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ABSTRACT  Silencing of tumor suppressor genes by promoter hypermethylation 
is a key mechanism to facilitate cancer progression in many malignancies. While 
promoter hypermethylation can occur at later stages of the carcinogenesis pro-
cess, constitutional methylation of key tumor suppressors may be an initiating 
event whereby cancer is started. Constitutional BRCA1 methylation due to cis-
acting germline genetic variants is associated with a high risk of breast and ovar-
ian cancer. However, this seems to be a rare event, restricted to a very limited 
number of families. In contrast, mosaic constitutional BRCA1 methylation is de-
tected in 4-7% of newborn females without germline BRCA1 mutations. While 
the cause of such methylation is poorly understood, mosaic normal tissue BRCA1 
methylation is associated with a 2-3 fold increased risk of high-grade serous 
ovarian cancer (HGSOC). As such, BRCA1 methylation may be the cause of a sig-
nificant number of ovarian cancers. Given the molecular similarities between 
HGSOC and basal-like breast cancer, the findings with respect to HGSOC suggest 
that constitutional BRCA1 methylation could be a risk factor for basal-like breast 
cancer as well. Similar to BRCA1, some specific germline variants in MLH1 and 
MSH2 are associated with promoter methylation and a high risk of colorectal 
cancers in rare hereditary cases of the disease. However, as many as 15% of all 
colorectal cancers are of the microsatellite instability (MSI) "high" subtype, in 
which commonly the tumors harbor MLH1 hypermethylation. Constitutional 
mosaic methylation of MLH1 in normal tissues has been detected but not for-
mally evaluated as a potential risk factor for incidental colorectal cancers. How-
ever, the findings with respect to BRCA1 in breast and ovarian cancer raises the 
question whether mosaic MLH1 methylation is a risk factor for MSI positive colo-
rectal cancer as well. As for MGMT, a promoter variant is associated with ele-
vated methylation across a panel of solid cancers, and MGMT promoter methyl-
ation may contribute to an elevated cancer risk in several of these malignancies. 
We hypothesize that constitutional mosaic promoter methylation of crucial tu-
mor suppressors may trigger certain types of cancer, similar to germline muta-
tions inactivating the same particular genes. Such constitutional methylation 
events may be a spark to ignite cancer development, and if associated with a 
significant cancer risk, screening for such epigenetic alterations could be part of 
cancer prevention programs to reduce cancer mortality in the future. 
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INTRODUCTION 
Malignant tumors are thought to arise through a sequence 
of genetic disturbances [1]. In some cancers, like colorectal 
carcinomas, the sequence of key genomic events in general 
follows a common order [2], while in other cancer types, 

like breast cancer, the sequence of events in carcinogene-
sis seems to occur at random [3, 4]. 

The identification of genomic aberrations predisposing 
to cancer have added substantially to our understanding of 
cancer-inducing events. Importantly, the finding that 
germline mutations in genes like BRCA1/2, TP53, RB1, 
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OR – odds ratio,  
PARP - Poly-ADP-Ribose-
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SNP – single nucleotide 
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WBC – white blood cell. 
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CDKN2A and others are associated with an elevated risk of 
certain cancers indicates that mutations in these genes 
may act as the initial events in malignant transformation in 
sporadic cancers as well [5]. 

In addition to gene mutations and rearrangements, 
somatic epigenetic alterations, i.e. epimutations, affecting 
gene expression levels can play a pivotal role during car-
cinogenesis [6]. Further, recent findings have indicated 
that underlying epimutations of certain genes in the nor-
mal tissue are associated with an elevated risk of particular 
cancer subtypes. This indicates that an epigenetic, and not 
genetic, event may be the initial step in the carcinogenesis 
process for these particular cancers (Figure 1). Of notice, 
epimutations that are widely distributed across normal 
tissues, predisposing to disease, are defined as constitu-
tional epimutations [7-10]. By definition, constitutional 
epimutations involve tissue derived from all the three germ 
layers [9]. Thus, in order to distinguish constitutional 
methylation from gene methylations acquired during life-
time, it is important to assess methylation status of the 
gene in question across tissues derived from more than 
one of the germ layers (endoderm, ectoderm, as well as 
mesoderm). 

Studies of normal tissues show that epimutations 
which affect only a fraction of the alleles may still mediate 
an increased cancer risk. On the other hand, in a malignant 
tumor arising from a precursor cell carrying an epimutation, 
we may expect all cells in the resulting tumor to harbour 
the epigenetic event if it is essential to cancer progression. 
While epigenetic gene silencing involves several types of 
modifications, including DNA methylation, histone modifi-
cations and RNA interference, in this review we will focus 
on promoter CpG methylation, the only mechanism that 
has been explored with respect to cancer predisposition in 
human studies so far.  

