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Abstract

Drug discovery and development pipelines are long, complex and depend on numerous factors. 

Machine learning (ML) approaches provide a set of tools that can improve discovery and decision 

making for well-specified questions with abundant, high-quality data. Opportunities to apply ML 

occur in all stages of drug discovery. Examples include target validation, identification of 

prognostic biomarkers and analysis of digital pathology data in clinical trials. Applications have 

ranged in context and methodology, with some approaches yielding accurate predictions and 

insights. The challenges of applying ML lie primarily with the lack of interpretability and 

repeatability of ML-generated results, which may limit their application. In all areas, systematic 

and comprehensive high-dimensional data still need to be generated. With ongoing efforts to 

tackle these issues, as well as increasing awareness of the factors needed to validate ML 

approaches, the application of ML can promote data-driven decision making and has the potential 

to speed up the process and reduce failure rates in drug discovery and development.
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Biological systems are complex sources of information during development and disease. 

This information is now being systematically measured and mined at unprecedented levels 

using a plethora of ‘omics’ and smart technologies. The advent of these high-throughput 

approaches to biology and disease presents both challenges and opportunities to the 

pharmaceutical industry, for which the aim is to identify plausible therapeutic hypotheses 

from which to develop drugs. However, recent advances in a number of factors have led to 

increased interest in the use of machine learning (ML) approaches within the pharmaceutical 

industry. Coupled with infinitely scalable storage, the large increase in the types and sizes of 

data sets that may provide the basis for ML has enabled pharmaceutical companies to access 

and organize many more data. Data types can include images, textual information, 

biometrics and other information from wearables, assay information and high-dimensional 

omics data1.

Over the past few years, the field of artificial intelligence (AI) has moved from largely 

theoretical studies to real-world applications. Much of that explosive growth has to do with 

the wide availability of new computer hardware such as graphical processing units (GPUs) 

that make parallel processing faster, especially in numerically intensive computations. More 

recently, advances in new ML algorithms, such as deep learning (DL)2, that build powerful 

models from data and the demonstrable success of these techniques in numerous public 

contests3,4 have helped to enormously increase the applications of ML within 

pharmaceutical companies in the past 2 years.

Although many consumer service industries have been early adopters of newer methods 

from the field of ML, uptake from the pharmaceutical industry has lagged until recently. It is 

well known that the success rate for drug development (as defined from phase I clinical trials 

to drug approvals) is very low across all therapeutic areas and across the global 

pharmaceutical industry. A recent study on 21,143 compounds found that the overall success 

rate was as low as 6.2%5. Hence, much of the rationale for the use of ML technologies 

within the pharmaceutical industry is driven by business needs to lower overall attrition and 

costs.

All stages of drug discovery and development, including clinical trials, have embarked on 

developing and utilizing ML algorithms and software (FIG. 1) to identify novel targets6, 

provide stronger evidence for target-disease associations7, improve small-molecule 

compound design and optimization8, increase understanding of disease mechanisms, 

increase understanding of disease and non-disease phenotypes9, develop new biomarkers for 

prognosis, progression and drug efficacy1, improve analysis of biometric and other data from 

patient monitoring and wearable devices, enhance digital pathology imaging10 and extract 

high-content information from images at all levels of resolution.

Consequently, many pharmaceutical companies have begun to invest in resources, 

technologies and services to generate and curate data sets to support research in this area. 

Furthermore, technology giants such as IBM and Google, biotechnology start-ups and 

academic centres are not only providing cloud-based computation services but also working 

in the pharmaceutical and health-care space with industry partners. This Review provides an 
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overview of current tools and techniques (the toolbox) used in ML, including deep neural 

nets, and an overview of progress so far in key pharmaceutical application areas.

The machine learning toolbox

Fundamentally, ML is the practice of using algorithms to parse data, learn from it and then 

make a determination or a prediction about the future state of any new data sets. So rather 

than hand-coding software routines with a specific set of instructions (pre-determined by the 

programmer) to accomplish a particular task, the machine is trained using large amounts of 

data and algorithms that give it the ability to learn how to perform the task. The programmer 

codes the algorithm used to train the network instead of coding expert rules.

The algorithms adaptively improve their performance as the quantity and quality of data 

available for learning increase. Hence, ML is best applied to solve problems for which a 

large amount of data and several variables are at hand but a model or formula relating these 

is not known.

There are two main types of technique that are used to apply ML: supervised and 

unsupervised learning. Supervised learning methods are used to develop training models to 

predict future values of data categories or continuous variables, whereas unsupervised 

methods are used for exploratory purposes to develop models that enable clustering of the 

data in a way that is not specified by the user. Supervised learning trains a model on known 

input and output data relationships so that it can predict future outputs for new inputs. Future 

outputs are typically models or results for data classification or an understanding of the most 

influential variables (regression). The unsupervised learning technique identifies hidden 

patterns or intrinsic structures in the input data and uses these to cluster data in meaningful 

ways.

Model selection concepts.

The aim of a good ML model is to generalize well from the training data to the test data at 

hand. Generalization refers to how well the concepts learned by the model apply to data not 

seen by the model during training. Within each technique, several methods exist (FIG. 2), 

which vary in their prediction accuracy, training speed and the number of variables they can 

handle. Algorithms must be chosen carefully to ensure that they are suitable for the problem 

at hand and the amount and type of data available. The amount of parameter tuning needed 

and how well the method separates signal from noise are also important considerations.

Model overfitting happens when the model learns not only the signal but also some of the 

unusual features of the training data and incorporates these into the model, with a resulting 

negative impact on the performance of the model on new data. Underfitting refers to a model 

that can neither model the training data nor generalize to new data. Typical ways to limit 

overfitting are to apply resampling methods or to hold back part of the training data to use as 

a validation data set. Regularization regression methods (such as Ridge, LASSO or elastic 

nets) add penalties to parameters as model complexity increases so that the model is forced 

to generalize the data and not overfit. One of the most effective ways to avoid overfitting is 

the dropout method11, which randomly removes units in the hidden layer. Different ML 
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techniques have different performance metrics. Basic evaluation metrics12 such as 

classification accuracy, kappa13, area under the curve (AUC), logarithmic loss, the F1 score 

and the confusion matrix can be used to compare performance across methods. The 

availability of gold standard data sets as well as independently generated data sets can be 

invaluable in generating well-performing models.

