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High mobility group box 1 enables bacterial lipids to trigger
receptor-interacting protein kinase 3 (RIPK3)-mediated
necroptosis and apoptosis in mice
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Receptor-interacting protein kinase 3 (RIPK3) is a key regu-
lator of programmed cell death and inflammation during viral
infection or sterile tissue injury. Whether and how bacterial
infection also activates RIPK3-dependent immune responses
remains poorly understood. Here we show that bacterial lipids
(lipid IVa or lipid A) form a complex with high mobility group
box 1 (HMGB1), released by activated immune cells or damaged
tissue during bacterial infection, and that this complex triggers
RIPK3- and TIR domain-containing adapter-inducing IFN-f3
(TRIF)-dependent immune responses. We found that these
responses lead to macrophage death, interleukin (IL)-1e release,
and IL-13 maturation. In an air-pouch inflammatory infiltra-
tion model, genetic deletion of Ripk3, Trif, or IL-1 receptor
(II-1R), or monoclonal antibody-mediated HMGB1 neutraliza-
tion uniformly attenuated inflammatory responses induced by
Gram-negative bacteria that release lipid IVa and lipid A. These
findings uncover a previously unrecognized mechanism by
which host factors and bacterial components work in concert to
orchestrate immune responses.

To survive bacterial infection and promote tissue repair, the
host immune system is armed with a series of pattern recogni-
tion receptors that recognize both pathogen-associated molec-
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ular patterns (PAMPs)? released from microbes and damage-
associated molecular patterns (DAMPs) released by damaged
host cells (1). Infections and anti-microbial immune responses
unavoidably cause tissue damage, rendering the immune
system exposed to both PAMPs and DAMPs. However, how
PAMPs and DAMPs work in concert to orchestrate host
immune responses remains poorly defined.

High mobility group box 1 (HMGB1) is a prototypical DAMP
and an evolutionarily conserved protein virtually expressed in
all type of cells. Under physiological conditions, intracellular
HMGBI functions as a nonhistone chromatin-binding protein
that regulates gene expression and protects cells from oxidative
stress (2, 3). During infection or tissue injury, damaged cells
release HM GBI into the extracellular space (4 —6), where it reg-
ulates immune responses, cell migration, tissue regeneration,
and tumorigenesis through multiple receptors such as the
receptor for advanced glycation end products or TLR4 (6 -18).
Previous studies show that HMGB1 could enhance nucleic
acid-induced immune responses (11, 14) and promote inflam-
matory responses through CD14 by direct binding to lipopoly-
saccharide (LPS) (19-21). Although exploring the role of
HMGBI1 in mediating PAMPs-mediated inflammation, we
found that HMGB1 could also physically interact with Gram-
negative bacteria-derived lipid IVa or lipid A. Both lipid IVa and
lipid A are the precursor lipids for the biosynthesis of LPS that
reside within the bacteria and can be released into the extracel-
lular space when bacteria are dead. Unexpectedly, the interac-
tion between HMGB1 and lipid IVa or lipid A enables lipid IVa

3The abbreviations used are: PAMP, pathogen-associated molecular pat-
terns; HMGB?1, high mobility group box 1; RIPK3, receptor-interacting pro-
tein kinase 3; DAMP, damage-associated molecule pattern molecule; IL-183,
interleukin-1p; LPS, lipopolysaccharide; NLRP3, NLR family pyrin domain-
containing 3; PKR, double-stranded RNA-dependent protein kinase; TRIF, Toll/
interleukin-1R (TIR) domain-containing adapter-inducing interferon; MLKL,
mixed lineage kinase domain-like; TLR4, Toll-like receptor 4; TNFa, tumor
necrosis factor-o; MEF, mouse embryonic fibroblasts; Pl, propidium iodide;
PBMC, peripheral blood mononuclear cells; IAV, influenza A virus.
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or lipid A to efficiently activate receptor-interacting protein
kinase 3 (RIPK3) and trigger MLKL-dependent necroptosis as
well as caspase-8—dependent apoptosis, resulting in IL-lc
release and IL-13 maturation. These responses are mediated by
the TLR4-TRIF signaling, and absolutely dependent on the
presence of both HMGB1 and bacterial lipid (IVa or A). In an
air-pouch inflammatory infiltration model, the genetic deletion
of Ripk3, Trif, or Il-1R, or neutralizing HMGBI attenuates the
nonresolving inflammation induced by Gram-negative bacte-
ria. These findings uncover a previously unrecognized mecha-
nism by which host factors and bacterial components work in
concert to orchestrate RIPK3-dependent immune responses
under pathophysiological conditions.