Evidence linking epimutations to cancer risk has been 
reported for a limited number of genes. For these particu-
lar genes, we will discuss the evidence indicating normal 
tissue epimutations to infer an elevated cancer risk. Addi-
tionally, we will discuss the potential clinical and biological 
importance of these epimutations with respect to how 
they may mediate the phenotype of particular cancers. Of 
notice, if epimutations act as the initial trigger events, we 
expect such malignancies in general to mirror the pheno-
type of cancer in the same organ developing due to 
germline mutations in the same gene. This is in contrast to 
sporadic cancers where one would expect a more diverse 
phenotype based on heterogenous genomic events trigger-
ing cancer initiation.  

The Lynch syndrome [11] or hereditary non-polyposis 
colorectal cancer (HNPCC), is an autosomal dominant ge-
netic condition characterized by an elevated risk of colo-
rectal cancer, with a preponderance for proximal/right-
sided colon cancers, as well as an elevated risk of endome-
trial cancer. The syndrome is caused by defects in DNA 
mismatch repair due to germline mutations in either MLH1 
or MSH2, or, more rarely, in the MSH6, PMS1 or PMS2 
genes [12]. Additionally, recent findings have revealed a 
moderately increased risk of various other solid malignan-

cies as part of the Lynch syndrome, affecting the stomach, 
small intestine, pancreas, hepatobiliary and upper urinary 
tract, brain, ovary or breast [11].  

Due to the mismatch repair gene defects, malignant 
tumors associated with Lynch syndrome are characterized 
by a microsatellite-instability (MSI) phenotype [13]. While 
the Lynch syndrome accounts for only 2-3% of all colorec-
tal cancers [14, 15], up to 15% of all colorectal cancers are 
defined as MSI “high”, where other underlying mechanisms 
must be at play [16]. Interestingly, the majority of these 
MSI "high" tumors reveal somatic hypermethylation of the 
MLH1 promoter region [17-19]. Moreover, all malignant 
tumors with MSI are characterized by a similar phenotype, 
regardless of which of the mismatch genes that are mutat-
ed - this includes MSI “high” cancers due to MLH1 inactiva-
tion; whether it is by germline mutations or epigenetic 
silencing [20]. Compared to other colorectal cancers, MSI 
high tumors are characterized by a high mutation burden, 
and they also seem to draw a substantial benefit from im-
munotherapy [21, 22].  

Characteristics such as MSI and a high mutation load in 
malignancies from patients with Lynch syndrome or spon-
taneous cancers harboring MLH1 promoter methylation 
indicate that epimutations, as well as somatic mutations 
affecting MLH1, are early events during malignant trans-
formation [23]. Alternatively, for tumors harbouring MLH1 
hypermethylation, if the high mutational load occurs at a 
later stage it must have been selected for through a pro-
found “selective sweep” [24]. Interestingly, Miyakura et al. 
[19], in addition to analyzing for MLH1 methylation in the 
tumor tissue, examined MLH1 methylation status in the 
matching normal colon mucosa, detecting partial MLH1 

BOX 1 | SCIENTIFIC QUESTIONS THAT NEED TO BE 
ADDRESSED  

1. MLH1 and MGMT, as well as other genes which are 

methylated in cancer tissues, should be assessed with 
respect to mosaic methylation in WBC or other types of 
normal tissue from healthy individuals. If they are meth-
ylated in a distinct fraction of the population (using 
BRCA1 as “standard”; > 4%), one should assess the OR 
for individuals harbouring constitutional methylation to 
develop the same type of cancer. 

2. To what extent is constitutional mosaic promoter 

methylation affecting key tumor suppressors, apart from 
BRCA1? 

3. What is the cause of neonatal promoter methylation 

of BRCA1? 

4. We do not know whether promoter methylation of 

genes like BRCA1 remains static during life or fluctuates 
in a dynamic state. To follow individuals over decades 
collecting regular blood samples may be difficult, but 
efforts should be made to address this question. 
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promoter methylation in one third of the patients. Alt-
hough no firm conclusions can be drawn from this finding, 
one may speculate that in a subset of patients the carcino-
genesis process may have started by methylation of normal 
colon mucosal cells. 

 

CONSTITUTIONAL MLH1 METHYLATION AND COLO-
RECTAL CANCER RISK  
As defined by Hitchins and colleagues [25, 26], epimuta-
tions may be separated into two major groups; primary 
epimutations (or promoter methylation) where no DNA 
alterations are detected, and secondary epimutations, oc-
curring in concert with (and caused by) a local cis-acting 
DNA alteration. Following the findings by Kane and col-
leagues [27] demonstrating MLH1 promoter methylation in 
colorectal tumor tissue, and the report of Gazzoli and col-

leagues in 2002 [28] demonstrating white blood cell (WBC) 
DNA methylation of the MLH1 promoter in a young man 
diagnosed with an MSI positive colon cancer, MLH1 meth-
ylation has been detected in circulating leucocytes (WBC) 
of a subset of patients with sporadic MSI positive colorec-
tal cancers. In some cases, such findings have also been 
made in probands without a cancer diagnosis. However, 
less than 50 individuals have been reported in the litera-
ture with concurrent colorectal cancer and constitutional 
(normal tissue) MLH1 methylation so far [29-42]. As for 
studies reporting the fraction of methylated alleles in the 
blood of these individuals, this has been in the range of 20-
50% [39], with a monoallelic pattern. 

