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abstract

PURPOSEDigital pathology (DP), referring to the digitization of tissue slides, is beginning to change the landscape
of clinical diagnostic workflows and has engendered active research within the area of computational pathology.
One of the challenges in DP is the presence of artefacts and batch effects, unintentionally introduced during both
routine slide preparation (eg, staining, tissue folding) and digitization (eg, blurriness, variations in contrast and
hue). Manual review of glass and digital slides is laborious, qualitative, and subject to intra- and inter-reader
variability. Therefore, there is a critical need for a reproducible automated approach of precisely localizing artefacts
to identify slides that need to be reproduced or regions that should be avoided during computational analysis.

METHODSHere we present HistoQC, a tool for rapidly performing quality control to not only identify and delineate
artefacts but also discover cohort-level outliers (eg, slides stained darker or lighter than others in the cohort). This
open-source tool employs a combination of image metrics (eg, color histograms, brightness, contrast), features
(eg, edge detectors), and supervised classifiers (eg, pen detection) to identify artefact-free regions on digitized
slides. These regions andmetrics are presented to the user via an interactive graphical user interface, facilitating
artefact detection through real-time visualization and filtering. These same metrics afford users the opportunity
to explicitly define acceptable tolerances for their workflows.

RESULTS The output of HistoQC on 450 slides from The Cancer Genome Atlas was reviewed by two pathologists
and found to be suitable for computational analysis more than 95% of the time.

CONCLUSION These results suggest that HistoQC could provide an automated, quantifiable, quality control
process for identifying artefacts andmeasuring slide quality, in turn helping to improve both the repeatability and
robustness of DP workflows.
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INTRODUCTION

Definitive disease diagnosis routinely takes place via
visual inspection of a tissue slide by a pathologist
under a microscope. Before this can take place, the
tissue slide itself must be created. This process, which
involves gross organ dissection, selection and prep-
aration of tissue blocks for slide creation, microtomy
(cutting and tissue placement on the slide), staining,
and cover slipping, is fraught with multiple preanalytic
opportunities for the introduction of artefacts and
batch effects.1-3 These artefacts may include improper
tissue placement (eg, folding, compressing, tearing,
air bubbles), improper reagents (eg, over- or under-
staining, stain concentration differences, stain batch
variation), and poor microtomy (eg, knife chatter,
thickness variances). The increasingly popular digiti-
zation of these same slides, to take advantage of
computational-aided diagnostic approaches,4-6 for
example, introduces yet another potential source of
artefacts. This digitization process sees the same glass

slides routinely used for microscope-based pathology
being placed on the equivalent of a digital camera so
that digital representations of the slide may be con-
structed. Scanner manufacturers may employ differ-
ent approaches for slide digitization, including
different hardware (eg, bulbs for lighting, charge-
coupled device chips for digitization), algorithms for
image manipulation (eg, stitching, compression), and
file formats. Therefore, the choice of slide scanner
could influence the image appearance, which in turn
might have implications for any subsequent image
analysis procedure.7 These digital pathology (DP)
slides may additionally include digitization artefacts
such as blurriness, lighting, and contrast issues. Taken
together, there are a number of different combinations
of sources of preanalytic variance that may result in
substantial differences in appearance and quality of
a tissue slide.

These same artefacts and variances could negatively
affect downstream clinical and research workflows.8 In
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the analog workflow in use today, continuous quality control
(QC) processes are limited, unlike in laboratory medicine,
which relies on continuous statistical process control. Clin-
ically, slides rejected on quality grounds represent a drag on
the clinical pathology workflow, because these slides need
to be recut or rescanned, in turn causing additional de-
lays and unnecessary costs. From a research standpoint,
artefacts represent sources of noise that can adversely
affect the development and validation of analytic classi-
fiers for tasks such as disease detection, diagnosis, and
prognosis.9,10 This is especially important for increasingly
popular deep learning– and machine learning–based
approaches,11-16 which rely on well-annotated and relatively
artefact-free images to learn underlying disease-specific
representations.

Currently, most QC processes for clinical and research
applications are performed manually, making the process
subjective, laborious, and error prone. For instance, a wide
spectrum of artefacts and image qualities (Fig 1) can be
seen in many of the 30,000 digitized tissue slides hosted by
The Cancer Genome Atlas (TCGA).17 This occurs despite
the fact that these slide images undergo manual QC before
being introduced into TCGA. In addition, more subtle ar-
tefacts such as variations in stain that may not affect
a pathologist’s diagnostic interpretation may still have im-
plications for subsequent computational image analysis
and machine-learning algorithms. For instance, technical
artefacts resulting from the preparation facility (ie, batch
effects) may be confounded with the biologic signal under

investigation (Data Supplement). Although batch effects
remain a well-known issue in the bioinformatics field,18 they
have received less attention in the DP domain.

Recently, other groups19-23 have begun to develop DP al-
gorithms for QC tasks, such as blurriness and stain as-
sessment. Unfortunately, there has not been a single,
unified user-friendly platform that has included these and
other QC approaches for a comprehensive and integrated
QC review of DP slide images.

