, being 
seen as a homogenous staining in nucleoplasmic area or even 
whole nuclear area [29, 31, 52, 60] (Figure 3). This characteristic 
alteration may simultaneously occur with the formation of nucleo-
lar caps and foci, but is frequently used to independently indicate 
nucleolar stress. 

Electron microscopic observations showed a segregation of 
nucleolar components when cells were exposed to the antitumor-
al drug VM26, a specific inhibitor of topoisomerase II [77]. Drug 
treatment caused double-strand breaks in the tandem repeat 
rDNA genes, leading to rDNA fragmentation, which might explain 
the morphology with a segregation of nucleolar components. 
Double immuno-gold labeling demonstrated redistribution of the 
nucleolar or nuclear proteins during nucleolar stress [78]. Howev-
er, the immuno-electron microscopic characteristics of the nu-
cleoli are technically challengeable and less quantitative com-
pared to immunofluorescence under light microscope, thus are 
not widely applicable. 

Interestingly, nucleolar atrophy is observed in neurons of pa-
tient brain autopsies [79] and pharmacological mouse models for 
some neurodegenerative disorders like Parkinson’s disease and 
Alzheimer’s disease [80, 81], indicating that the size of the nucleo-
lus can change under long-term stress. Of note, changes in nu-
cleolar size and shape in cultured cells can be briefly observed by 
simple phase contract microscope [82]. We list the general mor-
phological characteristics of nucleolar stress in Table 1. 
 
Impaired rRNA transcription and processing 
In mammalian cells, precursor ribosomal RNA (47S pre-rRNA) is 
transcribed by Pol I, then processed to 45S, 41S, 36S, and 32S 
rRNA intermediate precursors and finally matured 18S, 5.8S and 
28S rRNA [83]. To curtail the role of rRNA maturation in nucleolar 
stress and to identify specific processing steps, which might be 
impaired under the respective stress condition, a number of 
methodological approaches are available: Inhibition of rRNA 
transcription can easily be confirmed by reduced amount of 47S 
pre-rRNA precursor. This could happen under Pol I-targeted 
chemotherapeutic drugs treatment [75], depletion of essential 
factors in Pol I complex (like TIF-IA and UBF), or specific Pol I 
component inhibitors (like Act.D) [47]. Inhibition of rRNA 
processing usually results in accumulated precursor levels, 
reduced amounts of products or both. If an early processing stage 
is impaired, it will result in reduced 41S, 36S and 32S rRNA 
products [75]; if a late stage is impaired, there will be 

accumulated 32S rRNA or reduced 28S rRNA [25, 84]. The relative 
ratio changes of precursor and product (like 32S/28S) is widely 
accepted as a more accurate measurement of the processing [85, 
86]. Eventually, by analyzing the variation of the amount of 
precursors and products after treatments, one can figure out 
which steps in ribosome biogenesis are impaired. 

Ethidium bromide (EtBr) staining and reversed-transcriptional 
PCR (RT-PCR) can be used as classical nucleic acid detecting 
methods for analyzing individual rRNA products. However, to get 
a more accurate result, radioactive probes for specific rRNAs and 
Northern hybridization analysis of precursors are widely applied 
[87]. For instance, with 32P or 3H labeling in culture medium, the 
major rRNA precursors can be visualized [75], and 32S precursor 
can be detected using radioactive ITS2-specific probes [88]. 
 
Activation of p53 signaling 
The p53 tumor suppressor protein is considered as an integration 
point in response to various cellular stresses [89, 90]. The activa-
tion of p53 can promote transcription of p21 leading to G1/S 
growth arrest [91], of 14-3-3 sigma inducing G2/M arrest [92], or 
of Bax inducing apoptosis [93]. It can also induce other factors 
involved in autophagy, DNA repair and metabolism [94]. 