In 2011, Hitchins and colleagues identified a haplotype 
harbouring tandem nucleotide substitutions, where a 
c.-27C>A variant was the likely cause of MLH1 methylation 

FIGURE 1: Early events underlying carcinogenesis. (A) Cancer arising from normal cells subject to a somatic driver mutation as the initial 
event, with subsequent alterations leading to malignant transformation. In such cases the initial event will not be detected in white blood 
cells (WBC). (B) Cancer arising from normal cells harbouring a germline driver mutation, acting as the initial event, with subsequent altera-
tions leading to malignant transformation. In such cases the “initial event” will be detectable in all WBCs. (C) Cancer arising from a minori-
ty of normal cells with a key tumour suppressor methylated from early embryonic life (epigenetic mosaicism). This methylation may act as 
the initial event, with subsequent alterations leading to malignant transformation. In such cases the initial event / methylation will be 
detectable also as mosaicism in WBC. 
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and cancer diagnosis across a family with Lynch syndrome 
[38]. Additionally, in a few cases, methylation has been 
detected in concert with larger genomic rearrangements of 
the MLH1 gene [35, 37]. Apart from these individuals, the 
potential pathogenic contribution of genomic rearrange-
ments to MLH1 methylation remains an open question. 

Contrasting the “high-level” methylation associated 
with colorectal cancer mentioned above, low level mosaic 
WBC methylation of MLH1 in patients with colorectal can-
cer has also been reported [29, 39]. The potential contribu-
tion of such low level methylation in MLH1 to colorectal 
cancer risk remains to be formally assessed. Anecdotally, 
Sloane and colleagues [43] reported a young male diag-
nosed with colorectal cancer to harbour constitutional 
methylation in about 50% of his alleles, while his mother 
revealed mosaic MLH1 methylation in less than 5% of the 
alleles. Interestingly, among retinoblastoma patients diag-
nosed with germline RB1 mutations, in some cases an un-
affected parent carried the same mutation at low frequen-
cy in her/his WBCs [44, 45]. Mosaic gene methylation as a 
cancer risk factor will be discussed further as part of re-
viewing BRCA1 methylation data below.  

 

MSH2 
While MSH2 methylation was detected in a small subset of 
colorectal cancers, most importantly it appeared only in 
subfractions of the malignant cells, with no correlation to 
gene expression level or MSI status [46]. Constitutional 
methylation of MSH2 is a rare event, first described by 
Chan et al. [47] in 2006. In a subsequent study [48], the 
same family was further characterized together with an 
additional set of nine Dutch and Chinese families. In sum-
mary, patients in these families all revealed loss of MSH2 
staining by immunohistochemistry (IHC) and hypermethyl-
ation of the MSH2 promoter within the colorectal cancers, 
as well as methylation of the MSH2 promoter across vari-
ous normal tissues, although to a variable extent. Im-
portantly, all patients carried a deletion in a gene upstream 
of MSH2, namely TACSTD1 (encoding Ep-CAM). This dele-
tion resulted in MSH2 promoter methylation and reduced 
MSH2 transcription in the colon mucosa and subsequent 
colorectal cancer cells. This finding was confirmed by Nies-
sen and colleagues in another three independent individu-
als carrying the Lynch syndrome [42]. 

 

O-6-METHYLGUANINE-DNA METHYLTRANSFERASE 
(MGMT) 
MGMT is downregulated by promoter methylation in vari-
ous types of cancers [49-57]. Subsequent loss of methyla-
tion and re-elevated expression of MGMT has been associ-
ated with resistance towards alkylating agents like te-
mozolomide and cyclophosphamide [49, 50, 55, 58-60]. 
While germline mutations in MGMT have not been detect-
ed so far, the T-allele of the single nucleotide polymor-
phism (SNP) rs16906252, located in the first exon of MGMT, 
close to the transcription start site, has been associated 
with elevated promoter methylation across a panel of solid 
malignancies [51, 53, 54, 61, 62]. Mirroring findings for 

MLH1 (see above), Shen and colleagues [52] detected 
MGMT methylation not only in cancer tissue, but also in 
normal colon mucosa located 10 cm from the tumor bor-
ders. More recently, mosaic MGMT methylation (up to 10% 
of the alleles) associated with the rs16906252 SNP T-allele 
has also been detected in WBC [63]. In a large study of 
germline genotypes (WBC) including a validation cohort, 
Kuroiwa-Trzmielina and colleagues found the rs16906252 
T-allele to be associated with an odds ratio (OR) of 3-4 for 
harbouring MGMT promoter methylation within a colorec-
tal cancer [56]. In addition, one smaller study found a 
moderate but significant association between the 
rs16906252 T-allele of MGMT and glioblastoma risk [61]. 
Taken together, these studies indicate that the rs16906252 
SNP may affect the risk of different cancers by causing in-
creased MGMT promoter methylation.  

