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Abstract

Identifying patient-specific prognostic biomarkers is of critical importance in developing 

personalized treatment for clinically and molecularly heterogeneous diseases such as cancer. In 

this article, we propose a novel regression framework, Bayesian hierarchical varying-sparsity 
regression (BEHAVIOR) models to select clinically relevant disease markers by integrating 

proteogenomic (proteomic+genomic) and clinical data. Our methods allow flexible modeling of 

protein-gene relationships as well as induces sparsity in both protein-gene and protein-survival 

relationships, to select ge-nomically driven prognostic protein markers at the patient-level. 

Simulation studies demonstrate the superior performance of BEHAVIOR against competing 

method in terms of both protein marker selection and survival prediction. We apply BEHAV-IOR 

to The Cancer Genome Atlas (TCGA) proteogenomic pan-cancer data and find several interesting 

prognostic proteins and pathways that are shared across multiple cancers and some that 

exclusively pertain to specific cancers.
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1 Introduction

1.1 Scientific background and data description

Clinical proteogenomics in cancer.—Cancer is a molecular disease caused by a series 

of accumulating genomic alterations that trigger abnormal cell growth and division, causing 

damage to surrounding tissues and eventual formation of metastases. Global genomic 

profiling and especially mRNA-based gene expression changes have greatly improved the 

characterization of cancer development and progression (McLendon et al., 2008; TCGA, 

2012). Proteins, however, represent the downstream summation of changes that happen at 

the DNA and RNA levels in each tumor and are more directly related to the phenotypical 
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changes in cancer cells. Several studies have shown poor concordance between mRNA and 

protein abundance due to many factors such as degradation and post-translational 

modifications; therefore, clinical utilization of genomic data alone is limited (Gygi et al., 

1999; Akbani et al., 2014). Direct studies of protein levels and function have improved our 

understanding of the molecular basis of cancer, and treatments that target mutated protein 

kinases have shown promising clinical benefits in many cancers (Davies et al., 2006).

However, proteomics has its limitations as well. For example, mass spectrometry assays are 

expensive to run, require plenty of sample material, and relatively little publicly available 

data sets exist for them (Paweletz et al., 2001; Tibes et al., 2006). Reverse phase protein 

arrays (RPPAs) are much cheaper proteomics assays that require less material, but they are 

limited to a relatively small number of known proteins for which antibodies are available; 

yet proteins that are unknown or for which antibodies are unavailable may also be of critical 

clinical relevance. Since these unobservable proteins are completely missing due to 

technological limitation of RPPAs, imputing their abundance seems to be a challenging and 

unreliable task, which we do not pursue in this paper. This drawback can be mitigated by 

integrating proteomic information with genomic data (hence the term, proteogenomics) 

because many genes code for multiple proteins through alternative post-transcriptional or 

post-translational modifications, and gene-level information (e.g. transcript expressions of 

known isoforms) complements the unobserved protein activation status. Proteogenomics is a 

relatively new research area at the interface of proteomics and genomics that was initially 

proposed for refining genome annotation and characterizing the protein-coding potential 

(Church, 2004; Nesvizhskii, 2014). Recent proteogenomic studies have enabled a better 

understanding of the basic biology of cancers and provided novel insights into 

pathophysiology and tumorigenesis and the development of novel diagnostic and therapeutic 

options (Jacob et al., 2009; Alfaro et al., 2014; Locard-Paulet et al., 2016).

Tumor heterogeneity and precision medicine.—Over the past few decades, cancer 

researchers have reached a consensus that tumors are inherently heterogeneous (Heppner 

and Miller, 1983; Longo, 2012). Even within the same type of cancer, different patients 

exhibit distinct genomic aberrations that subsequently result in varied response to 

treatments, due to inter-patient tumor heterogeneity. The widespread awareness of tumor 

heterogeneity has opened an era of personalized molecular-based treatments, formally 

termed precision medicine, which has shown great clinical benefit to cancer patients who 

otherwise have poor response to traditional therapies such as chemotherapy (De Bono and 