The major negative regulator of p53 is the E3 ubiquitin ligase 
MDM2 (murine double minute 2, HDM2 in human). Mechanisti-
cally, MDM2 interacts with p53 via its C-terminal RING finger do-
main, promoting p53 ubiquitination and degradation by the 26S 
proteasome [95, 96]. Therefore, p53 stabilization and activation in 
response to various stresses rely on a disruption this interaction 
between p53 and MDM2/HDM2. Simple readouts for p53 activa-
tion under nucleolar stress conditions are an increased p53 pro-
tein levels (stabilization or accumulation following blockage of 
ubiquitin-proteasomal degradation), reduced p53 binding to 
MDM2/HDM2, increased p53 mRNA levels under a long-lasting 
stress, elevated mRNA levels of p53 target genes, typically 
CDKN1A (p21) and BAX, and corresponding cell phenotypes such 
as cell cycle arrest, autophagy, DNA repair, senescence, or apop-
tosis [89]. 

 
Involvement of p53-independent stress signaling 
In p53-/- or p53 inactivated cell lines, nucleolar stress can usually 
still invoke cell cycle arrest or apoptosis, implying that there is a 
stress response that is mediated by signaling pathways other than 
p53 [97]. 
 

FIGURE 3: NPM1 translocation under nucleolar stress. Representative images of NPM1 translocation in HeLa cells under various nucleolar 

stresses, including H2O2 (500 M, 30 min), hypoxia (1% O2, 1 h), UV irradiation (100 J m-2), heat-shock (42°C, 30 min), EBSS starvation (6 h) 

and Act.D (8 nM, 1 h), examined by immunofluorescence with anti-NPM1 antibody. Bar, 5 m. Image from ref [31]. 
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Ribosomal proteins (RPs) regulating transcription factors (TFs) 
The major non-p53 TFs that respond to ribosomal stress are c-Myc, 
E2Fs and SP1 [97-100]. Their downregulation or decreased tran-
scriptional activities by RPs mediate cellular stress responses via 
altered transcription of target genes. Measurement of mRNA 
and/or protein levels of these TFs and their target genes, and 
analysis of TF binding with the target DNA, may indicate the in-
volvement of these signaling pathways. 

The oncoprotein c-Myc positively controls cell growth and 
proliferation [101] and serves as a direct regulator of ribosome 
biogenesis; many products of its transcriptional target genes are 
involved in ribosome biogenesis [102]. As a feedback mechanism, 
RPL5 and RPL11 are two critical negative regulators of c-Myc ex-
pression during ribosomal biogenesis; they form a complex with c-
Myc mRNA and recruit microRNAs to repress c-Myc expression 
thus inhibiting the transcriptional activity of c-Myc [100]. RPS14 
may also function as a negative regulator of c-Myc [103]. Consist-
ently, upon nucleolar stress, as ribosome-free RPs, these proteins 
can lead to inhibition of cell proliferation through suppression of 
c-Myc and its target gene expression [102]. 

E2F-1 is a member of the E2Fs family of transcription factors; 
the expression of their target genes are important both for cell 
proliferation and apoptosis [104]. Independent of its regulatory 
control of p53, MDM2 prolongs the half-life of E2F-1 [99]. Under 
impaired rRNA biosynthesis, free RPL11 binds to MDM2 causing 
E2F-1 degradation, which is associated with the inhibition of cell 
proliferation [105]. 

Recently, RPL3 has been found as a pro-apoptotic factor un-
der nucleolar stress induced by 5-fluorouracil in colon cancer cells 
devoid of p53. RPL3 in ribosome-free form, negatively regulates 
cystathionine-β-synthase (CBS) expression at the transcriptional 
level through inhibition of Sp1 binding to the CBS gene [98]. In 
addition, RPL3 can mediate p53-independent p21 upregulation, 
which requires the specific interaction between RPL3 and Sp1. 
Depending on its intracellular levels, p21 can either induce G1/S 
arrest of the cell cycle or mitochondria-mediated apoptosis [106]. 

 
RPs regulating non-TF proteins 
RPL3 can not only negatively regulate CBS expression at the tran-
scriptional level, but also trigger CBS translocation into mitochon-
dria. Consequently, apoptosis is induced through the mitochon-
drial apoptotic cell death pathway [98]. 