 

BRCA1 AND BRCA2 EPIMUTATIONS IN BREAST AND 
OVARIAN CANCER TISSUE 
Women carrying germline pathogenic mutations in BRCA1 
and BRCA2 are at high risk of developing breast as well as 
ovarian cancer [64-67]. Notably, germline mutations in 
BRCA1/2 have also been linked to an elevated risk of can-
cer of the prostate and pancreas [68, 69], and germline 
BRCA2 mutations to a moderately increased risk of several 
other malignancies [70, 71]. With respect to the current 
review, evidence linking BRCA1/2 methylation to cancer 
risk has so far only been collected from patients with 
breast and ovarian cancer. 

BRCA1 and BRCA2 both participate in homologous DNA 
repair. BRCA2 is part of the Fanconi complex (FANCD1), 
whereas BRCA1 has a critical role as a downstream execu-
tor of this complex [72, 73]. However, the breast cancer 
phenotypes linked to deficiencies in these two gene varies. 
As for breast cancers arising in BRCA1 mutation carriers, 
>80% belongs to the so-called “basal-like” subtype [74], 
accounting for the majority of triple negative breast can-
cers [75]. This contrasts spontaneous breast cancers where 
triple negative tumors account for approximately 15% [76, 
77]. On the other hand, tumors arising in BRCA2 mutation 
carriers reveal a phenotype distribution mirroring sponta-
neous breast cancers [78]. Among basal-like breast cancers, 
10-25% are associated with a germline BRCA1 mutation. 
This rather wide range is due to differences in ethnicity and 
age distribution at cancer diagnosis in different studies [79, 
80].  

While somatic BRCA1/2 mutations in breast cancer 
previously were thought of as rare, compared to germline 
mutations, contemporary evidence indicates that one third 
of BRCA mutations have a somatic origin [4, 81-86]. More-
over, mutations of BRCA1/2 as well as other crucial DNA 
repair genes inflict homologous repair deficiency (HRD), 
which is associated with distinct gene mutation signatures, 
including copy number variations [84]. Thus, different mu-
tational signatures aiming at predicting HRD have been 
generated [87-89]. Applying such a signature assessment 
to breast cancers have indicated that HRD may character-
ize as many as 20% of all cases [87]. The biological and 
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clinical relevance of such signatures are underlined by 
merging evidence validating their role in predicting sensi-
tivity towards treatment with PARP (Poly-ADP-Ribose-
Polymerase) inhibitors as well as certain chemotherapy 
regimens, resembling what may be seen for patients har-
bouring germline BRCA1/2 mutations [83, 90-94]. The rea-
son for the homologous repair defect in most of these tu-
mors remains unknown, but BRCA1 promoter methylation 
has been reported in 30-35% of all triple negative breast 
cancers with germline BRCA1/2 wild-type status, in particu-
lar among tumors of the basal-like subtype [95]. Further, 
BRCA1 promoter methylation has been associated with 
transcriptional downregulation of BRCA1 [96-99]. The inci-
dence of BRCA1 methylation is lower (5-25%) among 
breast cancers that are not basal-like [79, 100-107], con-
sistent with the subtype skewness seen for BRCA1 muta-

tion carriers [108, 109]. Further, conflicting evidence has 
indicated similarities with respect to drug sensitivity and 
outcome between individuals with breast cancers harbour-
ing BRCA1 mutations and those with promoter methylation 
[83, 101, 110-114]. In spontaneous breast cancer, the 
BRCA2 methylation frequencies vary between 0 and 12% 
[105, 107]. Notably, promoter methylation of PALB2, an-
other gene in the Fanconi complex, has been detected in a 
small number of spontaneous breast cancers as well [115]. 

The reported BRCA1/2 methylation frequencies vary 
substantially between different clinical studies. Similar to 
variation in the incidence of BRCA1/2 germline mutations 
this could be due to ethnic variations or the age distribu-
tion in the patient cohort undergoing analysis. However, 
the reported frequency differences are most likely due to 
methodological differences.   

FIGURE 2: BRCA1 methylation and risk of ovarian cancer. Forest plot illustrating the odds ratio (OR) for ovarian cancer (all subtypes), 
non-serous, serous non-high grade and high grade serous ovarian cancer (HGSOC) related to BRCA1 promoter methylation, derived from 
the initial study population and the validation cohort in the recent publication by Lønning et al. [131]. The odds ratios (ORs) were based 
on analyses of 925 cases and 1688 controls (initial study) and 607 cases and 1914 controls (validation study). Reprint of original figure, 
with permission from Annals of Internal Medicine. 
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Approximately 50% of patients diagnosed with a high-
grade serous ovarian cancer seem to harbour homologous 
repair deficiencies in the tumor tissue [116]. High-grade 
serous ovarian cancer is the cancer subtype for which 
germline BRCA1/2 mutations are detected at the highest 
frequency with 8-15% carrying a BRCA1 and 4-8% a BRCA2 
mutation [98, 117-119]. In addition, The Cancer Genome 
Atlas [98] reported somatic BRCA1/2 mutations in a small 
number of cases. BRCA1 methylation is detected in 9-15% 
of spontaneous cases of serous ovarian cancer, but does 
not seem to occur in concert with germline mutations [97, 
120, 121]. Notably, ovarian cancer tissue methylation for 
the BRCA1 promoter, similar to germline BRCA1 mutation 
status, was associated with the high-grade serous cancer 
subtype and young age at diagnosis [122, 123]. In contrast 
to the frequencies reported in BRCA1, methylation of 
BRCA2 occurs in <1% of ovarian cancers [124-126]. In 
germline mutation carriers, no BRCA2 methylated ovarian 
cancer has been detected so far [127]. 