Recognizing the need for a modular, user-friendly QC tool,
we present here an open-source QC application, HistoQC,
for automated assessment of slide quality alongside
a public repository of slides containing artefacts. HistoQC
employs a combination of image metrics (eg, color histo-
grams, brightness, contrast), features (eg, edge and
smoothness detectors), and supervised classifiers (eg, pen
detection) to aid users in identifying slides with gross
technical artefacts, artefact-affected regions that may not
be suitable for computational analysis (Data Supplemental
provides current list of classifiers and metrics), and sam-
ples potentially affected by batch effects. The modular
nature of HistoQC allows for the facile embedding of ad-
ditional metrics and artefact-detection algorithms as they
become available in the literature.

METHODS

HistoQC functions in the following way. The user supplies
a configuration file that defines the parameters of the QC
pipeline, such as which modules to execute and in what

A B

C D

FIG 1. Original images juxtaposed with corresponding results from HistoQC (fuchsia indicating acceptable tissue): images identified as
having (A) a significant air bubble artefact requiring removal from experimental cohort, (B) blurry tissue near a coverslip crack, (C) folded
tissue, and (D) pen markings correctly identified as regions to be avoided.
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order. As the python-based pipeline is executed on the
slide, relevant output images are created (eg, thumbnail
images indicating regions of potential blurriness), with
metadata (eg, scanner type, magnification, microns per
pixel) and metrics being saved in a tab-separated value file.
As designed, image metrics can be computed on the entire
slide (ie, including the background) or limited solely to
regions containing detected tissue. Although any common
data analytic tool may be used to review the tab-separated
value output (eg, Matlab [MathWorks, Natick, MA], Excel
[Microsoft, Redmond, WA], R [R Foundation, Vienna,
Austria]), we have developed an HTML5-based user in-
terface (Fig 2) that seamlessly allows for real-time visuali-
zation and filtering of the data. This approach helps identify
those specific slides that might require additional scrutiny.

Slides requiring additional scrutiny can be discovered in
multiple ways: sorting various columns to view outliers with
unexpectedly high or low values (Fig 2 green arrow),
viewing interactive parallel coordinate plots24 (Fig 2 red box;
Fig 3) of metrics that help visualize potential batch effects
and outliers, or viewing the original slides juxtaposed with
various output masks (Fig 2 blue arrow). For improved user
experience and efficiency, clicking a row or image shows
the various masks produced by the pipeline (Fig 2 middle),
with a subsequent click taking the user to a higher-
magnification version of the mask of interest for more
detailed review (Fig 2 bottom). After the user has either
annotated rows using the comments field or removed rows
from the table, the resulting table can be saved and used as
a list of samples suitable for downstream experiments. We
note that postinstallation, no Internet connection is re-
quired, making our approach suitable for nonanonymized
clinical data.

We evaluated the ability of HistoQC to identify regions of
artefact-free tissue on a total of 450 randomly selected
slides from the TCGA breast cancer cohort at a magnifi-
cation of 40×. Because of the efficient implementation of
HistoQC, the analysis took 130 minutes using a four-
hyperthreaded core processor. Representative slides
identified by HistoQC as containing artefacts such as air
bubbles and slide cracks are illustrated in Figures 1A and
1B. HistoQC successfully identified regions with tissue
folding and pen markings, removing them from the out-
putted masks (Figs 1C and 1D). As derived from HistoQC
output, the Data Supplement shows the potential presence
of batch effects in microns per pixel and considerable
heterogeneity in tissue brightness for the TCGA breast
cancer data set, important considerations for downstream
experimental design.

RESULTS

To validate the results generated by HistoQC, two pathol-
ogists with experience in DP were asked to assign a value of
either acceptable or not acceptable to each of the masks
produced by HistoQC. Acceptability was defined by at least

an 85% area overlap between the pathologists’ visual as-
sessment and the computational assessment by HistoQC of
artefact-free tissue. Each pathologist independently
reviewed 250 samples. In addition, a total of 50 images
from TCGA were evaluated by both pathologists and His-
toQC to determine interexpert agreement on HistoQC
output. Overall, the agreement between HistoQC and the
experts was 94% (235 of 250) for expert 1 and 97% (242 of
250) for expert 2. For the 50 slides evaluated by both
experts, interobserver agreement was 96% (48 of 50),
comparable to that of HistoQC with the individual readers.
The main reasons for the disagreement were faintly stained
slides resulting in tissue detection failures and a few regions
of predominantly stromal-rich areas being incorrectly
identified as blurry (Data Supplement). These failures
appeared on the HistoQC user interface as outliers, pri-
marily because of metrics (eg, estimated tissue area) being
a number of standard deviations away from those associ-
ated with the remainder of the analyzed slides. Slides
identified by HistoQC as containing artefacts were uploa-
ded to the Histology Quality Control Repository25 for
community review.

The pathologists also provided qualitative feedback re-
garding patterns of cases that HistoQC seemed to in-
correctly identify as being compromised or not. These
cases generally fell into three categories: poorly fixed tissue,
necrotic tissue, or subtle adipose tissue infiltrate with scant
tissue reaction. HistoQC also sometimes struggled to fully
identify parenchyma in mucinous tumors. We are working
on further improving HistoQC to address these limitations in
the next version.