Several software libraries are now available for high-performance mathematical computation 

across a variety of hardware platforms (central processing units (CPUs), GPUs and tensor 

processing units (TPUs)), and from desktops to clusters of servers. Commonly used ML 

programmatic frameworks are the open-source framework TensorFlow, originally developed 

by researchers and engineers from the Google Brain team within Google’s AI organization 

(see Related links), as well as PyTorch, Keras and Scikit-learn.

Deep neural network architectures.

DL is a modern reincarnation of artificial neural networks from the 1980s and 1990s and 

uses sophisticated, multi-level deep neural networks (DNNs) to create systems that can 

perform feature detection from massive amounts of unlabelled or labelled training data2. The 

major difference between DL and traditional artificial neural networks is the scale and 

complexity of the networks used. In neural networks, input features are fed to an input layer, 

and after a number of nonlinear transformations using hidden layers, the predictions are 

generated by an output layer. This is typically done by using the back-propagation of errors 

to progressively reduce the difference between the obtained and the expected values of the 

output. Each output node corresponds to a task (or class) to be predicted. If there is only one 

node in the output layer, then the corresponding network is referred to as a single-task neural 

network. DL can have a large number of hidden layers because it uses more powerful CPU 

and GPU hardware, whereas traditional neural networks normally use one or two hidden 

layers because of hardware limitations. There are also many algorithmic improvements in 

DL.

The applications of DNNs in drug discovery have been numerous and include bioactivity 

prediction14, de novo molecular design, synthesis prediction and biological image analysis3. 

One advantage of DNNs is that they have several different flexible architectures described 

below and are thus used to answer a variety of questions. In the first architecture, deep 

convolutional neural networks (CNNs), some of the hidden layers are only locally (rather 

than globally) connected to the next hidden layer. CNNs achieve the best predictive 

performance in areas such as speech and image recognition by hierarchically composing 

simple local features into complex models. Graph convolutional networks are a special type 

of CNN that can be applied to structured data in the form of graphs or networks. The second 

architecture is the recurrent neural network (RNN), which takes the form of a chain of 

repeating modules of neural networks in which connections between nodes form a directed 

graph along a sequence. This allows for the analysis of dynamic changes over time where 

RELATED LiNKS
DeepChem: https://www.deepchem.io/
DREAM Challenges: http://dreamchallenges.org/
TensorFlow: https://www.tensorflow.org/
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persistent information is needed. Long short-term memory neural networks are a special 

kind of RNN that are capable of learning long-term dependencies. The third example — 

fully connected feedforward networks — are networks in which every input neuron is 

connected to every neuron in the next layer. This is the opposite of an RNN in that, with 

fully connected feedforward networks, the gradient is clearly defined and computable 

through backpropagation. These models have been used in challenging predictive model 

building cases, such as with gene expression data, in which the number of samples is small 

relative to the number of features. The fourth network architecture is the deep autoencoder 

neural network (DAEN). This type of neural network is an unsupervised learning algorithm 

that applies backpropagation to project its input to its output with the purpose of dimension 

reduction15, thus trying to preserve the important random variables of the data while 

removing the non-essential parts. The fifth and final network architecture — generative 

adversarial networks (GANs) — consist of any two networks (although often a combination 

of feedforward neural networks and CNNs), where one is tasked to generate content and the 

other to classify that content.

Data characteristics.

The practice of ML is said to consist of at least 80% data processing and cleaning and 20% 

algorithm application. The predictive power of any ML approach is therefore dependent on 

the availability of high volumes of data of high quality. Data used for training need to be 

accurate, curated and as complete as possible in order to maximize predictability. 

Experimental design often involves discussions on the ideal sample size and the appropriate 

power calculations for correctly estimating this parameter. Whether the correct type of data 

is even available and what data should be experimentally generated are also key 

considerations for certain questions. ML applications are more powerful when used on data 

that have been generated in a systematic manner, with minimal noise and good annotation. 

As we discuss below, many applications are not particularly effective because data are 

combined from multiple sources with variable data quality. There are ongoing efforts to 

develop open annotated data in specific areas of drug discovery, such as target validation16. 

These aim to generate good quality positive and negative annotations in areas that are 

important to drug discovery and development to foster application of ML.

Applications in drug discovery

Target identification and validation.

The pre-eminent approach in drug discovery is to develop drugs (small molecules, peptides, 

antibodies or newer modalities including short RNAs or cell therapies) that will alter the 

disease state by modulating of the activity of a molecular target. Notwithstanding a recent 

resurgence in phenotypic screens, initiating a drug development programme requires 

identification of a target with a plausible therapeutic hypothesis: that modulation of the 

target will result in modulation of the disease state. Selecting this target on the basis of the 

available evidence is referred to as target identification and prioritization. Having made this 

preliminary choice, the next step is to validate the role of the chosen target in disease using 

physiologically relevant ex vivo and in vivo models (target validation). Although the 
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ultimate validation of the target will only come later, through clinical trials, early target 

validation is crucial to focus efforts on potentially successful projects.

Modern biology is increasingly rich in data. This includes human genetic information in 

large populations, transcriptomic, proteomic and metabolomic profiling of healthy 

individuals and those with specific diseases and high-content imaging of clinical material. 

The ability to capture these large data sets and to re-use them via public databases presents 

new opportunities for early target identification and validation. However, these multi-

dimensional data sets require appropriate analytical methods to yield statistically valid 

models that can make predictions for target identification, and this is where ML can be 

exploited. The range of experiments that can contribute to target identification and validation 

is wide, but if these experiments are data-driven, ML is increasingly being applied.

The first step in target identification is establishing a causal association between the target 

and the disease. Establishing causality requires demonstration that modulation of a target 

affects disease from either naturally occurring (genetic) variation or carefully designed 

experimental intervention. However, ML can be used to analyse large data sets with 

information on the function of a putative target to make predictions about potential causality, 

driven, for instance, by the properties of known true targets. ML methods have been applied 

in this way across several aspects of the target identification field. Costa et al.17 built a 

decision tree-based meta-classifier trained on network topology of protein-protein, metabolic 

and transcriptional interactions, as well as tissue expression and subcellular localization, to 

predict genes associated with morbidity that are also druggable. By inspecting the decision 

tree, they identified regulation by multiple transcription factors (TFs), centrality in metabolic 

pathways and extracellular location as key parameters. In other studies, ML models have 

focused on specific diseases or therapeutic areas. Jeon et al.6 built a support vector machine 