While most breast cancers carrying BRCA1 mutations 
undergo loss-of-heterozygosity (LOH) of their wild-type 
allele as their second hit, BRCA1 and BRCA2 promoter 
methylation have also been detected in some tumors 
without LOH [104, 127, 128]. However, the methylation 
profile varies across individual CpG nucleotides [107], and a 
recent study found LOH for BRCA1 as well as BRCA2 to 
occur in concert with promoter methylation of the same 
gene in different subclones of the same tumor [129]. 

In patients with ovarian cancers that are wild-type for 
BRCA1/2, BRCA1 promoter methylation predicted better 
outcome to platinum-taxane based therapy [130] as well as 
PARP inhibition, as compared to patients without such 
methylation, thus mirroring findings in patients harbouring 
germline mutations [131-133]. Contrasting this are results 
from the recently published TnT trial, where patients with 
triple negative metastatic breast cancer and tumor BRCA1 
methylation did not respond any better to platinum chem-
otherapy than those without such epimutations [83]. How-
ever, methylation analyses were performed on archival 
tumor tissue extracted at the time of the first breast cancer 
diagnosis, which could have skewed the results, compared 
to an analysis of cancer biopsies taken at screening before 
entering the trial, but after previous exposure to adjuvant 
chemotherapy. 

 

NORMAL TISSUE BRCA1/2 METHYLATION AND RISK OF 
BREAST AND OVARIAN CANCER 
Few studies have assessed BRCA2 normal tissue (or WBC) 
methylation status. To the best of our knowledge, no for-
mal assessment for WBC BRCA2 methylation with respect 
to breast or ovarian cancer risk has been conducted. Nota-
bly, in a recent study using a low detection limit, Peplonska 
and colleagues detected evidence of WBC BRCA2 and 
BRCA1 methylation in 18.3% and 21.5%, respectively, 
among (presumably) cancer-free participants [134]. How-
ever, their estimates are unusually high, also for BRCA1 
methylation. Until recently, BRCA1/2 hypermethylation 
was not associated with increased risk of hereditary breast 

cancer [135, 136]. As for the studies presented, most of 
them contained a limited number of patients, raising the 
question of potential publication bias (negative studies 
may not have been reported). Also, methylation frequency 
within the control populations are at substantial variance 
across the studies due to different analytical methods and 
thresholds applied.  

Notably, an interesting study was presented by Wong 
and colleagues from Dobrovic’s group [108]. Analyzing a 
total of 255 women diagnosed with breast cancer below 
the age of 40 years and without germline BRCA1/2 muta-
tions, they detected BRCA1 promoter methylation in WBC 
among 31% of patients, revealing strong morphologic 
characteristics (five or more individual parameters) other-
wise associated with a BRCA1 mutation. In contrast, they 
found peripheral blood methylation in 10% and 5% among 
those harboring 4 and ≤3 BRCA1 mutation characteristics, 
respectively. This significantly contrasted a BRCA1 methyla-
tion incidence of 4% among unaffected controls. 

Data on constitutional BRCA1 methylation with respect 
to ovarian cancer risk has in general been lacking. However, 
analyzing individuals wild-type for BRCA1/2 germline muta-
tions, Hansmann and colleages [137] identified WBC BRCA1 
methylation in 3 out of 39 patients with ovarian cancer 
(8%) and belonging to families with an elevated risk of 
ovarian and breast cancer. Among individuals recorded as 
BRCA1 hypermethylated, methylation affected between 12 
and 40% of the WBC alleles - thus indicating mosaic hy-
permethylation of this gene in the normal tissue. In the 
same cohort, they also identified RAD51C methylation in 
one ovarian cancer index patient. 

In a recent study [138], we examined WBC BRCA1 pro-
moter methylation status among 1688 healthy controls 
and 925 patients with ovarian cancer (Figure 2). BRCA1 
methylation was detected by methylation-specific qPCR in 
4.2% of healthy controls. While we recorded a similar 
methylation frequency among patients diagnosed with 
non-serous or low-grade serous ovarian cancers, the meth-
ylation frequency was as high as 9.6% among patients di-
agnosed with a high-grade serous ovarian cancer (HGSOC), 
revealing an OR of 2.91 (CI: 1.85 - 4.56). Our findings were 
confirmed in a validation cohort containing 607 patients 
and 1914 controls, revealing an OR for HGSOC of 2.22 (CI 
1.40 – 3.52). Among patients testing positive for BRCA1 
metylation, the median percentage of methylated alleles 
was 4.1%, with 21% as the highest level recorded – again 
pointing to partial/mosaic hypermethylation of the BRCA1 
gene. Combining data from the exploratory and validation 
cohorts, we found an OR for HGSOC of 1.82 for individuals 
harbouring a methylation level below the median percent-
age, contrasting an OR of 4.20 for those with BRCA1 meth-
ylation levels above the median. Finally, the OR for HGSOC 
associated with positive BRCA1 methylation was highest in 
individuals below 50 years of age (OR 4.42). Of notice, alt-
hough excluded from the formal OR assessments, we de-
tected WBC methylation also among individuals carrying 
germline BRCA1 and BRCA2 mutations (in 1.5% and 9.0%, 
respectively). The biological interpretation of this potential 
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difference between BRCA1 and BRCA2 mutation carriers is 
uncertain due to the low number of individuals analyzed.   