Nucleolar proteins regulating TFs and non-TF proteins 
There are several nucleolar proteins that bypass p53 and directly 
promote cell cycle arrest or apoptosis. These p53-independent 
regulators of apoptosis mainly include NPM1, PPAN, ARF and 
NuMA [107, 108]. Both NPM1 and ARF are well-known for their 
roles in p53 signaling, however, several reports have demonstrat-
ed their involvement in p53-independent signaling [109]. In these 
cases, translocation of the nucleolar proteins and their interac-
tions with the corresponding proteins may be analyzed. Interest-
ingly, many RP or other nucleolar protein-mediated p53-
independent stress responses require NPM1. In fact, NPM1 alone 
also interacts with apoptotic proteins. In conditions of nucleolar 
stress, NPM1 is transcriptionally induced and relocalizes from the 
nucleolus to the cytoplasm where it complexes with BAX, a crucial 
effector of the mitochondrial apoptosis pathway. Of note, cyto-
solic NPM1-BAX interaction has also been associated with cell 
resistance to death stimuli [109], therefore, the cellular response 
this direct interaction of NPM1 with apoptosis regulators does not 
necessarily result in cell death. 

The Wnt target Peter Pan (PPAN) localizes to mitochondria in 
addition to its nucleolar localization and inhibits the mitochondrial 
apoptosis pathway in a p53-independent manner. Its role as an 
anti-apoptotic factor is indicated by the fact that knockdown of 
PPAN induces BAX stabilization, mitochondrial membrane depo-
larization and cytochrome c release. Staurosporine or Act.D-
induced nucleolar stress and apoptosis disrupt nucleolar PPAN 
localization and induce its accumulation in the cytoplasm, which 
might be associated with impairment in its anti-apoptotic function 
[110]. 

Recently, the nuclear mitotic apparatus protein NuMA that 
locates in nucleoli in the interphase, has been demonstrated to be 
redistributed upon Act.D or doxorubicin- induced nucleolar stress. 
NuMA co-immunoprecipitates with Pol I, with RPL26 and RPL24, 
and with components of an ATP-dependent chromatin remodeling 
complex associated with rDNA transcription. Downregulation of 
NuMA expression triggers nucleolar stress, as shown by decreased 
nascent pre-rRNA synthesis, fibrillarin perinucleolar cap formation 
and upregulation of p27kip1, but not p53 [108]. 

Several studies reported that ARF binds and antagonizes the 
transcriptional activities of c-Myc and E2F-1, halting cell cycle 
progression in absence of p53 [111]. In addition to the regulation 
of the TFs, ARF controls proliferation by limiting nucleolar localiza-

TABLE 1. Morphology upon nucleolar stress. 
 

Microscopy Observations Related nuclear proteins 

Phase contrast Reduced nucleolar size  

 

 

Immunofluorescence  

1. Nucleolar caps (in nucleolus) Fibrillarin, UBF 

2. Necklaces, rings (in nucleolus) Fibrillarin, UBF, NPM1 

3. Spots, foci (out of nucleolus) Fibrillarin, UBF, NPM1 

4. Disruption NPM1 

Electron microscopy (EM) Reduced nucleolar size, segregation  

Immuno-EM Segregation Fibrillarin, UBF, NPM1 

 



K. Yang et al. (2018)  Hallmarks of nucleolar stress 

 
 

OPEN ACCESS | www.cell-stress.com 131 Cell Stress | JUNE 2018 | Vol. 2 No. 6 

tion of the RNA helicase DDX5, which ultimately increases ribo-
some output [112]. 

 

THE MECHANISMS UNDERLYING NUCLEOLAR STRESS 
SENSING AND INTEGRATION TO p53 SIGNALING 
Cumulative findings that any impairment in ribosome biogenesis 
by various insults can lead to p53 stabilization and activation, has 
led to the hypothesis that a low p53 level under non-stress condi-
tion relies on normal homeostasis of ribosome biogenesis in the 
nucleolus. This default state is ensured by the intactness of the 
ribosome biogenesis procedures and nucleolar structure. The 
evidence supporting this default model is robust, as p53 activation 
in nucleolar stress can be induced by the aberrant expression of 
those nucleolar proteins that are indispensable for ribosome bio-
genesis, or by various stimuli. 