Results

HMGBT1 enables lipid IVa or lipid A to trigger RIPK3-mediated
necroptosis, apoptosis, and inflammation

To investigate whether HMGB1 and bacterial lipids could
work in concert to orchestrate immune responses, mouse peri-
toneal macrophages were stimulated with lipid A or lipid [Va
in the absence or presence of highly purified recombinant
HMGBI1 protein. Only in the presence of HMGBI can lipid IVa
or lipid A induce a marked release of LDH, IL-1e, and IL-1f3
(Fig. 1A), and an increase in the cleavage of pro-IL-18 in the
WT peritoneal macrophages (Fig. 1B). Flow cytometry analysis
revealed an increase in the percentage of cells undergoing
necrosis (PI") and apoptosis (PI”) after challenging mouse
peritoneal macrophages with both HMGB1 and lipid IVa or
lipid A (Fig. 1C), but not HMGB], lipid IVa, or lipid A alone
(Fig. S1). EM examination showed the occurrence of necrosis
(Fig. 1D, red arrows) and apoptosis (Fig. 1D, blue arrows) in the
macrophages treated with HMGB1/lipid mixtures. To confirm
the importance of HMGB1 in mediating bacterial lipid action,
mouse peritoneal macrophages were stimulated simultane-
ously with lipid IVa or lipid A in combination with necrotic cell
lysate of Hmgbl1"™'* or Hmgbl '~ mouse embryonic fibro-
blasts (MEFs). Our data shown that endogenous HMGBI1
released from necrotic WT MEFs enabled lipid IVa or lipid A to
induce the release of IL-1a and IL-18, which was markedly
inhibited by HMGBL1 neutralizing monoclonal antibodies (Fig.
1E, Fig. S2). To further confirm the notion in human cells, we
stimulated human peripheral blood mononuclear cells (PBMC)
with HMGBI and Lipid IVa/Lipid A, and found that HMGB1
significantly enhanced the release of IL-1a and IL-18, induced
by Lipid A, but not Lipid IVa, which has been reported as an
antagonist in human (Fig. S3). These observations indicate that
extracellular HM GBI could enable lipid IVa or lipid A to trigger
necrosis, apoptosis, IL-1« release, and IL-18 maturation.

RIPK3 is a serine/threonine kinase that is crucial for a
programmed necrosis process termed necroptosis (22—28).
Although the canonical function of RIPK3 is to mediate
necroptosis, RIPK3 also regulates apoptosis and other immune
responses under certain circumstances (29). In response to
influenza A virus (IAV) infection, RIPK3 is required for activa-
tion of the NLRP3 inflammasome, which mediates the IL-13
maturation through caspase-1 (30). RIPK3 could also promote
caspase-8 —dependent IL-13 maturation and TLR4-dependent
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proinflammatory cytokine production (31, 32). In light of the
involvement of RIPK3 in the regulation of necroptosis, apopto-
sis, IL-1a release, and IL-18 maturation, we next determined
whether RIPK3 is required for these HMGB1/bacterial lipid—
mediated responses. The deletion of Ripk3 almost completely
blocked the HMGB1/lipid IVa or HMGB1/lipid A—induced
release of LDH and cytokines (IL-1a and IL-1p3) (Fig. 1, A and
B), and the parallel induction of apoptosis and necroptosis (Fig.
1, C and D). Furthermore, necrotic lysate of Hmgb1"'* MEFs
failed to facilitate the lipid IVa- or lipid A-mediated IL-1« and
IL-1B release from Ripk3-deficient macrophages (Fig. 1E).
Together, these findings establish HMGB1 as an important reg-
ulator of bacterial lipid-mediated and RIPK3-dependent cell
death and inflammatory responses.

HMGBT1 binding is critical for lipid IVa and lipid A to trigger the
RIPK3-dependent necroptosis, apoptosis, and inflammation

To determine whether HMGBI1 could physically interact
with lipid IVa or lipid A, we developed a HM GBI lipid-binding
assay (Fig. 24) to quantitatively characterize the dynamics of
HMGBI binding to lipid IVa or lipid A. As shown in Fig. 24, free
uncoated lipid IVa or lipid A dose-dependently inhibited the
anchoring of HMGBI1 proteins to the lipid IVa- or lipid
A-coated plate, indicating that HMGB1 is able to bind lipid IVa
and lipid A. Rhodobacter sphaeroides-derived penta-acylated
LPS (LPS-RS) is a potent LPS antagonist that has been reported
to compete for the LPS-binding site on LBP (33, 34). In this
study, we found that LPS-RS competitively inhibited the bind-
ing of HMGBI to lipid IVa or lipid A (Fig. 2B). Furthermore, the
addition of LPS-RS dose-dependently suppressed the HMGB1/
lipid IVa or HMGB1/lipid A-induced IL-1a and IL-1p release
from mouse macrophages (Fig. 2C). Consistently, LPS-RS pre-
vented HMGB1/lipid [Va- or HMGB1/lipid A-induced necrop-
tosis and apoptosis in mouse peritoneal macrophages (Fig. 2D).
To further prove that HMGBI-lipid binding is important for
RIPK3-mediated necroptosis, apoptosis, and inflammation, we
used HPep6, a synthetic peptide that are located in the B-box
domains of HMGBL1 known to specifically block the HMGB1-
LPS association by binding to lipid A moieties of LPS (35), and
found that HPep6 also dose-dependently inhibited HMGB1 +
lipid A-induced release of LDH, IL-1«, and IL-183 (Fig. 2E).
These results suggest that HMGB1 binding is essential for lipid
IVa and lipid A to trigger RIPK3-dependent necroptosis, apo-
ptosis, and IL-1 release.