In the same study, we examined the BRCA1 methylation 
status in normal as well as ovarian cancer tissue in a sub-
group of patients. Notably, we confirmed BRCA1 methyla-
tion in various paraffin-embedded normal tissue samples 
from patients testing positive for WBC BRCA1 methylation. 
The samples were derived from the endoderm as well as 
the mesoderm germ layers. While we did not have ecto-
dermal derived samples available, it is unlikely that tissue 
derived from that germ layer should deviate from the oth-
er two; thus, our findings strongly indicate constitutional 
methylation [8, 9]. Among patients testing positive for 
BRCA1 methylation in WBC, 62% were methylation positive 
in the tumor tissue, contrasting 12% for patients testing 
negative for WBC BRCA1 methylation. These data mirror 
the findings by Dobrovic and colleagues in HGSOC [139]. 
They analyzed blood and tumor tissue from 154 patients 
with HGSOC and among 20 patients harbouring WBC 
BRCA1 methylation, 14 of them (70%) revealed methyla-
tion of the tumor DNA as well. The finding of a 60-70% 
methylation frequency in tumors from individuals carrying 
a constitutive BRCA1 promoter methylation is in accord-
ance with what is expected. Assuming methylation of a 
small fraction of normal (including ovarian tissue) BRCA1 
alleles to be associated with an OR for HGSOC of 2.0, such 
a finding should indicate 50% of the cancers may arise 
from unmethylated cells (like in an individual not carrying 
any BRCA1 methylated allele). The additional 50% of can-
cers would then arise from the small fraction of methylat-
ed cells. Similarly, in case of an OR of 3.0 for HGSOC, we 
may envision 67% of the cancers to arise from methylated 
cells. In our previous study, the OR in the one cohort was 
2.9, and in the second cohort 2.2 [138]. Following the as-
sumptions above, these findings correspond well with the 
finding of BRCA1 tissue methylation in between 60% and 
70% of the HGSOC.  

In addition to the large case-control studies described 
above, there are also reports of special cases where BRCA1 
methylation is strongly linked to cis-acting genetic variants. 
Importantly, Evans and colleagues [140] reported constitu-
tional BRCA1 methylation in WBC from members of two 
families characterized by high incidence of breast and ovar-
ian cancer, but testing negative for BRCA1/2 germline mu-
tations. Here, the methylation was associated with a 5´UTR 
promoter variant and about 50% of the alleles were meth-
ylated, indicating complete methylation of affected alleles. 
Of notice, these findings parallel the recent findings by 
Hitchins and colleagues described above [38] with respect 
to MLH1 methylation in a colorectal cancer family. Notably, 
while BRCA1 promoter variants influencing breast and 
ovarian cancer risk have been reported earlier [141, 142], 
the finding by Evans et al. is the first to link such variants to 
BRCA1 methylation status.  

 
 
 

BRCA1 PROMOTER HYPERMETHYLATION MAY BE A 
CONSTITUTIONAL EVENT ARISING IN UTERO 
Epigenetic gene silencing is a normal feature during em-
bryonic development. Indeed, recent studies revealed that 
dramatic epigenetic alterations may occur already at the 
pre-implantation stage [143]. DNA methylation status var-
ies between individuals and is influenced by genetic as well 
as environmental factors [48, 144-146]. The latter is partic-
ularly underlined by the fact that methylation patterns 
change with aging [147, 148], and that identical twins re-
veal much similarity at young age but grow more epigenet-
ically different with time [144]. Assessing BRCA1 promoter 
methylation in umbilical cord blood of >600 girls [138], we 
detected BRCA1 methylation among 7% of them. Notably, 
the methylation profile across the CpG’s mirrored the 
methylation status in healthy adults as well as ovarian can-
cer patients, indirectly supporting the hypothesis that 
BRCA1 methylation is a constitutional event.  

In order to be a risk factor for cancer, one may assume 
that methylation must persist over time. Taken together, 
our findings in newborns and adults are in accordance with 
the hypothesis that constitutional methylation may arise in 
utero and persist through life, constituting a cancer risk 
factor. Thus, such methylation follows a different pattern 
from methylation related to external influence and senes-
cence [149] mirroring the difference between inherited 
subclonal mutations and hematological subclones carrying 
distinct gene mutations arising in response to accumulated 
genotoxic influence [150-153].  