Ashworth, 2010). One of the key steps in the discovery and implementation of the precision 

medicine paradigm is the construction of prognostic proteomic markers that can be used as 

potential targets for subsequent drug development. To this end, we aim to exploit the 

proteomic-genomic regulatory axes to build clinically relevant prognostic models by linking 

clinical outcomes with proteogenomics. The core conceptual idea of the scientific question 

motivating our models is illustrated with a sparse tripartite graph (Figure 1) in which 

vertices are divided into 3 disjoint sets, clinical outcomes Y = {Y1,…, Yn} for n patients, 

proteins P = {P1,…, Pp} and genes G = {G1,…, Gg} (where n,p,g indicate the number of 

patients, proteins, and genes, respectively), such that every edge connects a vertex in G to 

one in P and/or a vertex in P to one in Y. The genomic information is incorporated through 
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modifying the downstream effects of a selective subset of proteins on clinical outcomes. The 

significance of these effects is identified by a novel subject-specific variable selection 

technique, which allows for the detection of protein markers on the patient level. For 

example, in our case study (Section 6.2), a protein BCL2 is found to be prognostic only for a 

subgroup of patients with concordant homogeneous genomic features, which may guide 

certain targeted BCL2-antagonists (Lessene et al., 2008). In general, such “genomically 
homogeneous” patients may have favorable (or unfavorable) responses to a certain treatment 

which is, perhaps, not as effective or dominant for other heterogeneous subgroups. Our aim 

is to build models that help to improve our understanding of the biological underpinnings of 

prognostic pro-teogenomic biomarkers on the patient level; and perhaps provide a new 

insight into tumor heterogeneity that potentially leads to the development of novel 

personalized treatments.

Data description.—The Cancer Genome Atlas (TCGA) is a project that was launched in 

2005 to explore, evaluate and characterize the genomic and proteomic landscape of over 30 

human cancers, both common and rare forms. For gene expression, TCGA uses RNA 

sequencing (RNA-Seq), a next-generation sequencing technology, to generate genomic data 

at a fine molecular resolution. RNA-Seq has very low background noise and is very accurate 

in measuring gene expression levels compared to traditional technologies such as 

microarrays (Wang et al., 2009; Nagalakshmi et al., 2010). Since May 2012, the pipeline 

RNASeqV2 has been adopted by TCGA to generate the Level 3 expression data: they use 

MapSplice (Wang et al., 2010) to align the sequence data and RSEM (Li and Dewey, 2011) 

to quantify transcript abundances, which we use for our analyses. The proteomic data on the 

same tumor samples have been generated at UT MD Anderson Cancer Center using RPPAs, 

a high-throughput antibody-based technique (see tcpaportal.org and Li et al. 2013). RPPA 

technology has been developed for large-scale functional proteomic studies that evaluate 

protein/phosphoprotein activities in signaling networks and is more reliable and less 

expensive than traditional high-throughput proteomic technologies such as enzyme-linked 

immunosorbent assay and mass spectroscopy (Paweletz et al., 2001; Tibes et al., 2006). In 

addition to gene expression and proteomic data, TCGA collects clinical information, e.g., 

cancer stage, histologic subtype, and survival times, with some cancers (e.g., kidney and 

ovarian cancers) having more mature survival data with a sufficient number of events and 

follow-up times to allow us to build prognostic models for those cancers.

Although there are many underlying scientific questions posed by these data, we focus on 

integrating genomic, proteomic and clinical information to select relevant prognostic 

markers. Our main interest is the following biologically and clinically meaningful tasks 

across multiple cancers: 1) Detect patient-level prognostic protein markers, and 2) 

Investigate the mechanism of genomically driven protein markers. In Section 6, we analyze 

data from multiple cancers and identify both cancer-specific and pan-cancer prognostic 

proteins.

1.2 Overview of our model

To address these tasks, we propose a novel statistical model to construct clinically relevant 

protein biomarkers by integrating the genomic, proteomic and clinical information, which 
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may assist in developing proteogenomically driven precision medicine (Pinto et al., 2014). 