TLR4-TRIF signaling mediates bacterial lipid-induced RIPK3-
dependent necroptosis, apoptosis, and inflammation in the
presence of HMGB1

Next we investigated how HMGB1 enables lipid A or lipid
IVa to trigger RIPK3-dependent necroptosis, apoptosis, and
IL-1 release. Because HMGBI, lipid A, and lipid IVa are all
capable of binding to TLR4, the deletion of TLR4 indeed com-
pletely abolished the HMGB1/lipid IVa or HMGB1/lipid A-in-
duced release of LDH, IL-1¢, IL-18, and TNFa« (Fig. 3A). Sim-
ilarly, TLR4 deficiency also prevented the HMGB1/lipid IVa- or
HMGB1/lipid A-induced apoptosis and necroptosis in mouse
peritoneal macrophages (Fig. 3B). Moreover, necrotic lysate of
HmgbI*'" MEFs facilitated the lipid IVa- or lipid A-mediated
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Figure 1. HMGB1 enables microbial lipids to trigger proinflammatory cell death. A, LDH, IL-1¢, IL-13, and TNFa measured from culture supernatants of
peritoneal macrophages from wildtype (WT) and Ripk3 ™/~ mice following stimulation with lipid IVa or lipid A (1 wg/ml) in the absence or presence of HMGB1
(0.4 wg/ml). B, Western blot for processed IL-1 and IL-13 released from WT and Ripk3~/~ peritoneal macrophages stimulated with lipid [Va or lipid A (1 ug/ml)
in the absence or presence of HMGB1 (0.4 ug/ml). G, flow cytometry analysis of WT or MikI '~ peritoneal macrophages undergoing necrosis (PI™) or apoptosis
(PI") of stimulation with lipid IVa or lipid A (1 wg/ml) in the presence of HMGB1 (0.4 ug/ml). D, the EM shows the morphology of WT and Ripk3~/~ peritoneal
macrophages after stimulation with HMGB1 (0.4 wg/ml) + lipid IVa or lipid A (1 wg/ml). The red arrows indicate the expansion of the cell volume, organelle
swelling, and plasma membrane rupture. The blue arrows indicate intact cell membrane and condensed chromatin. Scale bars: 5 um. E, IL-1a and IL-18
measured from culture supernatants of peritoneal macrophages from WT and Ripk3 ™/~ upon exposure to the necrotic Hmgb1~’~ or Hmgb1™/* MEF in the
presence or absence of lipid IVa or lipid A (1 png/ml). **, p < 0.01; ***, p < 0.001; **** p < 0.0001. Graphs show the mean * S.D. from three independent
experiments.

release of IL-1acand IL-18 from WT but not 7/r4-deficient macro-
phages (Fig. 3C). Thus, HMGB1 and one of its receptors, TLR4, are
critically involved in the Gram-negative bacterial lipid-induced
RIPK3-dependent necroptosis, apoptosis, and IL-1 release.

TLRs rely on either MyD88 or TRIF for downstream signal
transduction. Although for TLR3/TLR4, TRIF is a main driver
of necroptosis by directly receptor-interacting protein (RIP)
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homotypic interaction motifs (RHIM) domain-dependent
association with RIPK3, particularly when caspase-8 is absent
or inhibited (25, 36 -38). In this study, the genetic deletion of
Trif abolished the HMGBI1-lipid A/IVa complex induced
release of LDH, IL-1«, and IL-1p (Fig. 3D), as well as the secre-
tion of TNFa (Fig. 3D). As shown by flow cytometry, the dele-
tion of Trif abrogated the HMGB1/lipid IVa or HMGB1/lipid
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Figure 2. HMGB1 binding is critical for microbial lipids to trigger proinflammatory cell death. A, schematicillustration of competitive binding of HMGB1
by free lipid IVa or lipid A (left). Plates coated with lipid IVa or lipid A were incubated with recombinant HMGB1 (16 wg/ml) and the indicated concentrations of
free lipid IVa or lipid A. After three extensive washings, the binding capacity between plate-coated lipid IVa or lipid A and HMGB1 was measured by using a
HMGB1-specific primary antibody and relevant secondary antibodies. Then the percentage of binding competition by free lipid IVa or lipid A was evaluated. B,
schematic illustration of competitive binding of HMGB1 by free LPS-RS (left). Plates coated with lipid IVa or lipid A (2 wg/ml) were incubated with HMGB1 (16
rg/ml) and the indicated concentration of LPS-RS. Then the percentage of binding competition by LPS-RS was evaluated. G, IL-1« and IL-13 were measured
from the supernatants of mouse peritoneal macrophages stimulated with the indicated stimuli in the absence or presence of LPS-RS (2.5 ug/ml). D, the
percentage of mouse peritoneal macrophages undergoing necrosis (PI*) or apoptosis (PI~) were measured by flow cytometry after stimulation with the
indicated stimuli in the absence or presence of LPS-RS (2.5 ug/ml). E, LDH, IL-1a, and IL-183 in the supernatants of WT mouse peritoneal macrophages
stimulated with lipid A (1 wg/ml) + HMGB1 (400 ng/ml) in the presence of different concentrations of HPep6 for 16 h. *, p < 0.05; **, p < 0.01; ***, p < 0.001;
***% p < 0.0001. Graphs show the mean = S.D. from three independent experiments.