This notion then brought up an outstanding question how the 
errors or hurdles within the nucleolus signal to p53. Of note, since 
p53 is mainly controlled by its negative regulator MDM2/HDM2, 
one should specifically ask, how nucleolar stress interrupts 
MDM2-p53 association. We here summarize several aspects of 
studies addressing this question [30, 48, 97, 113], including some 
frequent confusions or ambiguities. 

 
From nucleolar stress to MDM2/HDM2-p53  
The role of ribosomal proteins  
In response to nucleolar stress, several RPs bind to MDM2 and 
block MDM2-mediated p53 ubiquitination and degradation, re-
sulting in p53 stabilization and activation. After cells are exposed 
to low doses of Act.D, serum starvation or other insults, there is 
an increased binding of RPL5, RPL11 and RPL23 to MDM2 [33, 34, 
114, 115]. RPL5, RPL11, and RPL23 all bind to the central acidic 
region of MDM2, but importantly, each of them requires specific 
sequences to interact [43, 116, 117]. Therefore, the RP-MDM2-
p53 signaling pathway has been proposed and believed to consti-
tute a surveillance network monitoring the integrity of ribosomal 
biogenesis [113]. 

If an increased binding of free RPs with MDM2 is a prerequi-
site for this monitoring or sensing, the questions arises where 
these increased free RPs come from under nucleolar stress condi-
tions, and in which subnuclear compartment they interact with 
MDM2, given that RPs mostly reside in the nucleolus and the 
cytoplasm, whereas MDM2 often stays in the nucleoplasm. How-
ever, these critical points have not been paid adequate attention 
to, and thus remain unclear. To our knowledge, first of all, few 
publications addressed the issue of subnuclear localization or 
fractionation of RPs and MDM2/HDM2 before and after stressor 
exposure. And secondly, the reported findings were controversial 
and highly context-dependent: 

The early work by Lohrum et al. [114] showed that in un-
stressed U2OS cells under ectopic expression, (RP)L11 and HDM2 
displayed complex localization. When expressed alone, L11 was 
predominantly nucleolar and HDM2 confined to the nucleoplasm, 
but 24 hours after co-transfection, L11 and HDM2 were both lo-
calized to the nucleoplasm when the L11:HDM2 ratio was low 
(2:1); or both localized to the nucleolus when L11 levels were 
higher (4:1). However, again under ectopic expression, in re-
sponse to nucleolar stress induced by low levels of Act.D, both L11 
and HDM2 co-localized with endogenous NPM1 to discrete sub-
nuclear bodies, and, after longer treatment, both were co-
localized with NPM1 in the nucleoplasm. Apparently, one is hardly 
able to draw conclusions from these observations that L11 is re-
leased from the nucleolus to the nucleoplasm upon stress. 

Bursac et al. reported differential events in 2012 [74]. Using 
cell fractionation to purify the nucleolus extract, they found that 
endogenous nucleolar L5 and L11 were not reduced upon Act.D 

treatment, and using YFP-L11 transfection and fibrillarin im-
munostaining, they found that L11 was not translocated to the 
nucleoplasm upon Act.D treatment. The authors claimed that 
whereas several other newly synthesized ribosomal proteins are 
degraded by the proteasome upon Act.D treatment, L5 and L11 
accumulate in the ribosome-free fraction where they bind to 
MDM2. Furthermore, the endogenous, newly synthesized L5 and 
L11 continued to be imported into nucleoli even after nucleolar 
disruption and co-localized with MDM2, p53, and PML. Therefore, 
in contrast to findings by others, their results suggest that the 
disrupted nucleoli may provide a platform for L5- and L11-
dependent p53 activation. 

Watkins and Thomas labs both pointed out that 5S RNA com-
plexes with L5 and L11, and functions either in pre-60S assembly, 
or inhibiting MDM2 induced p53 degradation [118, 119]. 