(SVM) classifier using various genomic data sets to classify proteins into drug targets and 

non-drug targets for breast, pancreatic and ovarian cancers. Key classification features were 

gene essentiality, mRNA expression, DNA copy number, mutation occurrence and protein-

protein interaction network topology. In all, 122 global cancer targets were identified, 69 of 

which overlap with 116 known cancer targets. In addition, 266, 462 and 355 targets were 

identified as specific to breast, pancreatic and ovarian cancers, respectively. Two predicted 

targets were validated with peptide inhibitors that had strong anti-proliferative effects in cell 

culture models. Further, inhibitors for 137 predicted pancreatic cancer targets were almost 

twice as likely to show strong inhibition of cell viability as other compounds. Ament et al.18 

built a model based on mouse TF binding sites and transcriptome profiling data to 

characterize transcriptional changes underlying Huntington disease. They reconstructed a 

genome-scale model of target genes for 718 TFs in the mouse striatum using a regression 

model and LASSO regularization. Overall, 13 of 48 identified TF modules were 

differentially expressed in striatal tissue in human disease and provided potential starting 

points for Huntington disease therapies. Molecular targets for tissue-specific antiageing 

therapies have been identified by Mamoshina et al.1. They compared gene expression 

signatures from young and old muscle. The comparison of several supervised ML methods 

revealed SVMs with linear kernel and deep feature selection to be best suited to the 

identification of ageing biomarkers. In each of these examples, ML generated a set of 
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predictions of targets that have properties that suggest they are likely to bind drugs, or be 

involved in disease, but further validation is essential to generate a therapeutic hypothesis.

The literature is the primary source of knowledge on target association with disease. 

Automated processing of the literature unlocks information from unstructured text that 

would otherwise be inaccessible. Recent advances in natural language processing (NLP), an 

ML approach applied to text mining, have enabled more effective data mining to identify 

relevant papers. BeFree19 applies NLP Kernel methods to identify drug-disease, gene-

disease and target-drug associations in Medline abstracts. This supervised learning approach 

relies on the manually annotated European Union adverse drug reactions (EU-ADR) 

database corpus of relationships and a semi-automatically annotated corpus based on the 

Genetic Association Database. DigSee20 identifies genes and diseases in Medline abstracts, 

uses NLP to extract biological events between these entities and ranks the evidence 

sentences with a Bayesian classifier.

One area with great scope for ML is in understanding basic aspects of biology to identify 

therapeutic opportunities through alternate modalities or novel targets. Understanding 

genetic variation in splicing signals is one example. DL splicing models are now able to 

accurately predict alternate splicing signals21. The latest integrative splicing models22 

combine CLIP-seq assay data of splicing factor binding in vivo with RNA sequencing 

experiments in which these splicing factors have been knocked down or overexpressed. 

Combining splicing code models with predictions of de novo and complex splicing 

variations has allowed identification of splicing variants specific to Alzheimer disease23. 

Recent applications of similar approaches identified an escape mechanism from CART-19 

immunotherapy24, rare genetic variants leading to deafness25 and splicing variants 

associated with autism26.

ML can also predict cancer-specific drug effects. Iorio et al.27 screened 990 cancer cell lines 

against 265 anticancer drugs and investigated how genome-wide gene expression, DNA 

methylation, gene copy number and somatic mutation data affect drug response. They used 

ANOVA, logic models and ML algorithms (elastic net regression and random forests) to 

identify molecular features that predict drug response. The most predictive data type across 

cancer types was gene expression, whereas the most predictive cancer-specific models 

included genomic features (driver mutations or copy number alterations) and were even 

better if they included DNA methylation data. Tsherniak et al.28 used data from RNA 

interference (RNAi) screens of 501 cancer cell lines to find molecular markers that predict 

cancer dependencies for 769 genes. They developed a nonlinear regression model based on 

conditional inference trees to generate predictive models based on gene expression, gene 

copy number and somatic gene mutations. McMillan et al.29 screened 222 chemicals against 

>100 heavily annotated cell models of diverse and characteristic somatic lung cancer lesions. 

They applied regularized ML (elastic net) and probability-based metrics (scanning 

Kolmogorov-Smirnov) to identify 171 chemical-genetic associations that revealed targetable 

mechanistic vulnerabilities in a range of oncotypes without effective therapies. These 

approaches suggest that there are opportunities for tumour-intrinsic precision medicine.
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Another important question for drug developers is how likely it is that a drug can be made 

for any given target. For small-molecule drugs, this entails identifying targets that have 

features that suggest these proteins can bind small molecules30. Different target attributes 

can be used to generate these druggability models. Nayal and Honig31 trained a random 

forest classifier on physicochemical, structural and geometric attributes of 99 drug-binding 

and 1,187 non-drug-binding cavities from a set of 99 proteins. Size and shape of the surface 

cavities were the most important features. Several studies derived various physicochemical 

properties from protein sequences of known drug and non-drug targets and applied 

SVMs32,33 or biased SVMs with stacked autoencoders, a DL model34, to predict druggable 

targets. Druggable proteins have also been found to occupy specific regions of protein-

protein interaction networks and tend to be highly connected6,17,35. Again, these examples 

of ML approaches generated sets of targets that are predicted as likely to bind drugs, hence 

reducing the potential search space, but these targets require further validation.

The holy grail for target identification or validation is the early prediction of future clinical 

trial success for a target-based drug discovery programme. Various non-ML analyses point 

to possible predictors of success5,36,37. Using ML, Rouillard et al.38 assessed omics data for 

a set of 332 targets that succeeded or failed phase III clinical trials by multivariate feature 

selection. They found gene expression data were particularly predictive of successful targets, 

characterized by low mean RNA expression and high variance across tissues. This study 

confirmed previous findings that ideal targets exhibit disease-specific expression in affected 

tissues39. Ferrero et al.7 trained a range of ML classifiers using target-disease associations 

from the open targets platform16 to predict de novo potential therapeutic targets. Assessment 

of feature importance identified the existence of an animal model, gene expression and 

genetic data as key data types for therapeutic target prediction independent of the indication. 

However, this approach is limited by the sparse nature of the data and the lack of 

information about reasons for failure of initiated programmes. More fundamentally, owing to 

the length of time between initiating a successful drug discovery programme and bringing 

the drug to market, successful programmes reflect earlier paradigms for drug development. 

The drivers of successful small-molecule programmes are unlikely to be the same today, as 

newer modalities, such as biologics (including antibodies), are available. The increasing 

focus on precision medicine introduces additional constraints. It is essential for future 

prediction approaches that extensive data on successful and failed drug discovery 

programmes are available with metadata in the public domain.