A-induced necroptosis and apoptosis in mouse peritoneal
macrophages (Fig. 3E). Furthermore, necrotic lysate of WT MEFs
facilitated the lipid IVa- or lipid A-induced release of IL-1a and
IL-1B from WT, but not Trif-deficient macrophages (Fig. 3F).
Using MyD88-deficient mice, we found that HMGB1 also signifi-
cantly enhanced lipid A/IVa-induced production of TNFa and
IL-6 in a MyD88-dependent manner (data not show).

Recent studies have suggested that the TLR4-TRIF signaling
licenses Gram-negative bacteria to trigger caspase-11—depen-
dent pyroptosis, a lytic form of programmed cell death, through

SASBMB

type 1 interferon signaling (39, 40). Similarly, TLR4-TRIF sig-
naling has also been suggested to promote bacteria-induced
and the dsRNA-dependent kinase R (PKR)-dependent macro-
phage cell death. However, the deletion of Caspase-11, Pkr, or
Ifn-1R1, the receptor of type 1 interferon, all failed to inhibit
HMGB1/lipid IVa or HMGB1/lipid A-induced release of LDH,
IL-1e, and IL-1 (Fig. 3G). Taken together, these findings have
suggested the possible role of TLR4-TRIF-RIPK3 signaling in
the regulation of HMGB1/lipid IVa or HMGB1/lipid A-in-
duced necroptosis, apoptosis, and IL-1 release.
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Figure 3. TLR4-TRIF signaling mediates HMGB1/microbial lipid-induced proinflammatory cell death. A and D, LDH, IL-1¢, IL-183, and TNFa were mea-
sured from culture supernatants of peritoneal macrophages from WT and TIr4~/~ or Trif-"****2 mice stimulated with lipid IVa or lipid A (1 wg/ml) in the absence
or presence of HMGB1 (0.4 ug/ml). Band E, flow cytometry analysis of the percentage of WT and Tir4 ™/~ or Trif-****> macrophages undergoing necrosis (PI*)
or apoptosis (PI7) after stimulation with lipid IVa or lipid A (1 ug/ml) in the presence of HMGB1 (0.4 ng/ml). C and F, IL-1Ta and IL-18 measured from the
supernatants of peritoneal macrophages from WT and TIr4 '~ or Trif****P2 mice upon exposure to necrotic Hmgb1~’~ or Hmgb1*/* MEF in the presence or
absence of lipid IVa or lipid A (1 wg/ml). G, LDH, IL-1¢, IL-18, and TNFa measured from culture supernatants of peritoneal macrophages from mice with the
indicated genotypes after stimulation with lipid IVa or lipid A (1 wg/ml) in the absence or presence of HMGB1 (0.4 ng/ml). ¥, p < 0.05; **, p < 0.01; ***, p < 0.001;
***% p < 0.0001. Graphs show the mean = S.D. from three independent experiments.

MLKL mediates necroptosis induced by HMGB1 and bacterial
lipids

RIPK3 mediates necroptosis through phosphorylation of its
downstream substrate MLKL (41). Phosphorylated MLKL
forms oligomers that disrupt the integrity of cell membranes,
leading to necrotic cell death (41, 42). We thus determined
whether co-addition of HMGB1 and bacterial lipids induces
MLKL phosphorylation in RIPK3-deficient macrophages.
Indeed, HMGB1/lipid IVa or HMGB1/lipid A induced MLKL
phosphorylation in WT peritoneal macrophages (Fig. 4A). Sim-
ilarly, the HMGB1/lipid IVa-induced MLKL phosphorylation
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was also attenuated by a specific RIPK3 kinase inhibitor (Fig.
4A). Similar observations were obtained from HMGB1/lipid
A-stimulated cells (Fig. 4B). Moreover, the deletion of Tlr4 or
Trif markedly blocked HMGB1/lipid IVa or HMGB1/lipid
A-induced MLKL phosphorylation (Fig. 4, C—F). Mechanisti-
cally, co-stimulation of macrophages with HMGB1 and lipid
IVa or lipid A markedly enhanced the physical interaction
between RIPK3 and MLKL (Fig. 4G). Given the essential role of
MLKL in necroptosis, we next determined whether TLR4-TRIF
signaling is required for the MLKL-driven necroptosis in
macrophages. The deletion of Mkl selectively blocked the
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Figure 4. TLR4-TRIF-RIPK3 signaling mediates MLKL-dependent necroptosis induced by HMGB1 and microbial lipids. A and B, Western blot analysis of
phosphorylated MLKL and RIPK3 in peritoneal macrophages from WT, Ripk3~/~, and MikI~’~ mice exposed to the indicated stimuli in the absence or presence
of GSK872. C and D, Western blot analysis of phosphorylated MLKL and RIPK3 in peritoneal macrophages from WT and Tlr4 ~/~ mice exposed to the indicated
stimuli in the absence or presence of GSK872. E and F, Western blot analysis of phosphorylated MLKL and RIPK3 in peritoneal macrophages from WT and
TrifP'P*2 mice exposed to the indicated stimuli in the absence or presence of GSK872. G, cell lysates of peritoneal macrophages from a WT mouse treated with
the indicated stimuli were immunoprecipitated (/P) with RIPK3-specific antibody. The precipitated proteins were immunoblotted with RIPK3- or MLKL-specific
antibodies. Whole cell lysate (Input) was used as positive control. H, flow cytometry analysis of the percentage of WT or MIkI/~ peritoneal macrophages
undergoing necrosis (PI*) or apoptosis (PI~) following stimulation with lipid IVa or lipid A (1 wg/ml) in the presence of HMGB1 (0.4 pg/ml). ***, p < 0.001; #, not
significant. Graphs show the mean = S.D. from three independent experiments.