Recently, using immunostaining, Kayama et al. demonstrated 
a nucleoplasmic translocation of FLAG-tagged RPL11 in HCT 116 
cells upon low dosed Act.D treatment [120]. 

In our experiments, immunostaining of RPL11 in U2OS cells 
showed a predominant location in the cytoplasm and no redistri-
bution to the nucleoli or nucleoplasm was detectable upon Act.D-
induced nucleolar stress (unpublished data). 

A number of review articles stated or implied that the in-
creased levels of ribosome-free RPs may originate from disrupted 
nucleoli [97, 113]. To our knowledge, this notion lacks direct evi-
dence, and thus remains speculative, unless free endogenous RP 
translocation from the nucleolus is detected under specific or 
general stress conditions. 

An increased RPs-MDM2 interaction could follow diverse cel-
lular disturbances, such as global translation inhibition [121], or 
the breakdown of ribosomal polysomes in the cytoplasm [33, 43, 
115]. One can predict that there would be an accumulation of free 
RPs in the cells under these circumstances. However, in order to 
validate the postulation that excessive and ‘wandering’ free RPs 
find their way toward the nucleoplasm and there interact with 
MDM2, more detailed analysis based on subcellular fractionation 
and localization approaches are required. Taken together, it is 
worth further investigating how free RPs sense the nucleolar 
stress and then transmit signals to p53. 

 
The role of ARF 
ARF (alternative reading frame protein, p19 in mouse, p14 in hu-
mans) induces p53 activation in response to certain types of DNA 
damage [122] or several ontogenetic stresses [123-125], and is 
therefore categorized as a tumor suppressor. ARF is considered to 
localize to nucleoli of non-stressed cells [126]. As a basic nucleolar 
protein rich in arginine residues, it binds to multiple ribosomal 
proteins, and participates in 47S rRNA transcription and 32S pro-
cessing events [127]. Although several studies revealed that ARF 
was released to nucleoplasm under nucleolar stress and targeted 
the central acidic domain of MDM2 to inhibit p53 degradation 
[128, 129], some other reports implied that a resident nucleo-
plasmic fraction of total ARF is involved in the interaction with 
MDM2 under stress conditions [128, 130]. Moreover, some stud-
ies indicated that ARF is dispensable for nucleolar stress-induced 
p53 accumulation [131, 132]. 

In our study [31], we found that endogenous or exogenous 
ARF was similarly distributed both in the nucleolus and nucleo-
plasm of U2OS cells; the nucleolar ARF did not move out following 
Act.D treatment and, in contrast, the nucleolus/nucleoplasm ratio 
of ARF was slightly increased, while NPM1 was redistributed to 
the nucleoplasm under the same condition. 

Therefore, the role of ARF in nucleolar stress-induced p53 ac-
tivation may be cell type-dependent and/or context-dependent. 
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In addition, the subnuclear compartment where ARF interacts 
with MDM2 still needs to be determined. 

 
The role of translocated nucleolar proteins 
As outlined above, NPM1 can interact directly with p53 via its C-
terminal domain [17] and also binds to HDM2, competing with 
p53 and blocking HDM2-mediated p53 ubiquitination [30]. The 
wide range of stress conditions which provoke NPM1 transloca-
tion [16, 31, 133, 134] might explain how p53 can integrate vari-
ous stimuli. In our own work, we aimed at answering the question, 
if the translocated, nucleoplasmic fraction of NPM1 was the sole 
trigger for p53 activation. Therefore, we constructed an NPM1 
mutant, unable to move upon Act.D treatment. In contrast to 
wild-type NPM1, this mutant was unable to disrupt the p53-HDM2 
interaction, and thus greatly compromised the activation of p53 
[31]. Interestingly, compared with the mock DNA, overexpression 
of the p53 activator ARF in U2OS cells with either normal or si-
lenced NPM1 led to an increased accumulation of p53 under non-
stress condition. However, after cells were exposed to Act.D, 
overexpression of ARF alone did not produce further accumula-
tion of p53 in NPM1 knockdown cells. An enhanced p53 accumu-
lation was observed when wild-type NPM1 was restored, but 
reintroducing the unmovable mutant NPM1 could not cause an 
increase of p53. A co-immunoprecipitation assay showed that the 
disruption of the HDM2-p53 interaction occurred in the cells bear-
ing the wild-type but not mutant NPM1, whereas amounts of ARF 
bond to HDM2 appeared similar in both cell groups. These data 
suggest that the nucleoplasmic fraction of ARF alone is able to 
induce p53 accumulation under basal conditions. However, fur-
ther p53 accumulation under stress conditions is determined by 
the presence of the nucleoplasmic NPM1, independent of ARF. 