One naive way would be to regress clinical outcomes on the genomic and proteomic data 

and apply a variable selection technique to select protein markers. However, this simple 

approach does not consider interactions between genes and proteins, which is inappropriate 

because some proteins form complexes with other proteins or RNA molecules and function 

very differently in the presence of these other molecules (Hartwell et al., 1999). One remedy 

would be to add interaction terms into the model, but since the biochemistry of the 

interaction is often quite complex (Kitano, 2002), in practice, it is hard to pre-specify the 

type or form of such interactions a priori. To allow for flexible interactions, one can 

incorporate varying coefficients (Hastie and Tibshirani, 1993) into the regression model. 

However, that cannot account for tumor heterogeneity because the selected biomarkers are 

presumably the same for all patients. In this paper, we propose a novel Bayesian hierarchical 

framework, Bayesian hierarchical varying-sparsity regression (BEHAVIOR) models, to 

achieve our scientific goal and overcome the aforementioned drawbacks. Our framework has 

three major innovations:

1. Sparsity in both protein-outcome and protein-gene relationships. Sparsity is a 

critical assumption in a high-dimensional setting where the number of 

parameters is much larger than the sample size. Here, we impose two levels of 

sparsity: (i) sparsity in the protein-outcome relationship and (ii) sparsity in the 

protein-gene relationship, which allows us to simultaneously identify clinically 

relevant, genomically driven protein biomarkers. This two-level sparsity is 

induced through a combination of a thresholding function/parameter and spike-

and-slab priors.

2. Accounting for genomic heterogeneity. Our approach selects genomically driven 

protein markers by “borrowing strength” among patients with similar genomic 

profiles. We take tumor heterogeneity into account by integrating patient-specific 

genomic information and allowing protein makers and their effects on clinical 

outcomes to vary across patients. For each patient, our approach can identify a 

set of protein markers that can be potentially targeted by personalized clinical 

treatments.

3. Functional nonlinearity in protein-gene relationships. We allow for flexible 

nonlinear relationships between the proteins and genes, using spline-based 

semiparametric formulations and relaxing the usual and often biologically 

unrealistic linearity constraint on the interaction between proteins and genes. 

This allows the model to distinguish the functional form of the relationships 

(linear or nonlinear) through suitable orthogonal basis decompositions.

We remark that the well-known varying-coefficient model (VCM, Hastie and Tibshirani 

(1993)) is a special case of our model. VCM is a class of flexible statistical models which, if 

applied to our setting, allows the effect of proteins to vary with gene expressions. Several 

papers, for example, Wang et al. (2008a) and Fan et al. (2014), have been proposed to obtain 

sparse estimators for VCMs by using variable selection techniques. However, none of these 

methods allows the sparsity of the protein-outcome relationship to vary simultaneously with 
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gene expression, which is a novel feature of our approach. Empirically, we illustrate our 

approach through simulation studies in which we compare our approach to VCM.

The rest of this paper is organized as follows. We present BEHAVIOR in Section 2 and 

discuss the prior distributions in Section 3. We summarize the posterior inference and 

prediction in Section 4. We present detailed simulation studies in Section 5 and a real data 

application in Section 6. Section 7 describes our visualization web application and online 

supplementary materials. Section 8 provides our closing discussion.

2 Bayesian hierarchical varying-sparsity regression model

The two main components that define our proposed model are described in the following 

sections: we introduce the concept of varying-sparsity mechanism in Section 2.1 and define 

specific varying sparsity model constructions in Section 2.2. In Section 2.3, we introduce a 

regression model for time-to-event outcomes that will be used to analyze our motivating 

TCGA-based cancer proteogenomics data.

2.1 Varying-sparsity regression model

Let Yi denote a patient’s outcome of interest, such as survival time, and let Pi = (Pi1, …, Pip) 

denote a p-dimensional vector of protein expressions for patient i = 1,…, n. A regression 

model can be used to study the relationship between response Yi and protein expressions Pi. 

For generality, we do not specify the regression type in this section (which can be, for 

example, generic linear regression, survival regression, quantile regression, generalized 

linear models), but only assume that the regression function is linear in Pi, i.e., ∑ j = 1
p Pi jβ j.