Small-molecule design and optimization.

The discovery of drug candidates that can block or activate the target protein of interest 

involves extensive virtual and experimental high-throughput screening of large compound 

libraries. Candidate structures are then further refined and modified to improve target 

specificity and selectivity, along with optimized pharmacodynamic, pharmacokinetic and 

toxicological properties. Importantly, though, the lack of sufficient high-quality data for new 

chemistry such as proteolysis-targeting chimeras (PROTACs) and macrocycles can limit the 

impact of ML on such chemistry.

Vamathevan et al. Page 8

Nat Rev Drug Discov. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Much work has been done to apply DL methods, such as multi-task neural networks, to 

ligand-based virtual screening. Given a lead compound, compounds that have a similar 

chemical structure can be identified computationally. This has typically been performed 

using classic statistical methods, but multi-task DNNs are proving to be more effective40. 

DNNs can significantly boost predictive power when inferring the properties and activities 

of small molecules41. The one-shot learning technique can be used to substantially reduce 

the amount of data required to make meaningful predictions about the readout of a molecule 

in a new experimental setup. Combining ML with Markov state models, this technique was 

used to identify the previously unknown mechanism of opiate binding to the μ-opioid 

receptor, revealing an allosteric site that is involved in its activation42. The benefits of multi-

task models over single-task models are, however, highly data set-dependent. To help 

benchmark ML algorithms, Pande et al. compiled a large benchmarking data set, 

MoleculeNet43, which has been used for the comparison of different ML algorithms. 

MoleculeNet contains data on the properties of over 700,000 compounds. All data sets have 

been curated and integrated into the open-source DeepChem package (see Related links), 

which also includes other tools.

DNNs and modern tree search algorithms can also be used to plan efficient routes of 

chemical synthesis. To plan the synthesis of a target molecule, the molecule is formally 

decomposed using reversed reactions (retrosynthesis). This procedure results in a sequence 

of reactions that can then be executed in the laboratory in the forward direction to synthesize 

the target. A major challenge is to systematically apply synthetic chemistry knowledge to 

this process. The manual incorporation of transformation rules is prohibitive as the 

knowledge of chemistry grows exponentially, and the scope and limitations of many 

reactions are not completely understood. To automatically extract the rules, Segler et al.44 

used the Reaxys database (~11 million reactions and ~300,000 rules) and performed a 

Monte Carlo tree search (MCTS) to score the tree nodes in conjunction with DNNs to steer 

the search in the most promising directions. In quantitative analyses, this method 

outperforms the gold standard, best first search, with two different implementations 

(heuristic method and neural). Furthermore, MCTS is 30 times faster than traditional 

computer-aided search methods for almost two-thirds of the molecules examined. 

Qualitative tests were also performed in a double-blind study. Organic chemists were asked 

to choose between literature-based and predicted synthesis routes without knowing how the 

route was obtained. Here, for the first time, chemists considered the quality of the predicted 

routes to be, on average, as good as routes taken from the literature.

Another valuable application of DL is molecular de novo design through reinforcement 

learning. Researchers at AstraZeneca45 made use of RNNs for expansion of the chemical 

space by tuning a sequence-based generative model to design compounds with almost 

optimal values for solubility, pharmacokinetic properties, bioactivity and other parameters. 

Kadurin et al.46 also developed similar models using deep GANs to perform molecular 

feature extraction on very large data sets. However, it must be noted that reinforcement 

learning might not help in identifying new and unprecedented synthetic routes47.

Community problem-solving competitions can be useful to advance method development in 

a particular area. Researchers at Merck Sharp & Dohme sponsored a Kaggle competition for 

Vamathevan et al. Page 9

Nat Rev Drug Discov. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the prediction of other relevant absorption, distribution, metabolism and excretion (ADME) 

parameters as well as some biochemical targets. The winning team used DNNs, which, in 13 

out of 15 assay systems, performed slightly better than a standard random forest41. Some of 

their key learnings were that the optimization of the hyperparameters can improve DNNs, 

feature selection is not necessary, multi-task models perform better than single-task models 

and overfitting can be prevented by using dropout. Ramsundar et al.40 also observed that 

multi-task DNNs perform better than single-task DNNs. A comparison between single-task 

and multi-task DNNs and a comparison between different ML methods (random forest, 

SVM, naive Bayes and logic regression) were pursued by Lenselink et al.48 using one 

standardized data set obtained from ChEMBL49. Here, the DNN model performed best, and 

a multi-task DNN was also found to be better than a single-task DNN. Multi-task DNNs 

have also been shown to be better for predictions of lead optimization and lead 

identification, as they can synthesize information from many distinct biological sources50 

owing to the presence of multiple nodes in the output layer.

Feature selection before model building can improve ML models, as shown in a study by 

Kramer and Gutlein51. They were also able to detect improvements in random forest models 

against other ML methods such as SVMs and naive Bayes, with faster performance and 

fewer features used while training models. In their view, one major benefit from filtering out 

chemical fingerprint bits is the improvement in model interpretability. If the fingerprint is 

not filtered, the interpretability is hindered owing to an effect called ‘bit collisions’. The 

crucial impact of filtering fingerprints was also independently shown by Landrum et al.8.

Hochreiter et al.52 also found that DNN-based models significantly outperformed all 

competing methods and that the predictive performance of DL, using a data set of all 

ChEMBL assays and target prediction based on a simplified molecular input line entry 

system (SMILES) input, is in many cases comparable to that of tests performed in wet 

laboratories. The Hochreiter group also showed that DNNs outperformed all other ML 

methods (k-nearest neighbour, naive Bayes, random forest and SVMs) and statistics-based 

methods (similarity ensemble approach53) for target prediction54. The same group won the 

majority of the challenges in the Tox21 Data Challenge 2014 (REF.55).

An unresolved challenge in the field of small-molecule design is how to best represent the 

chemical structure. A plethora of representations exist, from simple circular fingerprints 

such as the extended-connectivity fingerprint (ECFP) to sophisticated symmetry functions 

(FIG. 3). It is still not clear which structure representation works best for which small-

molecule design problem. Therefore, it will be interesting to see if the rise in ML studies in 

the field of cheminformatics will give more guidance about the best choice for structure 

representation.

Predictive biomarkers.