HMGB1/lipid IVa- or HMGB1/lipid A-induced necroptosis
(Fig. 4H); whereas the deletion of TIr4, Trif, or Ripk3 blocked
both necroptosis and apoptosis in mouse peritoneal macro-
phages (Figs. 1 and 3). Together, these findings indicate that
TLR4-TRIF-RIPK3 signaling activates parallel MLKL-depen-
dent necroptosis and MLKL-independent apoptosis in response
to stimulation with HMGB1 and bacterial lipids.

Caspase-8 mediates apoptosis induced by HMGB1 and
bacterial lipids

In response to IAV infection, RIPK3 also mediates caspase-
8 —dependent apoptosis in a mechanism independent of its
kinase activity (43). To test whether HMGB1/lipid IVa or
HMGB1/lipid A could activate caspase-8 in a RIPK3-depen-
dent fashion, we measured the levels of caspase-8 cleavage as
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an indicator of its activation. The co-addition of HMGB1
enhanced the lipid IVa- or lipid A-induced caspase-8 cleavage
(Fig. 5A), which was barely inducible if HMGBI, lipid IVa, or
lipid A was added alone (Fig. 5A4). The deletion of RIPK3, but
not MLKL, blocked the HMGB1/lipid IVa- or HMGB1/lipid
A-induced caspase-8 cleavage (Fig. 5, A-C). Likewise, phar-
macological inhibition of caspase-8 similarly abrogated the
HMGB1/lipid IVa- or HMGB1/lipid A-induced caspase-8
cleavage in both WT and Mlki-deficient macrophages (Fig. 5, B
and C). Moreover, the deletion of Tlr4 or Trif also blocked the
HMGB1/lipid IVa or HMGB1/lipid A-induced caspase-8 cleav-
age (Fig. 5, E-H). Together with the finding that the deletion
of Tlr4, Trif, or Ripk3 blocked HMGB1/lipid-induced apo-
ptosis, these results indicate that TLR4-TRIF-RIPK3 signal-
ing occupies an important role in the HMGB1/bacterial
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Figure 5. TLR4-TRIF-RIPK3 signaling mediates caspase-8 - dependent apoptosis induced by HMGB1 and microbial lipids. A, Western blot analysis of
processed caspase-8 released from WT and Ripk3 ™/~ mouse peritoneal macrophages stimulated with lipid IVa or lipid A (1 ug/ml) in the absence or presence
of HMGB1 (0.4 ug/ml). B and C, Western blot assay for processed caspase-8 released from WT and MIkl~/~ mouse peritoneal macrophages exposed to the

indicated stimuliin the absence or presence of caspase-8 inhibitor or control. D, L|

DHand IL-1a measured from culture supernatants of peritoneal macrophages

from WT, Ripk3~/~, and Mikl~/~ mice exposed to the indicated stimuli in the absence or presence of caspase-8 inhibitor or controls. Eand F, Western blot assay
for processed caspase-8 released from WT and Tir4~/~ mouse peritoneal macrophages exposed to the indicated stimuli in the absence or presence of
caspase-8 inhibitor or control. G and H, Western blot for processed caspase-8 released from WT and Trif?**?? mouse peritoneal macrophages exposed to the
indicated stimuli in the absence or presence of caspase-8 inhibitor or control. **, p < 0.01; ****, p < 0.0001. Graphs show the mean = S.D. from three

independent experiments.

lipid-mediated and caspase-8 —dependent apoptosis in innate
immune cells.

Although Ripk3 deficiency almost led to a complete blockade
of HMGB1/lipid IVa- or HMGB1/lipid A-induced release of
LDH and IL-1a, the deletion of MIkl only partially inhibited the
HMGB1/lipid-induced release of LDH and IL-1a (Fig. 5D).
Notably, addition of the caspase-8 inhibitor significantly inhib-
ited the HMGBI1/lipid-induced LDH and IL-la release in
Mlkl-deficient, but not in WT, macrophages (Fig. 5D). Thus,
it appears that HMGBI enables lipid IVa or lipid A to acti-
vate parallel MLKL-dependent necroptosis and caspase-8 —
dependent apoptosis through TLR4-TRIF-RIPK3 signaling,
ultimately leading to IL-1« release.