Consistent with our findings, Al-Moghrabi and col-
leagues, testing 300 newborns, found WBC BRCA1 methyl-
ation in 9.9% of their cohort [154]. Moreover, they detect-
ed MGMT promoter methylation in 12.3% of newborns, 
revealing that neonatal methylation of tumor suppressor 
genes may not be restricted to BRCA1 exclusively. 

Interestingly, Al-Moghrabi and colleagues reported a 
potential association between BRCA1 methylation status in 
mothers and their newborns [154]. While the data did not 
allow for formal statistical assessment, their explorative 
analysis indicated a moderate correlation, albeit not in 
accordance with Mendelian dominant inheritance [155]. 
Importantly, their findings do not define whether there 
was a paternal or maternal transfer of methylation. In 
some cases, transfer could be related to genetic variants 
(secondary epimutations) but in other cases it could be the 
transfer of primary epimutations. Considering germline 
mutations, mosaic mutations have been found related to 
neurological disorders [156], as well as in families with 
increased incidence of retinoblastoma [44, 45, 157]. In the 
latter case, mosaic mutations have been detected even as 
subclones in unaffected parents of an affected proband. 
This probably relates to such mutations arising somatically 
at the embryonic stage, and subsequently transferred 
through the gamete to the offspring. Further studies are 
needed to clarify this topic. Notably, among the patients 
with ovarian cancer and healthy controls that we examined, 
BRCA1 methylation occurred independently of the two 
major haplotypes of the BRCA1 promoter [138]. In line with 
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lack of Mendelian inheritance patterns, this argues against 
a hypothesis suggesting constitutional methylation to be 
associated with a cis-acting factor.  

The cause of BRCA1 promoter methylation occurring 
among certain newborns is unknown. Yet there is substan-
tial evidence linking prenatal factors to subsequent risk of 
different types of cancer in adult life, and breast cancer in 
particular [158-165]. As for methylation status in umbilical 
cord blood, global methylation patterns are associated 
with external factors like smoking during pregnancy, folate 
levels and famine [166-168], as well as birth weight [169]. 
To the best of our knowledge, studies evaluating the asso-
ciation between prenatal external factors and methylation 
of specific tumor suppressor promoters, such as for BRCA1, 
are lacking.  
 

POTENTIAL CAVEATS 
While some studies applying genome-wide methylation 
analyses have detected differences in methylation of dis-
tinct CpG’s related to incidental cancers [170-172], such 
differences in methylation in general occurred in CpG’s 
located outside gene promoters; thus, the biological impli-
cations of these findings are uncertain. As for studies ex-
amining BRCA1 promoter methylation with respect to 
breast and ovarian cancer, blood samples in general were 
collected from patients already diagnosed with their can-
cer. Thus, data assessing the predictive value of BRCA1 
promoter methylation to incidental cancers (by collecting 
blood samples years prior to diagnosis) are lacking. How-
ever, the risk of potential tumor DNA contamination, either 
from plasma free tumor DNA or circulating tumor cells 
seems negligible since the fraction of circulating tumor 
cells versus WBC detected in the circulation is estimated to 
be less than 1 to a million, and the concentration of free 
tumor DNA in the plasma is far lower than the DNA derived 
from WBCs [173-175]. 

On the other hand, distinct alterations in the WBC 
global gene methylation profile has been shown in patients 
with different cancers. This may not be directly linked to 
the cancer per se, but is probably related to alterations in 
WBC composition due to a cancer-related inflammatory 
response in patients with active disease [176-178]. This is 
consistent with the finding that WBC global gene methyla-
tion pattern varies between WBC subfractions [145, 179-
182].  

In our study on BRCA1 methylation status and ovarian 
cancer risk, we performed extensive sensitivity analyses 
[138]. Here, we examined methylation status as a factor of 
tumor load, either by FIGO stage, or by examining methyla-
tion in patients who had recently had their tumors re-
moved by surgery. Also, we examined methylation status 
in an additional cohort of ovarian cancer patients who had 
received chemotherapy. None of these factors influenced 
WBC BRCA1 methylation status. Notably, we detected a 
methylation frequency which resembled that of healthy 
individuals (about 4%) across all subgroups of patients di-
agnosed with non-HGSOC, contrasting a methylation fre-
quency of 9-10% among all subgroups of patients diag-
nosed with HGSOC. 

Variations between WBC subfractions also need to be 
taken into consideration when comparing methylation 
among newborns versus adults. However, examining pub-
licly available datasets [179, 180] we detected no variation 
in BRCA1 promoter methylation patterns with respect to 
WBC subfractions, neither in newborns nor adults [138]. 
Thus, differences in WBC subfractions between cancer 
patients and controls is not a likely explanation why BRCA1 
methylation is increased among the patients diagnosed 
with HGSOC. 