ML-based biomarker discovery and drug sensitivity predictive models are demonstrated 

approaches to help improve clinical success rates, to better understand the mechanism of 

action of a drug and to identify the right drug for the right patients56–58. Late-stage clinical 

trials take many years and millions of dollars to conduct, so it will be most beneficial to 

build, validate and apply predictive models earlier, using preclinical and/or early-stage 
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clinical trial data. A translational biomarker can be predicted using ML approaches on 

preclinical data sets. After being validated using independent data sets (either preclinical or 

clinical), the model and its corresponding biomarker can be applied to stratify patients, 

identify potential indications and suggest the mechanisms of action of a drug (FIG. 4).

Although there are thousands of papers on biomarkers and predictive models in the 

literature, few of them have been used in clinical trials. Various factors contribute to this gap, 

including data quality, model selection, access to data and software, model reproducibility 

and the design of assays suitable for a clinical setting. To address some of the model-related 

issues, several community efforts have evaluated ML approaches to develop both 

classification and regression models. Several years ago, the US Food and Drug 

Administration (FDA) organized the MicroArray Quality Control II (MAQC II) initiative to 

evaluate various ML methods for predicting clinical end points from baseline gene 

expression data59. In the project, 36 independent teams analysed 6 microarray data sets to 

generate predictive models to classify a sample with 1 of13 clinical end points. General 

observations included the importance of the data quality control processes, the need for 

skilled scientists (some teams perform consistently better than other teams using the same 

ML methods) and the importance of selecting appropriate modelling approaches for clinical 

end points. For instance, a poor prediction of overall survival for patients with multiple 

myeloma could be partly due to applying an arbitrary survival cut-off of 24 months. Both 

gene expression and overall survival in multiple myeloma are continuous variables, and 

therefore, a regression-based prediction model is appropriate. Indeed, using a univariate Cox 

regression approach, a gene expression signature that significantly predicts a high-risk 

subgroup of patients was identified60. This signature was confirmed in several independent 

studies and from different regression-based approaches61–64, highlighting the advantage of a 

regression approach without predefined class membership.

The National Cancer Institute (NCI)-DREAM challenge was another community effort to 

evaluate regression methods for building drug sensitivity predictive models (defined as 

regression questions)65. Each participating team used their best modelling approaches and 

optimized their parameter sets on the same training data sets (35 breast cancer cell lines 

treated with 31 drugs) then tested the performance of their models on the same blinded 

testing data sets (18 breast cancer cell lines treated with the same 31 drugs). Six types of 

baseline profiling data were available for generating predictive models — RNA microarray, 

single nucleotide polymorphism (SNP) array, RNA sequencing, reverse phase protein array, 

exome sequencing and DNA methylation status — to which 44 participating teams applied 

various regression approaches such as kernel method, nonlinear regression (regression trees), 

sparse linear regression, partial least squares regression, principal component regression or 

ensemble methods. Consistent with the MAQC II results, some teams consistently 

outperformed other teams using the same approaches. The differential performance was 

likely reflective of the technical details used for quality control, data reduction, feature 

selection, splitting strategy and fine-tuning ML parameters, as well as potential 

incorporation of biological knowledge such as gene function information or clinical data into 

the construction of the predictive models. In addition, some drugs were easier to build 

predictive models for than others for all teams and methods. The NCI-DREAM challenge 

data sets and results continue to be used as validation data sets for method development and 
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evaluation, for example, on new random forest ensemble frameworks66, group factor 

analyses67 and other approaches68,69.

Several successful case studies have now been published in which ML-generated predictive 

models and their corresponding biomarkers have played a critical role in drug discovery and 

development. Li et al.56 conducted a case study using standard-of-care drugs in which they 

first built models for drug sensitivity to erlotinib and sorafenib (one model for each drug) 

using cancer cell line screen data. They then applied the models to stratify patients from the 

BATTLE clinical trial70, who were treated with one of the two drugs, and demonstrated that 

the models were predictive and drug-specific. The model-derived biomarker genes were 

shown to be reflective of the mechanism of action of each drug, and when combined with 

globally normalized public domain data from various cancer types, the model predicted 

sensitivities of cancer types to each drug that were consistent with their FDA-approved 

indications. This study shows that using ML approaches to identify key features that 

contribute to drug sensitivity across various cancer types in a tissue-agnostic manner could 

be useful for drug development (in comparison with cancer type-based clinical trials 

followed by label expansions). In 2017, the FDA approved the programmed cell death 1 

(PD1) inhibitor pembrolizumab for cancers with a specific genetic biomarker. This is the 

first FDA approval based on a cross-indication genetic biomarker rather than a cancer 

type71, highlighting the need for more mechanism-based biomarker discovery.

Recently, there has been much progress on ML-based predictive biomarkers in indications 

other than oncology using various types of input data. Tasaki et al.72 applied ML approaches 

to multi-omics data to better understand drug responses for patients with rheumatoid 

arthritis. Pare et al.73 developed a novel ML framework based on gradient boosted regression 

trees to build polygenic risk scores for predicting complex traits. Tested on the UK Biobank 

data set, their SNP-based models were able to explain 46.9% and 32.7% of overall polygenic 

variance for height and BMI, respectively. In addition, Khera et al.74 developed genome-

wide polygenic scores to identify individuals at high risk of coronary artery disease, atrial 

fibrillation, type 2 diabetes, inflammatory bowel disease and breast cancer.

The rapid evolution of single-cell RNA sequencing technologies has been used for gene 

clustering and cell-specific biomarker discovery. Single-cell RNA sequencing techniques 

have been used to identify novel cell types, distinguish cell states, trace development 

lineages and integrate expression profiles with spatial resolution of cells. However, an 

unsolved challenge is the reduction in the gene expression measurements from tens of 

thousands of cells to low-dimension space, typically two or three variables. Ding et al.75 

developed a probabilistic generative model, scvis, to reduce the high-dimensional space to 

the low-dimensional structures in single-cell gene expression data with uncertainty 

estimates. This tool was then used to analyse four single-cell RNA sequencing data sets and 

produced 2D representations of the multi-dimensional single-cell RNA sequencing data that 

could be interpreted to robustly identify cell types. In addition, Rashid et al.76 have used 

variational autoencoders (VAEs) to transform single-cell RNA sequencing data to a latent 

encoded feature space that more efficiently differentiates between the hidden tumour 

subpopulations. Analysis of the encoded feature space revealed subpopulations of cells and 

the evolutionary relationship between them. The method was completely unsupervised and 
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required minimal pre-processing of the data. Additionally, the method is tolerant of gene 

expression dropout in single-cell RNA sequencing data sets. Wang and Gu77 proposed deep 

variational autoencoder for single-cell RNA sequencing data (VASC), a deep multi-layer 

generative model, for the unsupervised dimension reduction and visualization of this data. 