We also found that the p53-HDM2 interaction was prevented 
only by the wild-type but not the mutant NPM1 that lost nucleo-
plasmic translocation, whereas RPL23 remained bound to HDM2 
in both samples. This means that, although RPL23 is required for 
p53 stabilization under stress, only NPM1 translocation to the 
nucleoplasm dictates the final outcome of p53 accumulation 

through NPM1’s binding with HDM2 and thus the disruption of 
the HDM2-p53 interaction. Collectively, the binding of ribosomal 
proteins or ARF with HDM2, which had been thought to be suffi-
cient for p53 stabilization [33, 115, 135, 136], is actually insuffi-
cient when NPM1 stays within the nucleoli. These results highlight 
that nucleoplasmic translocation of NPM1 is a prerequisite for 
stress-induced activation of p53. 

 
From nucleolar stress to NPM1 translocation 
As discussed above, nucleoplasmic translocation of NPM1 is the 
most prominent hallmark of nucleolar stress. However, the up-
stream causes of this translocation remained unclear. In other 
words, how various cellular insults trigger NPM1 translocation had 
not been ever asked.  

Using single live-cell imaging and the redox biosensors, we 
demonstrated that nucleolar oxidation is a general response to 
various cellular stresses and a trigger for NPM1 translocation. This 
conclusion was supported by that antioxidant N-acetyl-cystein 
pretreatment was able to prevent the NPM1 translocation to a 
great extent, while treatment with a protein reducing agent com-
pletely inhibited NPM1 translocation. We showed that during 
nucleolar oxidation, NPM1 undergoes S-glutathionylation on cys-
teine 275, which triggers the dissociation of NPM1 from nucleolar 
nucleic acids. Accordingly, the NPM1 C275S mutant, unable to be 
glutathionylated, remained in the nucleolus under nucleolar stress, 
and greatly compromised the activation of p53. In sum, our find-
ings provide a redox mechanism underlying the nucleolar stress 
sensing by NPM1 [31] (Figure 4). 

 

NUCLEOLAR STRESS AND HUMAN DISEASES 
Natural mutations in genes that encode ribosomal proteins or 
proteins regulating ribosome biogenesis within the nucleolus 
result in a class of genetic disorders entitled ‘ribosomopathies’. 
These diseases usually have dramatic systemic phenotypes and 
severe outcomes [137-144]. Of note, although ribosomopathies 
display nucleolar stress, there are no therapeutic options directly 
targeting nucleolar stress to delay disease progression. 

FIGURE 4: NPM1 sensing for nucleolar stress. Nucleolar oxidation is a general response to nucleolar stress. S-glutathionylation and nu-
cleoplasmic translocation of NPM1 are indispensable for p53 activation in nucleolar stress [31]. 
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Nucleolar stress is a common event in neurodegenerative dis-
orders such as Parkinson's disease (PD) [137], Alzheimer's disease 
(AD) [80] and Huntington's disease (HD) [141]. Despite the fact 
that these disorders are polycausal, nucleolar stress may be one 
of the significant mediators in the degeneration or loss of neurons 
[138]. Besides morphological and functional manifestations in 
tissues and cell culture, the direct causal relation between these 
diseases and nucleolar stress has been established using the TIF-IA 
mouse model (see below) [79, 145]. A related application, aiming 
to alleviate nucleolar stress for the prevention and treatment of 
these disorders will likely ensue. 