A final limitation relates to the use of conventional 
methylation-specific PCR (MSP) assessment methods, in as 
much as such methods do not allow for detailed quantifica-
tion of the allele fraction being methylated. Neither do 
they inform whether cells are subject to mono-allelic or bi-
allelic methylation. Such problems may be overcome by 
applying pyrosequencing [183] or contemporary next gen-
eration sequencing methodologies. This relates to mosaic 
methylation affecting a low allele fraction [138] in particu-
lar. 

 
WHAT ARE THE IMPLICATIONS OF THESE FINDINGS? 
Merging evidence links constitutive methylation to cancer 
as well as other diseases, such as neurological disorders 
[184]. Further, we are beginning to learn how prenatal 
exposure (like smoking and diet) as well as maternal health 
issues may influence methylation status in the newborn 
[166, 167, 185, 186]. Most interestingly, experimental evi-
dence has revealed acquired skills, like olfactory experi-
ence and sperm epigenetic programming in response to 
temperature, to be transmitted not only to the offspring, 
but into the third generation as well [187, 188]. Merging 
evidence indicates trans-generational responses also in 
humans [189, 190].  

BRCA1, MLH1, MSH2 and MGMT are all pivotal in DNA 
repair. With the exception of MSH2, all these genes are 
methylated in a significant fraction of certain cancer types. 
As for MSH2, we should recall the mechanism causing 
promoter methylation (deletion in the upstream Ep-CAM 
gene), making this mechanism unique in comparison to the 
others. As for other DNA repair genes for which WBC pro-
moter methylation has not been linked to cancer, such as 
BRCA2, somatic methylation is a rare event in breast as 
well as ovarian cancer. Thus, it may well be that larger co-
horts are needed in order to detect BRCA2 methylation as 
a risk factor.  

In colorectal cancers carrying MLH1 tissue methylation, 
as well as breast and ovarian cancers carrying BRCA1 
methylation, a provoking question is whether these are 
acquired events occurring at some stage during tumor evo-
lution, or if they may act as the primary event in the pro-
cess of carcinogenesis. And in the latter case, could small 
groups of normal tissue cells that are methylated in utero 
act as cancer precursors? Importantly, mosaic germline 
mutations, likely to have occurred early during embryo-
genesis, have been detected in multiple genes related to 
different disease conditions in affected individuals (see 
[191] for additional details), including tumor suppressor 
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genes like TP53, RB1, genes involved in neurofibromatosis 
type- 1 and -2, the Fanconi syndrome as well as BRCA1 [44, 
156, 192-196].    

Notably, DNA methylation status, similar to somatic 
mutations, continuously evolve during cancer progression 
[6, 197, 198]. Postulating BRCA1, MGMT or MLH1 promot-
er methylation to be a “first event” in carcinogenesis in 
some individuals by no means exclude the possibility that it 
may occur as a secondary event at a later stage in other 
individuals. While pathogenic germline mutations of TP53 
in Li Fraumeni syndrome patients are likely to represent 
the initial event in breast cancers of such patients (as well 
as other neoplasia in these patients), recent studies re-
vealed that somatic TP53 mutations may arise at later 
stages of tumor evolution in many non-hereditary breast 
cancers [3, 4]. Accordingly, if a methylated tumor reveals a 
genomic signature mirroring the signature of a tumor aris-
ing in a germline mutation carrier with respect to second-
ary genomic events (BRCA-ness signature in breast cancers 
and MSI in colorectal cancers) the epigenetic event is likely 
to have occurred at a very early stage of tumor evolution. 

Alternatively, these tumors may have undergone selective 
sweeps [24] in response to an epigenetic event occurring 
at a later stage. 

Taken together, we believe there is substantial evi-
dence indicating cis-acting mutations to be associated with 
promoter methylation in some cancer-prone families (sec-
ondary constitutive epimutations; Figure 3). In addition, 
the findings regarding partial BRCA1 methylation in par-
ticular, but supported by similar findings for MLH1 and 
MGMT, may indicate mosaic epimutations to be far more 
frequent than previously appreciated. Furthermore, such 
primary constitutive epimutations could contribute to a 
substantial number of cancer cases. The clinical implica-
tions of such findings, if confirmed, is substantial. There 
may be a rationale for offering routine testing of methyla-
tion status as part of general health control programs in 
adult healthy individuals. For instance, women carrying 
BRCA1 WBC methylation could be offered regular ovarian 
surveillance by ultrasound exams from an age of 50 years. 
Secondly, the current findings should stimulate further 
research into the mechanisms by which such methylation 

FIGURE 3: Reported cis-acting factors (red font) causing tumour suppressor promoter methylation and cancer risk [35, 43, 58, 133]. TSS; 
transcription start site, ATG; translational start site, blue boxes; protein coding regions, pale blue boxes; 5’UTR. x 



P.E. Lønning et al. (2019)  Epimutations and cancer risk 

 
 

OPEN ACCESS | www.cell-stress.com 127 Cell Stress | APRIL 2019 | Vol. 3 No. 4 

arises, looking for potential pathogenic environmental in-
fluences or preventive strategies avoiding such events. 
While we lack selective drugs that may reverse gene-
specific methylation as of today, such possibilities may 
become available in the future. 
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