Tested on 20 data sets, VASC is superior and has broader data set compatibility than several 

state-of-the-art dimension-reduction methods such as ZIFA78 and SIMLR79.

One exciting recent development in ML is the rapid rise of feature selection for biomarker 

discovery. For example, researchers applied unsupervised DL models to extract meaningful 

representations of gene modules or sample clusters80. Way and Greene81 introduced a VAE 

model trained on The Cancer Genome Atlas (TCGA) pan-cancer RNA sequencing data and 

identified specific patterns in the VAE encoded features. Beck et al.82 conducted image 

analysis and data integration with gene expression and proteomics data to improve the 

identification of lung squamous cell carcinoma. Nirschl et al.83 showed that a CNN model 

could better predict the likelihood of cardiac failure from endomyocardial biopsy samples 

(AUC = 0.97) than two trained cardiac pathologists could (AUC = 0.73 and 0.75).

In all these examples, for ML-generated predictive biomarkers to be more successful, there 

are several key issues that still need to be addressed. At least some of these issues concern 

the interpretability of the classifier, considered by at least some end-users to be critical for 

clinical adoption. One of the other key issues is the need to validate these approaches in the 

context of multi-site, multi-institutional data sets to demonstrate the generalizability of the 

approach. The research community is actively addressing these issues and making rapid 

progresses, including the application of objective approaches and measures for model 

training and parameter optimization84, model interpretation and extraction of biological 

insights85, and model reproducibility86.

Computational pathology.

Pathology is a descriptive field, as a pathologist interprets what is seen on a glass slide by 

visual inspection. Analysis of these glass slides provides a vast amount of information, such 

as the type of cell present in the tissue and their spatial context. The interplay between 

tumour and immune cells within the tumour microenvironment is increasingly important in 

the study of immuno-oncology and is not captured by other technologies.

Pharmaceutical companies need to understand how drug treatments affect particular tissues 

and cells and need to test thousands of compounds before selecting a candidate for a clinical 

trial. Furthermore, as the number of clinical trials grows, discovering new biomarkers will be 

increasingly important to identify patients who will respond to a particular therapy. 

Increased use of computational pathology that may allow for the discovery of novel 

biomarkers and generate them in a more precise, reproducible and high-throughput manner 

will ultimately cut down drug development time and allow patients faster access to 

beneficial therapies.

Before DL, algorithms for tissue image analysis were often biologically inspired in 

collaboration with pathologists and required computer scientists to handcraft descriptive 

features for a computer to classify a certain type of tissue or cell. These studies were aimed 
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at identifying morphological descriptors in widely used haemotoxylin and eosin (H&E)-

stained images. Nuclear morphometry was among the earliest implementations of 

computational pathology, demonstrating the ability to determine associations between 

computer-generated features and prognosis87. Beck et al.88 looked at cells in the context of 

their spatial locations within the surrounding tumour stroma and showed associations 

between stromal features and survival in breast cancer. Lee et al.89 have also demonstrated 

that computational analysis of tumour-adjacent benign tissue in prostate cancer can reveal 

information that is typically ignored by pathologists but is associated with progression-free 

survival. More recently, Lu et al. showed that features that describe nuclear shape and 

nuclear orientation were strongly associated with survival in both oral cancers90 and early-

stage oestrogen receptor-positive breast cancers91. In many cases, the availability of 

immunohisto-chemical stains, which use antibodies to target specific proteins in an image 

and mark specific cell and tissue types, circumvents the need for cell and tissue detection by 

morphology and thus enables the generation of sophisticated data without the use of DL 

tools. However, in the case of immuno-oncology, ML allows for high-throughput generation 

of features that describe spatial relationships for thousands of cells, an infeasible task for 

pathologists. Improvements in individual cell and tissue detection via DL methods allow for 

very precise measurements of the tumour microenvironment, so heterogeneous features that 

describe spatial relationships between cells and tissue structures can now be measured at 

scale (FIG. 5).

In a study by Mani et al.92, several markers for lymphocytes were utilized to understand the 

heterogeneity of these populations in breast cancer. Giraldo et al.93 examined cell-cell 

interactions and showed that, using cell densities and the relative location of PD1+ and CD8+ 

cells, they could identify patients with Merkel cell carcinoma who would respond to 

pembrolizumab. The trade-off for these types of experiment is that they use a lot of tissue, 

typically requiring additional slides for each stain; however, hundreds or thousands of 

features can be examined, and the number of possible cell-cell interactions increases with 

each stain used. In such a case, a combination of feature selection and ML methods is used 

to determine combinations that may be predictive of therapeutic response.

The application of CNNs to pathology images works well because there is a large number of 

viable pixels that can be used for training from a single biopsy or resection. Given enough 

well-curated exemplars, a DL algorithm can be designed to learn features automatically for a 

wide variety of classification tasks94. For example, a multi-scale convolutional neural 

network (M-CNN) was used in a supervised learning approach for phenotyping high-content 

cellular images9 in a single step as opposed to several, independent customized steps. Using 

solely pixel intensity values from the images to convert those images into phenotypes, the 

approach resulted in overall more accurate classification of the effects of a compound 

treatment at multiple concentrations. Many image analysis challenges have successfully used 

DL methods to identify areas within cancer tumours95–98, tubules99, mitotic activity100 and 

lymphocytes101,102 in breast and lung cancer.

Beyond pathology images, DL can also facilitate the integration of other modalities of 

information. DL can also be used to accelerate magnetic resonance imaging (MRI) data 

acquisition103 or reduce the radiation dose required for computed tomography (CT) 
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imaging104. With improved imaging quality including temporal and spatial resolution and a 

high signal to noise ratio, the performance of image analysis may correspondingly improve 

in applications such as image quantification, abnormal tissue detection, patient stratification 

and disease diagnosis or prediction. Another recent study105 demonstrated the ability to use 

an inception DL framework to predict the presence of certain mutated genes from H&E-

stained images of lung tumours.

However, although DL continues to excel in many specific image analysis tasks, in practice, 

a combination of DL and traditional image analysis algorithms is applied in most problem 

sets. This is done for several reasons. First, while DL has shown its ability to match or 

outperform humans in very specific problems (such as the detection of glomeruli), it is still 

not a great general-purpose image analysis tool. Development times remain long owing to 

this lack of flexibility. There is also an overall scarcity of expert labels available for a 

specific classification task, as these are expensive to generate. Approaches to mitigate this 

include using immunohistochemistry staining to provide additional information to 

pathologists for samples where annotations are challenging106 as well as efforts to increase 

the availability of well-curated expert annotations for broad-use cases (cancer cells versus 

normal cells), which is an ongoing community task.