Large and abnormal nucleoli are commonly observed in can-
cer cells [146]. The hyperactivation of ribosome biogenesis likely 
contributes to increased cancer cell survival and proliferation. In 
addition, cancer treatment faces challenges in chemo-radio-
resistance cancers and those insensitive to other killing approach-
es. Potentiating nucleolar stress in these cancer cells may be a 
novel therapeutic strategy. Indeed, some typical nucleolar stress-
inducing agents are under clinical investigation for remedy of 
leukemia, which has shown promising outcomes [147, 148]. 

Hereafter, we present a brief overview on these two types of 
nucleolar stress-related diseases. We recommend several com-
prehensive and in-depth reviews [137, 147, 149, 150], and try to 
provide some updated information. 

 
Neurodegenerative disorders 
Neurodegenerative disorders are chronic diseases, characterized 
by the progressive loss of specific neurons in the central or pe-
ripheral nervous system. These diseases are characterized by 
degeneration or loss of a specific subpopulation of neurons. Nu-
cleolar stress is an emerging element of the degenerative process, 
caused by impaired rRNA transcription and altered nucleolar in-
tegrity [151]. 

PD is associated with the loss of dopaminergic (DA) neurons. 
Reduced nucleolar volume usually reflects reduced rRNA synthesis, 
while reduced rRNA synthesis has been reported in neurodegen-
erative disorders [152]. Early data show that nucleolar volume in 
DA neurons is decreased in PD patients and this is inversely corre-
lated with disease duration [153, 154]. Decreased nucleolar vol-
ume has been reported in the partial unilateral intrastriatal 6-
hydroxydopamine oxidative stress rat model of PD [81]. Along 
these lines, a pharmacological mouse model of PD displays disrup-
tion of nucleolar integrity [79], while there is also a significant 
atrophy of the nucleoli in AD [80]. Interestingly, DNA damage in 
neurons can cause NPM1 translocation to the nucleoplasm [155], 
thus eliciting another hallmark of nucleolar stress.  

Mouse models for conditional knockout (KO) of the transcrip-
tion factor TIF-IA have been generated, in which nucleolar stress is 
induced in specific neuronal populations at a defined time-point 
[44]. Therefore, mice with conditional KO of TIF-IA not only con-
firmed a causal correlation of nucleolar stress with neuronal de-
generation, but also served as an efficient model to study nucleo-
lar stress itself. Cell-specific TIF-IA KO in distinct postmitotic neu-
rons resulted in their slow, progressive degeneration, showing 
that neurons can survive for several months under nucleolar 
stress [79, 145, 156, 157]. This slow progression allows the analy-
sis of the sequence of events triggered by nucleolar stress in dis-
tinct neuronal populations. Interestingly, DA-specific TIF-IA KO 
mice show behavioral and cellular features of PD [79]. Notably, 
nucleolar impairment at the age of two months in DA neurons 
leads to mitochondrial dysfunction and increased oxidative dam-
age, characteristics shared by various neurodegenerative diseases, 
such as PD, AD and HD. Interestingly, DA-specific TIF-IA KO in a 
double KO background of the PD-related genes DJ-1/PINK1 dis-
played an early phenotype similar to those mice lacking TIF-IA 

alone [158]. This conditional TIF-IA KO mouse model has also 
revealed a dual role of nucleolar stress. It could trigger a neuro-
protective defense response at early stages, probably through 
inducing autophagy [145] and p53-dependent antioxidant re-
sponse [159], but, on the long run, lead to impaired mitochondrial 
function and increased oxidative stress, and ultimately neuronal 
death [79, 145]. 

Further dissection of the regulatory factors in nucleolar stress 
at a temporal resolution may help to better understand the path-
ophysiology of neurodegenerative disorders and create novel 
interfering strategies for prevention and treatment. 