RIPK3 mediates NLRP3 inflammasome-dependent IL-1f3
cleavage and release in response to HMGB1 and bacterial
lipids

During IAV infection, RIPK3 is required for activation of the
NLRP3 inflammasome, which are intracellular protein com-
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plexes that mediate IL-18 maturation and release through
caspase-1 (30). To test whether TLR4-TRIF-RIPK3 signaling is
essential for the NLRP3 inflammasome-dependent IL-13 mat-
uration and release, peritoneal macrophages from WT, Ripk3-
deficient, Nlrp3-deficient, and Asc-deficient mice were stimu-
lated with lipid IVa or lipid A in the absence or presence of
HMGBI1. The deletion of Ripk3, Nlrp3, or Asc blocked the
HMGB1/lipid IVa- or HMGB1/lipid A-induced IL-1f release
and maturation, whereas deletion of Ripk3, Nilrp3, or Asc did
not alter the expression of the cytokines tested (Fig. 6, A—C, Fig.
S4). Furthermore, inhibition of necroptosis by necrostatin-1
significantly reduced the release of IL-1a and IL-1 induced by
HMGBI1 + lipid IVa/A (Fig. S5). Likewise, the deletion of Tlr4,
Trif, or Ripk3 similarly abrogated the HMGB1/lipid IVa- or
HMGB1/lipid A-induced release of both IL-1c and IL-13 (Figs.
1, 3, and 6D), which was in sharp contrast to the findings
obtained from using the Nilrp3- or Asc-deficient macrophages
(Fig. 6, A and B). Together, these data demonstrate that
TLR4-TRIF-RIPK3 signaling mediates both NLRP3 inflam-
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Figure 6. RIPK3 mediates the NLRP3 inflammasome-dependent IL-1 cleavage and release in response to HMGB1 and microbial lipids. A, IL-1« and

IL-18 measured from culture supernatants of peritoneal macrophages from WT, Ripk3~'~, NIrp3~/~, and Asc™~

’~ mice stimulated with lipid IVa or lipid A (1

rg/ml) in the absence or presence of HMGB1 (0.4 ng/ml). Band C, Western blot analysis of IL-1« and IL-13 released from mouse peritoneal macrophages with
the indicated genotypes stimulated with lipid IVa (1 wg/ml) + HMGB1 (0.4 ng/ml) (B) or lipid A (1 wg/ml) + HMGB1 (0.4 g/ml) (C). D, Western blot analysis of
processed IL-1 and IL-1p released from mouse peritoneal macrophages with the indicated genotypes stimulated with lipid IVa (1 png/ml) + HMGB1 (0.4
rg/ml) or lipid A (1 wg/ml) + HMGB1 (0.4 wg/ml). *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001; #, not significant. Graphs show the mean =+ S.D. from

three independent experiments.

masome-dependent IL-13 maturation and inflammasome-
independent IL-1a release in response to HMGBI and bac-
terial lipids.

The role of RIPK3 and HMGB1 in bacteria-induced
nonresolving inflammation

As IL-1R is the receptor of both IL-1a and IL-13, we next
investigated whether TRIF-RIPK3-IL-1R signaling regulates
inflammatory responses induced by Gram-negative bacteria,
which releases their components (including lipid IVa and lipid
A) to stimulate robust HMGB1 secretion from immune cells. In
an air-pouch inflammatory infiltration model, injection of live
Escherichia coli resulted in a persistent infiltration of leuko-
cytes, including neutrophils and macrophages, which were
completely blocked by the genetic deletion of Ripk3 (Fig. 7A).
To determine whether the diminished leukocyte infiltration is
because of increased bacterial clearance or enhanced inflam-
mation resolution, heat-killed E. coli was injected into the air
pouch. The genetic Ripk3 knockout prevented the E. coli-in-
duced persistent infiltration of neutrophils and macrophages
even at 5 days after infection (Fig. 7B). The deletion of Trif or
Il-1R phenocopied the observed Ripk3 deficiency in this model
(Fig. 7C). Furthermore, neutralizing extracellular HMGB1 by
monoclonal antibodies abrogated the Gram-negative bacteria-in-
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duced infiltration of total leukocytes, neutrophils, and macro-
phages (Fig. 7E). Anti-HMGBI1 antibody treatment also signifi-
cantly inhibited necroptosis and apoptosis of infiltrated cells and
proinflammatory cytokines’ production (Fig. S6). Together, these
findings indicate that extracellular HMGB1 promotes bacteria-
induced nonresolving inflammation through the TRIF-RIPK3-
IL-1R signaling.