Another challenge is the issue of transparency. DL methods are known for their black-box 

approach. The underlying rationale behind a decision for classification tasks is unclear. For 

drug development, it is important to understand mechanisms, and having an interpretable 

output can be useful for finding not only new potential drug targets but also new potential 

biomarkers to predict therapeutic response. The generation of many more handcrafted 

features is needed for increased trust in interpretability.

A further challenge is the large sample size needed in clinical trials to apply DL directly to 

infer therapeutic response. DL typically requires tens of thousands if not hundreds of 

thousands of examples to learn from, and clinical trials typically do not produce enough 

examples. In certain cases, it may be possible to combine data across clinical trials, but 

biases may exist that can make the results more difficult to interpret.

Examples of successful integration of DL and traditional image analysis workflows include 

work by Saltz et al.101 and Corredor et al.102, in which CNNs were used to detect 

lymphocytes in H&E-stained tissue and subsequent graph-based features were extracted to 

predict disease response. This will likely be a common role for DL in the near future, as its 

superior ability to detect cells and tissue can replace traditional segmentation and nuclear 

detection algorithms, and subsequent interpretable features can be applied to give spatial 

context to these features.

Outlook

ML approaches and recent developments in DL provide many opportunities to increase 

efficiency across the drug discovery and development pipeline. As such, we expect to see 

increasing numbers of applications for well-defined problems across the industry in the 

coming years. With available data becoming ‘bigger’, at least in the sense of more 
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thoroughly covering the relevant variability of the whole data space, and as computers 

become increasingly more powerful, ML algorithms are going to systematically generate 

improved outputs, and new, interesting applications are expected to follow. This has been 

clearly exemplified in the previous sections, in which we have described some ML 

applications for target identification and validation, drug design and development, biomarker 

identification and pathology for disease diagnosis and therapy prognosis in the clinic.

These methods are also being applied within the health-care setting, which, when combined 

with drug discovery, could lead to significant advances in personalized medicine107. ML has 

also been applied to electronic health records108 and real-world evidence in order to improve 

clinical trial results and optimize the process of clinical trial eligibility assessment. For 

example, a recent study demonstrated that DNNs are a highly competitive approach for 

automatically extracting useful information from electronic medical records for disease 

diagnoses and classification109. Some studies have shown that ML models in electronic 

health records can outperform conventional models in predicting prognosis110. ML can also 

be applied to data now coming from sensors and wearables to understand disease and 

develop treatments, especially in the neurosciences111. Gkotsis et al.112 applied DL 

approaches to characterize mental health conditions on unstructured social media data, 

which is a difficult task for traditional ML approaches.

As shown in FIG. 1, ML approaches are beginning to be commonly used in the various steps 

of the discovery and development pipeline by pharmaceutical companies. This pervasive 

implementation of ML methods has a few but important known issues. A typical issue with 

deep-trained neural networks is the lack of inter-pretability, that is, the difficulties in 

obtaining a suitable explanation from the trained neural network on how it arrives at the 

result. If the system is used to diagnose a disease such as melanoma, for instance, on the 

basis of medical images, this lack of interpretability may hinder scientists, regulatory 

agencies, doctors and patients, even in situations in which neural networks perform better 

than human experts. Would a patient trust the ML diagnosis more than that of a human 

expert? Although much less dramatic, a similar situation may occur in drug design. Would a 

pharmaceutical company trust a neural network for choosing a small molecule for inclusion 

in their portfolio and investment to progress to the clinic, without a clear explanation for 

why the neural network has selected this molecule? In addition, there may be patent 

application issues with inventor-ship if compounds have been designed by computer 

algorithms. In any case, ML results have to be considered as only hypotheses or interesting 

starting points that are then further developed in studies by researchers. Complementary 

experiments that validate the ML result will help to build trust in approaches and outputs, 

but regulatory agencies have yet to clarify their view on the lack of interpretability for the 

clinical use of ML. However, even beyond the issue of trust, the lack of interpretability of 

the approaches makes it more difficult to troubleshoot these approaches when they 

unexpectedly fail on new unseen data sets.

Another important issue for neural networks is repeatability, which arises because ML 

outputs are highly dependent on the initial values or weights of the network parameters or 

even the order in which training examples are presented to the network, as all of them are 

typically chosen at random. Would the network always select the same disease target using 
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the same expression data as the input? Would the structure of the drug proposed by the ML 

method always be the same? This lack of repeatability is particularly problematic for 

biomarker identification, as seen in situations where different tools generated different 

prognosis biomarkers for breast cancer on the basis of molecular expression signatures113. 

The fact that different ML methods can yield different results will add uncertainty to the 

adoption of these methods at scale. Some solutions to the problems of both interpretability 

and repeatability have been proposed. These usually centre on the use of a more complex or 

more time-consuming algorithm or averaging results from several network models, but this 

might be seen as adding only one more result to a range of existing results.

Another important point to consider is the availability of high-quality, accurate and curated 

data in large quantities to train and develop ML models. The requirements for the amounts 

and accuracy desired are dependent on the complexity of the data type and the question to be 

resolved. Thus, it can be expensive to generate these data sets. Pre-competitive consortia of 

pharmaceutical companies and academic institutions that use appropriate data standards and 

have the necessary operational and open data frameworks may be part of the solution to 

meet these data demands. Many of the data types that are used during drug discovery are far 

from comprehensive. For example, the knowledge of all folds and structures of proteins is 

not complete, and coverage of the data space is similarly incomplete. Thus, applications in 

which these structures are predicted, even if much progress has been made, are not yet as 

good as in other areas. The same applies for the prediction of reactions involved in the 

synthesis of small molecules for which the entire chemistry space is unknown.

Data curation is key to the provision of reusable and trustworthy data and can be expensive 

in terms of the time and skills required. Biological curation — the extraction of biological 

information from the scientific literature and its integration into a database — lies between 

an art and a science114, requiring a combination of computational skills with in-depth 

biological and domain expertise. Collaborative efforts to develop shared data resources and 

metadata (labels) may be ways by which high-quality data in the public domain can be made 

more available. This also includes metadata from both successful and failed drug discovery 

programmes that can enable prediction approaches and determination of factors that can 

reduce attrition in drug development. Much more pre-competitive collaboration is also 

needed to aggregate and generate large data resources of corporate bioactive data sets of 

investigational compounds as well as historic clinical trial data.