In our study, for each protein Pij, j = 1, …, p, we also observe its matched gene expressions 

Gij = (Gij1, …, Gijqj), which can be a qj-dimensional vector to reflect the fact that multiple 

genes can translate to the same protein. Notice that it is possible for Gijk = Gij’k’ for all i = 1, 

…., n because one gene may code for multiple proteins due to, for example, alternative 

splicing (Chen and Manley, 2009). In addition, we expect that some of the proteins Pij’s may 

not be relevant to every patient’s outcome Yi and that the effect βj of each protein may also 

vary across patients, both of which we assume are determined by patients’ gene expressions 

Gij. To incorporate this, we propose a varying-sparsity model that allows βj to vary with Gij 

in terms of both strength and sparsity,

∑
j = 1

p
Pi jβ j(Gi j)fori = 1, …, n, (1)

where βj(Gij) is an unknown function of Gij, termed the varying-sparsity coefficient. The 

modeling details of βj(Gij) are given in the next section.
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2.2 Modeling varying-sparsity coefficient and protein selection

In this section, we discuss the construction of the varying-sparsity coefficient βj(Gij). We 

first model βj(Gij) as a smooth function of Gij· and then threshold it to induce (varying) 

sparsity and allow for protein selection.

Modeling βj(Gij) as a smooth function has two motivations. First, it reflects the assumption 

that patients with similar genomic characteristics should have similar protein markers. The 

smoothness ensures that the sparsity of βj changes smoothly with the genes Gij. Second, it 

can also be understood as a way of continuously “borrowing strength” by pooling genomic 

information from “neighboring” patients. Otherwise, we would not have sufficient power for 

estimation since our goal is to allow each patient to have his/her own set of protein markers. 

Specifically, we construct βj (·) as the sum of the spline functions (although in general, any 

other nonlinear functional representation can also be adopted):

β j(Gi j) = ∑
k = 1

q j
f jk(Gi jk), (2)

with fjk(Gijk) = Gi jkα jk where Gi jk represents the spline bases for Gijk and αjk is the 

corresponding spline coefficient. Discussion on the choices of spline bases is provided in 

Supplementary Material A.

Since βj(·) is modeled by a set of smooth spline functions, no coefficient would be exactly 

zero, even if the corresponding protein has little effect on the survival time. This is an 

undesirable feature because in our application we do not expect all proteins to be prognostic 

for a patient’s survival time; therefore, it is hard to interpret those non-zero and insignificant 

coefficients. Hence, we would like to encourage the sparsity in the varying-sparsity 

coefficients by shrinking small effects to exact zeros. A common Bayesian approach to 

induce sparsity is through spike-and-slab priors, where a binary latent variable is assigned to 

each coefficient to indicate its significance. However, this approach is not suitable in our 

case because the coefficients in our model are subject-specific and we will heavily overfit 

the data if we assign a latent variable for each coefficient and each patient. As the number of 

parameters would substantially increase, we take a different variable selection approach via 

introducing a Bayesian hard-thresholding function to truncate small effects to zeros and 

select prognostic proteins. To this end, let h(x,t) = xI(|x| > t) denote a hard-thresholding 

operator on variable x with a random threshold t. We modify (2) to

β j(Gi j) = h ∑
k = 1

q j
f jk(Gi jk), λ j

where the first argument of h(·, ·) is the spline components in (2). The thresholding 

parameter λj can be interpreted as a minimum effect size of the varying-sparsity coefficient 

βj (·). Moreover, we do not fix the thresholding parameter but let the data dictate the choice 

of minimum effect size by assigning a prior distribution, which will be discussed in Section 
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3. We illustrate the difference between Bayesian and classic hard-thresholding mechanisms 

in Supplementary Material A.

We note that VCM can be viewed as a special case of BEHAVIOR by fixing λj = 0. In 

VCM, the regression coefficients vary smoothly with the covariates (i.e., genes in our case 

study), but the sparsity/structure of the model remains constant across subjects. We compare 

the variable selection and predictive performance of BEHAVIOR with those of VCM in 

simulation studies (Section 5).