Discussion

Previous studies show that RIPK3 deficiency prevents axonal
degeneration in ALS, improves survival following kidney/heart
ischemia-reperfusion injury or ethanol/acetaminophen-in-
duced liver injury, and renders animals more susceptible to sev-
eral types of DNA or RNA virus, such as vaccinia virus, IAV, and
West Nile virus (23, 28, 30, 43—47). However, the roles of
RIPK3 in bacterial infection and the mechanisms by which bac-
terial components activate RIPK3 in innate immune cells
remain largely unknown. In the current study, our data estab-
lishes that HM GBI enables lipid IVa or lipid A to activate par-
allel MLKL-dependent necroptosis and caspase-8 —dependent
apoptosis through TLR4-TRIF-RIPK3 signaling. Lipid IVa and
lipid A are abundant microbial lipids in Gram-negative bacte-
ria. Considering that HMGB1 and RIPKS3 are highly evolution-
arily conserved in mammals (2, 3), it is conceivable that
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HMGBI1 and microbial lipid-induced RIPK3 signaling might
confer protection against certain pathogens in natural history.
Lipid IVa has been reported as an antagonist in human, but not
mouse (48). In agreement with these findings, we observed that
the HMGB1-lipid IVa complex could trigger cell death and
inflammatory responses in mouse macrophages, but not
human PBMCs. A recent study reports that the TLR4-TRIF-
RIPKS3 signaling can be activated by Yersinia pestis, a Gram-
negative bacterium infamous for its large pandemics such as
the “Black Death” in medieval Europe (49). Mice defective in
RIPK3 are highly susceptible to Y. pestis infection (49). How-
ever, these protective immune responses against pathogens,
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such as Y. pestis, might come at the cost of causing none-
resolving inflammation.

In this study, we found that RIPK3 mediates a nonresolving
inflammation during E. coli infection through IL-1R signaling,
which is critical for leukocyte infiltration. It is known that cells
undergoing MLKL-dependent necroptosis could passively
release abundant IL-1« into the extracellular space (29). How-
ever, the deletion of Mkl only partially inhibits IL-1« release in
HMGBI1 and bacterial lipid-stimulated macrophages. Addi-
tionally, the inhibition of caspase-8 almost completely blocks
the IL-1a release in Mlki-deficient macrophages. These find-
ings are surprising because it was previously believed that apo-
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ptotic cells do not release DAMPs. Recent advances reveal that
caspase-3 not only mediates apoptosis but also is able to induce
programmed necrosis by cleaving its substrate gasdermin E
(GSDME) (50). Upon activation by caspase-3, GSDME binds to
the cell membranes and functions as pore-forming peptides
that execute necrotic cell death (50). Thus, these findings raise
an intriguing possibility that activated caspase-3 might induce
IL-1a release by cleaving GSDME in HMGB1/bacterial lipid-
stimulated macrophages.

One remaining question is what dictates whether RIPK3 trig-
gers necroptosis or apoptosis in response to HMGB1/bacterial
lipids? This stochastic decision may be determined by local
availability of MLKL versus caspase-8 in the cells. For example,
HMGB1/bacterial lipids might trigger necroptosis in cells that
fail to sufficiently activate caspase-8 to over-balance or sup-
press the RIPK3-dependent MLKL phosphorylation. The fact
that HMGB1 + bacterial lipids induces necroptosis without
concurrent caspase-8 suppression lends support to the “sto-
chastic availability” model, in which both apoptosis and
necroptosis can be equivalently deployed downstream of
RIPK3. Another observation in our study that supports the sto-
chastic availability model is that pharmacological inhibition of
caspase-8 significantly promotes HMGB1/bacterial lipid-in-
duced necroptosis (data not shown). In conclusion, our study
identifies a novel role of RIPK3 in bacteria-induced nonresolv-
ing inflammation, and uncovers a previously unrecognized
mechanism by which HMGBI1 and bacterial components work
in concert to orchestrate RIPK3-dependent immune responses
under physiological conditions.

Experimental procedures
Mice

The TrifL‘”/Lpsz, Caspase—]]f/f, and I[1-R~'~ mice were
purchased from the Jackson Laboratory. The Ripk3~'~ and
MIkI™'~ mice were generous gifts from Dr. Jiahuai Han. The
Pkr™'~ mice were generous gifts from Dr. Kevin J. Tracey. The
Nilrp3~'~ and Asc”/~ mice were generous gifts from Dr. Rong-
bin Zhou. The Tlr4~'~ mice were generous gifts from Dr.
Shusheng Gong. The IfnaBR™'~ mice were a generous gift from
Dr. Jin Hou. Experimental groups were sex matched and 8 -12
weeks of age. Animals were held under specific pathogen-free
conditions and maintained in the Central South University
Animal Facility with water and standard diet. All animal exper-
iments were approved and performed according to the Guide-
lines for Animal Experiments by the Institutional Animal Care
and Use Committees of Central South University.