Another limitation in the application of ML models is in their use to predict alternative 

paradigms. Because the entire premise of ML relies on the use of training data to generate 

suitable models, ML models can only predict within the known framework of the training 

data. In medicinal chemistry, for example, the design of compounds with alternative 

mechanisms of action, such as macrocycles, protein-protein interaction inhibitors or 

PROTACs, can probably only be performed with traditional methods.

As well as data and models, the training of researchers that understand pharmaceutical 

science as well as computer science, computational statistics and statistical ML and are 

proficient in utilizing these methods needs to be accelerated. Competitions like the DREAM 

Challenges (see Related links), which have shown that team composition is a factor in 
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performance, can also be useful to attract talent and advance methodology development. 

However, applications will need to be successful in the clinical setting in order to motivate 

further investment from large pharmaceutical and technology companies.

ML algorithms, including DL methods, have enabled the utilization of AI in the industry 

setting and in day to day life. The impact of ML methods in all areas of drug discovery and 

health care is already being felt, especially in the analysis of omics and imaging data. ML 

algorithms are also successful in speech recognition, NLP, computer vision and other 

applications. For example, Internet-enabled smart assistants are now commonplace and can 

transmit health-related information in the form of speech and images or videos. ML 

approaches applied to data collected from such an amalgamation of Internet-enabled 

technologies, coupled with biological data, have the potential to dramatically improve the 

predictive power of such algorithms and aid medical decision making about the therapeutic 

benefits, clinical biomarkers and side effects of therapies.
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Graphical processing units

(GPUs). Processors designed to accelerate the rendering of graphics and that can handle 

tens of thousands of operations per cycle.

Central processing units

(CPUs). Processors designed to solve every computational problem in a general fashion 

and that can handle tens of operations per cycle. The cache and memory are designed to 

be optimal for any general programming problem.

Tensor processing units

(TPUs). Co-processors manufactured by Google that are designed to accelerate deep 

learning tasks developed using TensorFlow (a programming framework) and can handle 

up to 128,000 operations per cycle.

Support vector machine (SVM) classifier

A method that performs classification tasks by constructing separating lines to distinguish 

between objects with different class memberships in a multidimensional space.

CLIP–seq

Ultraviolet crosslinking immunoprecipitation (CLIP) followed by RNA sequencing to 

identify all RNA species bound by a protein of interest. This method can be used to map 

RNA protein binding sites or RNA modification sites on a genome-wide scale.

Heuristic method

A function that calculates the approximate cost of a problem (or ranks alternatives).

Chemical fingerprint

A concept used in chemical informatics to compare molecules with each other. The 

structure of a molecule is encoded in a series of binary digits (bits) that represent the 

presence or absence of particular substructures in the molecule.

Simplified molecular input line entry system (SMILES)

A line notation for entering and representing molecules and reactions; for example, 

carbon dioxide is represented as O=C= O.
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Fig. 1 |. Machine learning applications in the drug discovery pipeline and their required data 
characteristics.
Several successful applications of machine learning in various stages of the drug 

development pipeline in pharmaceutical companies have been published. However, within 

each data domain, there are still challenges related to the standard of data quality and data 

quantity needed to capitalize on the full potential of these methods for discovery. ADME, 

absorption, distribution, metabolism and excretion.
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Fig. 2 |. Machine learning tools and their drug discovery applications.
This figure gives an overview of the machine learning techniques that have been used to 

answer the drug discovery questions covered in this Review. A range of supervised learning 

techniques (regression and classifier methods) are used to answer questions that require 

prediction of data categories or continuous variables, whereas unsupervised techniques are 

used to develop models that enable clustering of the data. ADME, absorption, distribution, 

metabolism and excretion; CNN, convolutional neural network; CT, computed tomography; 

DAEN, deep autoencoder neural network; DNN, deep neural network; GAN, generative 

adversarial network; MRI, magnetic resonance imaging; NLP, natural language processing; 

PK, pharmacokinetic; RNAi, RNA interference; RNN, recurrent neural network; SVM, 

support vector machine; SVR, support vector regression.
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Fig. 3 |. The challenges of compound structure representation in machine learning models.
The appropriate representation of chemical structures and their features can take on many 

representations depending on the required application. Extended-connectivity fingerprints 

(ECFPs) contain information about topological characteristics of the molecule, which 

enables this information to be applied to tasks such as similarity searching and activity 

prediction. A Coulomb matrix encodes information about the nuclear charges of a molecule 

and their coordinates. The grid featurizer method incorporates structural features of both the 

ligand and the target protein as well as the intermolecular forces that contribute to binding 

affinity. Symmetry function is another common encoding of atomic coordinate information, 

which focuses on the distance between atom pairs and the on angles formed within triplets 

of atoms. The graph convolution method computes an initial feature vector and a neighbour 

list for each atom that summarizes the local chemical environment of an atom, including 

atom types, hybridization types and valence structures. Weave featurization calculates a 

feature vector for each pair of atoms in the molecule, including bond properties (if directly 
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connected), graph distance and ring info, forming a feature matrix. Reproduced by 

permission of the Royal Society of Chemistry, Wu, Z. et al. MoleculeNet: a benchmark for 

molecular machine learning. Chem. Sci. 9, 513–530 (2018), REF.43.
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Fig. 4 |. Utilizing predictive biomarkers to support drug discovery and development.
A drug sensitivity predictive model (yellow box) can be generated using machine learning 

approaches on preclinical data. The model could then be tested using data from early-stage 

clinical patient samples. Once validated, the model could be used for patient stratification 

and/or disease indication selection to support the clinical development of a drug, as well as 

to infer its mechanism of action. EN, elastic net; IHC, immunohistochemistry; MOA, 

mechanism of action; RF, random forest; SVM, support vector machine.
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Fig. 5 |. Computational pathology tasks for machine learning applications.
Deep learning frameworks can replace traditional handcrafted features in several basic 

pathology image-recognition tasks (such as segmentation of nuclei, epitheLia or tubules, 

lymphocyte detection, mitosis detection or classification of tumours) using image 

segmentation (yellow background), detection of specific features (blue background) or 

detection of a set of features used for classification (green background). Recognition is 

based on the task-specific features shown in the pink regions and can lead to more accurate 

prognosis or prediction of disease.
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