DISCUSSION

To summarize, we presented and have released an open-
source QC tool for DP slides called HistoQC. Initial results
suggest HistoQC is suitable for delineation of slide level
artefacts. Comparison of HistoQC against manual QC by
two pathologists on 450 images yielded an average
agreement greater than 95%, comparable in range of
agreement to that between the two individual human
readers. In addition, the image metrics computed by
HistoQC could be used by researchers and analytic pipeline
developers to precisely define the input image character-
istics with which their algorithms have been both trained
and validated. Stringent specification of these image
characteristic ranges allows for algorithms to be selectively
invoked only on the appropriate images, likely improving
algorithm confidence.

Taken together, the clinical pathology and DP vendor
communities seem to be beginning to appreciate the im-
portance of quantifiable QC processes for engendering DP
workflows.26 Before DP systems can be used within
a clinical setting, slide scanners themselves must receive
regulatory approval. Scanner manufacturers have been
attempting to quantitatively assess the reproducibility of
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FIG 2. (A) HistoQC user interface showing table of HistoQC-producedmetrics with sortable columns (green arrow), parallel coordinate plot (red box;
additional details in Fig 3), and thumbnail images of the cohort alongside HistoQC overlay output indicating artefact-free regions (blue arrow). (B)
Selecting a single image highlights the appropriate line in the parallel coordinate graph and shows the series of outputs produced by the modules of
the pipeline, allowing for more detailed subsequent review. (C) Double clicking on any image brings up a higher-resolution version with dynamic
zoom, allowing for fine-tuned inspection of potential artefacts. Hist, histogram; MPP, microns per pixel; MSE, mean squared error.
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scanner-generated images, especially to ensure consis-
tency of image quality over time.27,28 With penetration of
these scanners into clinical workflows, these types of vali-
dation studies may become enshrined as part of the routine
quality assurance and maintenance of the scanners.26 As
such, from both regulatory and maintenance standpoints,
a single automated QC pipeline like HistoQC can provide
quantitative metrics for benchmarking the quality and
consistency of scanner-generated DP images.

DP workflows are on the verge of leveraging powerful
computer-aided diagnostic (CAD) support algorithms, po-
tentially helping to greatly reduce inter- and intraobserver
diagnostic variability. As revealed in a number of recent
publications, many CAD and artificial intelligence (AI) al-
gorithms appear to not generalize very well when evaluated
on a cohort distinct from the set of images on which they
were initially trained.14,29 Consequently, these AI and CAD
algorithms must be robustly validated on a large collection
of heterogeneous inputs.9,10 Approaches like HistoQC
could allow for pre-evaluation of test sets to ensure that the
CAD and AI algorithms are evaluated on a sufficiently di-
verse set of test images.

Although HistoQC is ready for research applications, there
remain areas for additional improvement beyond address-
ing the comments of our pathologists. For example, due to
the heterogeneity in compression levels typically present

between DP scanners and the evidence that the resulting
compression artefacts affect performance of deep-learning
and AI algorithms,30 HistoQC could be extended to detect
and measure compression effects. Building further on the
need to incorporate additional features, we envision His-
toQC evolving into a collection of community-driven ref-
erence implementations of sophisticated detectors and
metrics. For example, Senaras et al22 presented a deep
learning–based blur detector, and Avanaki et al19 proposed
texture-based image quality metrics. We hope that these
types of algorithms will in the future be embedded into
HistoQC to enable the comparison of results across different
sites and laboratories. The work presented here focused on
the evaluation of HistoQC in the context of hematoxylin and
eosin bright-field microscopy images. Clearly, there is also
a need for the application of QC metrics in other types of
multimodal microscopy images, such as immunohisto-
chemical staining and quantitative immunofluorescence.

Last, we hope to aggregate unique artefacts identified by the
user community during its use of HistoQC. We have stood up
an image quality repository to allow end users to upload slides
that contain artefacts.25 This repository will help provide
training and validationmaterial needed for the benchmarking
of future CAD approaches. The source code of HistoQC (Data
Supplement) is freely available for use, modification, and
contribution (http://github.com/choosehappy/HistoQC).
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FIG 3. (A) Higher magnification of the parallel coordinate plot bounded by the red box in Figure 2. The different
y-axes correspond to different image metrics determined by HistoQC and may have their own ranges and scales.
Each horizontally oriented line, in either gray or blue, represents a whole-slide image (WSI) analyzed by HistoQC. By
examining the convergence or divergence of each horizontal WSI line with respect to the rest of the images in the
cohort, batch effects and outliers can be more easily visually identified. In the example illustrated, the user has
interactively drawn a gray box (red arrow) to select images with a grayscale intensity value between 0.4 and 0.5,
resulting in all lines that do not meet this criterion turning gray. This image selection mechanism alters the visibility of
slides in both the table (Fig 2 green arrow) and the thumbnails (Fig 2 blue arrow). Furthermore, the user can
dynamically drag or extend the gray box upward and downward to update the visible slides in real time. As a result,
images with (B) low and (C) high grayscale brightness values are easier to identify and review.
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