Reagents

Lipid IVa(24006-S) was purchased from the Peptide Insti-
tute. Lipid A (L5399) was purchased from Sigma. Highly puri-
fied recombinant HMGB1 protein was provided by Dr. Kevin J.
Tracey. Z-IETD-fmk (550380) and Z-FA-fmk (550411) were
purchased from BD Bioscience. GSK872 was obtained from
Merck. Antibodies IL-loe (ab9724), phosphorylated MLKL
(Ser-345) (ab196436), phosphorylated RIPK3 (Ser-232)
(ab195117), and HMGB1 (clone EPR3507) were from Abcam.
Antibodies against Caspase-8(4927S), cleaved Caspase-8 (Asp-
387)(8592S), MLKL(28640S), and RIPK1 (3493S) were pur-
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chased from Cell Signaling Technologies. Antibody against
RIPK3 (17563-1-AP) was purchased from Proteinteck. Anti-
body against IL-13 (AF-401-NA) was purchased from R&D
Systems Inc.

Macrophage preparation and stimulation

Mouse peritoneal macrophages were isolated and cultured as
described previously (4). Briefly, mice (8 =12 weeks old) were
injected intraperitoneally with thioglycollate broth to elicit
peritoneal macrophages. Cells were collected and resuspended
in RPMI 1640 medium (Gibco) supplemented with 10% fetal
calf serum and antibiotics (Gibco). Peritoneal macrophages
were stimulated with lipid IVa/lipid A and HMGBI as indi-
cated. In some experiments, cells were pretreated with 15 um
Z-IETD-fmk or 15 um Z-FA-fmk for 0.5 h before infection. Cell
lysates and supernatants were collected 16 h later for Western
blotting, ELISA, and LDH release.

Cell death assays

Cell death was assessed by LDH Cytotoxicity Assay kit (Beyo-
time Biotechnology) according to the manufacturer’s instructions.

Western blot

Protein samples were separated by 15% SDS-PAGE and
transferred onto polyvinylidene difluoride membranes (Milli-
pore). Membranes were then incubated with antibodies as indi-
cated. Blots were normalized to B-actin expression (1:5000
dilutions, Cell Signaling Technology).

Creation of air-pouch in mice

Creation of the air-pouch was performed as described previ-
ously (51). The mice were shaved in their dorsal region, and
then 0.2 um of filtered air (5 and 3 ml) was subcutaneously
injected (on days 0 and 3, respectively). The mice were anesthe-
tized with isoflurane at day O to ensure compliance and reduce
pain. On day 6, inflammation was induced by intrapouch injec-
tion of PBS or bacteria solution (live/heat-killed E. coli, 5 X
10°). Five days after infection, cells in the air-pouch were col-
lected. Cell counting was performed by a hemacytometer. For
analyses of specific populations in the air-pouch, cells were
stained with antibodies against CD45, F4/80, Ly-6G, and
CD11b (eBioscience) and analyzed on the FACS Canto (BD
Bioscience) instrument.

Competitive ELISA

Corning Costar ELISA were coated with 2 pug/ml of lipid [Va
or lipid A, and blocked with 0.25% casein for 2 h at room tem-
perature. HMGB1 (16 pg/ml) and lipid IVa/lipid A (1~8
pg/ml) or RS-LPS (1~8 pg/ml) was added to the wells and
incubated for 0.5 h at 37°C. HMGB1 antibody (1:5000)
(ab79823) was incubated for an additional 0.5 h at 37 °C. Goat
anti-rabbit IgG H&L (horseradish peroxidase) was incubated
for an additional 1.5 h. Tetramethylbenzidine solution was used
for color.

Apoptosis and cell death assay

The peritoneal macrophage (about 1 X 10° cells) were
treated with either vehicle or stimulis for 16 h, as indicated,
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washed with PBS and trypsinized before re-suspending them
in the appropriate media. Cells were then stained with FITC-
labeled annexin V and propidium iodide (PI) and detected by
fluorescence-activated cell sorter (FACS) analysis. Storing
and processing of data were done with Flow]Jo software.

Transmission EM

Transmission EM was performed as described previously
(52). In brief, cells treated with HMGB1 alone or HMGB1/lipid
IVa or HMGB1/lipid A were harvested and fixed with 2.5%
glutaraldehyde in PBS (pH 7.2) for 4 h. Ultra-thin sections were
cut and observed under an H-600IV transmission electron
microscope (Hitachi, Tokyo, Japan).

Isolation and in vitro activation of PBMCs

Human blood from adult healthy volunteers’ collection was
approved by the research ethics committee of The 3rd Xiangya
Hospital of Central South University. Experiments with
human PBMCs were abided by the Helsinki Declaration for
experiments involving humans. PBMCs were isolated using
Ficoll-Paque density gradient media (GE Healthcare). After
centrifugation, PBMCs were resuspended in RPMI 1640
medium supplemented with 10% fetal bovine serum and
antibiotics and stimulated with lipid IVa/lipid A and
HMGBI1 as indicated for 16 h. Cell supernatants were col-
lected for ELISA.

Statistical analysis

All data were analyzed using GraphPad Prism software
(version 5.01). Data were analyzed by Student’s ¢ test for
comparison between two groups or one-way analysis of vari-
ance followed by a post hoc Bonferroni test for multiple
comparisons. A p value <0.05 was considered statistically
significant for all experiments. All values are presented as
the mean = S.D.
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