2.3 Hierarchical varying-sparsity accelerated failure time model

In this paper, we focus on a prognostic model where the response is the patient’s survival 

time, denoted by Ti. The main reason is that the information of survival times is mature (and 

well-calibrated) for many cancers across TCGA and this allows for pan-cancer comparisons 

of prognostic markers (both gene and protein). The accelerated failure time (AFT) model is 

commonly used to model the direct relationship between survival Ti and covariates Pi. 

While, in principle any time-to-event regression model could be adopted here e.g., Cox and 

Weibull; we choose AFT to make inferences on the varying-sparsity coefficients comparable 

across cancers. Here, we propose to embed AFT in our BEHAVIOR framework to 

accommodate gene expressions Gij, which take the form in (1) with an identity link g(·) and 

Yi = log(Ti). When Yi is normally distributed (i.e., Ti is log-normally distributed), our model 

can be equivalently expressed as

Y i = log(T i) = μ + ∑
j = 1

p
Pi jβ j(Gi j) + σϵifori = 1, …, n, (3)

with ϵi ~ N(0,1). However, in general, ϵi can be any distribution such as an extreme value 

distribution. Survival times are often observed subject to censoring. In what follows, let Ci 

be the independent censoring time. Instead of directly observing the survival time Ti, we 

observe T i* = min(T i, Ci) and Δi = I(Ti < Ci). Let W i = log(T i* − ∑ j = 1
p Pi jβ j /σ and then the 

likelihood of model (3) is given by

L(β, σ Data) = ∏
i = 1

n
f (Wi)

ΔiS(Wi)
1 − Δi

where f (·) and S(·) are the respective density and survival functions of ϵi.

3 Priors and gene selection

In this section, we discuss the prior specifications of the three sets of parameters defined in 

the previous sections: (i) spline coefficients αjk; (ii) thresholding parameter λj; and (iii) 

variance parameter σ2.
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Spline coefficients.

We penalize the curvature of spline functions fjk(·) (Ruppert et al., 2003) to obtain a flexible 

fit with appropriate smoothness. We choose a large enough number of knots to capture the 

local features and regularize the spline coefficients by imposing an improper Gaussian 

random walk prior αjk ~ N(0,sK−) where the singular penalty matrix K is constructed from 

the second order differences of the adjacent spline coefficients. There are two caveats. First, 

equation (2) is not identifiable since adding a constant to any term in the summation of (2) 

and subtracting it from any other term does not change the value of the summation. Second, 

the singularity of K implies that there is no penalty on the constant and linear trend of fjk(·). 

To address these two issues, we follow the treatment in Scheipl et al. (2012) and transform 

the bases of the splines into orthonormal bases. Let G jk = (G1 jk; …; Gn jk) and take the 

spectral decomposition of the covariance of 

G jkα jk, cov(G jkα jk) = sG jkK − G jk
T = s[U jk * ]

D jk 0
0 0

[U jk * ]T, where Ujk is an orthonormal 

matrix of eigenvectors associated with the positive eigenvalues in the diagonal matrix Djk. 

With orthogonal bases G jk* = U jkD jk

1
2  and an independent proper prior α jk* N(0, τσ2I), G jk* α jk*

parameterizes the nonlinear part of fjk(·) and has a proper distribution that is proportional to 

that of the improper prior of G jkα jk. Therefore, the full reparameterization of fjk(·) is 

f jk(Gi jk) = G jk* α jk* + Gi jkα jk
0 , where G jk*  is the ith row of G jk*  and the intercept is merged into a 

global constant term αj,

∑
k = 1

q j
f jk(Gi jk) = ∑

k = 1

q j
Gi jk* α jk* + ∑

k = 1

q j
Gi jkα jk

0 + α j . (4)

This parameterization allows us to assign separate shrinkage/selection priors and hence to 

separately shrink/select relevant constant effect αj, linear effect α jk
0  and nonlinear effect α jk*

(details are given in Section 3). For efficient computation in practice, we usually only retain 

the first several eigenvectors and eigenvalues that explain 99.5% of the variability. For 

example, in our case study, we choose 20 bases, but the dimension of Gi jk*  is around 10.