 
Malignancies 
Given the pivotal role of NPM1 in nucleolar stress transmission to 
p53, one of the main tumorsuppressors, there are multiple NPM1-
based therapeutic strategies for cancer treatment. Indeed, a vast 
part of anticancer drugs triggers apoptotic cell death through p53-
activation pathway. Because of a causal relationship between 
anticancer chemical drug induced cell apoptosis and NPM1 trans-
location [63, 134, 160], NPM1 translocation could be regarded as 
a effective drug screening marker for novel antitumor agents 
selection [8]. As a safe and tolerable drug in clinical phase II trial, 
CIGB-300 exerts a broad original and synergistic antiproliferative 
effect on different cell lines [161-164]. Perera et al. revealed that 
CIGB-300 directly binds to NPM1, induces a rapid nucleoplasmic 
translocation of NPM1, and leads to a nucleolar disassembly-
dependent apoptosis [165]. 

Additionally, there are also some selective Pol I inhibitors that 
reveal promising clinical effects [148, 166]. For example, CX-3543 
exhibits broad anti-proliferative and apoptotic effects on cancer 
cells and demonstrated impressive anti-tumor growth properties 
in xenograft models of breast and pancreatic cancer [167]. 
Intriguingly, the next generation of CX-3543, CX-5461 showed 
effectiveness in human cancer cells that experience overloaded 
ribosomal biogenesis compared to normal cells [168, 169]. 

The cytotoxic marine natural product Avrainvillamide 
specifically binds the C-terminus of NPM1 and leads to its 
disassociation from nucleolar nucleic acid [170, 171]. Furthermore, 
a G-quadruplex ligand TmPyP4 could perfectly compete and inhib-
it nucleolar nucleic acid binding activity of NPM1 [172]. Both of 
them caused NPM1 nucleoplasmic translocation. Because the 
NPM1 C-terminal domain surface is responsible for NPM1 nucleo-
lar localization [173], it is likely that these two C-terminus 
targeting compounds are also related with nucleolar stress. 

Additionally, there are some compounds targeting other 
NPM1 functional domains. NSC348884 and YTR107 interact with 
the N-terminus of NPM1 and inhibit its normal oligomerization 
function [174]. REV-NLS targets the N-terminal NPM1 surface and 
inhibits its protein-protein interaction functions [175]. A small 
synthetic RNA, named 1A1, identified in a screen for binding to 
full-length NPM1, binds to the central region of NPM1 [176]. 
These NPM1-targeting compounds both showed excellent 
anticancer effects. Importantly, both of them induced increased 
p53 levels and trancriptional activity, although their effects on 
NPM1 localization has not been investigated so far. 

The NPM1 gene was identified to harbor the most frequent 
genetic (30%) lesions in adult acute myeloid leukemia (AML) [177, 
178]. Immunohistochemical staining in bone marrow specimens 
reveals a constant cytoplasmic localization for NPM1 [179]. Due to 
a frame shift mutation in one allele of the last exon of NPM1 gene 
[180], this mutant, termed as NPMc+ (cytoplasmic positive), holds 
a nuclear export signal (NES) and a misfolded structure in its C-
terminus, resulting in disassociation from nucleic acid and cyto-
plasmic export [173, 181, 182]. In addition, this mutant also caus-
es a cytoplasmic retention effect of wild-type NPM1, leaving only 
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trace amounts of wild-type NPM1 in the nucleoli [183]. Fortunate-
ly, an intact functional p53 response pathway is still preserved in 
NPM1c+ AML cells [178], thus NPM1c+ AML cells remain sensitive 
to nucleolar stress-induced p53 activation [184, 185]. Thus, Falini 
et al. focused on Act.D induced nucleolar stress and utilized the 
clinical recommended dose of Act.D to treat seven refractory or 
relapsed NPM1c+ mutant only (without FLT3 mutations) AML 
patients. Three of them showed hematologic complete remission 
within six weeks of therapy, and one of them even manifested 
molecular complete remission lasting for 14 months [186]. 

Considering our recently uncovered sensing mechanism of 
NPM1 in response to nucleolar stress [31], we strongly expect that 
the chemical compounds that enable NPM1 glutathionylation or 
specifically target the NPM1 nucleic acid binding site would exert 
better efficacy in therapies for malignancies like NPM1c+ AML. 
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