The smooth function in (4) defines a constant effect αj, a linear effect α jk
0  and a nonlinear 

effect α jk* . In our model, we assume that the relationship between the gene and the protein is 

sparse, that is, only a small number of genes are expected to have influence on the 

prognostic effect of proteins. To this end, we impose a parameter-expanded normal- mixture-

of-inverse-gamma (peNMIG) prior on each of αj, α jk
0  and α jk* . peNMIG gives rise to a more 

efficient Markov chain Monte Carlo (MCMC) algorithm than conventional spike-and-slab 

priors due to the multivariate nature of the spline coefficients; details are provided in 

Supplementary Material A. Here, for notational ease, we use α jk*  as an example to describe 

the construction of the peNMIG prior; the same prior is used for αj and α jk
0 . We 
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multiplicatively expand α jk* = η jkξ jk, where ηjk is a scalar parameter indicating the relevance 

of α jk*  and ξjk is a vector of the same size as α jk* .

Prior for gene selection.

We assign a spike-and-slab prior on ηjk’s as:

η jk γ jkN(0, τ jk) + (1 − γ jk)N(0, v0τ jk),

where γjk ~ Bernoulli(p), where v0 is a fixed very small number. The binary variable γjk 

indicates the significance of j and hence α jk*  i.e. γjk = 1(0), the effect of protein j on the 

clinical outcome is (not) modified nonlinearly by its coding gene k. Conjugate hyper-priors 

are assumed for Tjk ~ IG(αT, αT) and ρ ~ Beta(αp,αp) to complete the prior formulation. 

The beta-Bernoulli prior automatically correct for multiplicity since the posterior 

distribution of ρ will become more concentrated at small values near 0 as the total number of 

genes increases (Scott et al., 2010).

For each element of vector ξ jk = (ξ jk
(i)), we impose a normal mixture prior 

ξ jk
(i) 1

2N(1, 1) + 1
2N( − 1, 1) which avoids assigning too much mass around zero and hence 

discourages small effects. Similarly, we assume peNMIG priors for αj and α jk
0 .

Prior for protein selection.

As discussed in Section 2.2, the thresholding parameter λ j encourages sparsity of the 

protein-survival relationship and determines the minimum size of the protein effect on the 

patient’s survival time. When αj, α jk
0 , α jk*  all equal 0, λ j can take any positive value since 

ßj(·) is always zero. We resolve this identifiability issue by setting λj = λ, ∀j. As long as at 

least one of βj(·)’s is non-zero, λ is well defined as the minimum effect size. Since we have 

no prior knowledge of the true minimum effect size, we put a non-informative prior on λ ~ 

Unif(0, bλ). The upper bound bλshould be greater than the smallest protein effect size that 

one is still willing to consider as significant. A practical guidance of choosing bλ and a 

sensitivity analysis of bλ are given in Supplementary Materials A and C, respectively.

Finally, we assume a conjugate prior for the variance parameter0 σ2 ~ IG(aσ,bσ). A 

schematic representation of the complete hierarchical model is provided as a directed tree 

graph in Supplementary Material A.

4 Posterior inference and prediction

Since the posterior is not analytically available, we sample parameters from the posterior 

distributions using an MCMC algorithm. At each iteration, each parameter is updated by 

Gibbs sampler. When the full conditional distribution is not available in closed form, we 

update it through a Metropolis step. Protein and gene selection are based on marginal 

posterior inclusion probabilities. We use median probability model motivated by its 

predictive optimality in linear models (Barbieri et al., 2004). However, different probability 
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cutoffs can be considered as well. For example, to adjust for multiplicity, one can choose a 

cutoff such that the posterior expected false discovery rate (FDR) is controlled under a 

desired level. The detailed MCMC algorithm and expected FDR calculation are provided in 

Supplementary Material B. Here, we discuss the process of using posterior samples for 

predictions.

Suppose we have a new patient with protein and gene expressions (Pn+1, Gn+1)and we want 

to predict his/her survival time. We need to transform α j: = α j ∪ α jk
0 , α jk* k = 1

q j
 back to 

α jk k = 1

q j
 since there is no straightforward calculation for the new design matrix due to the 

spectral decomposition. This can however be done by solving the linear equations 

∑k = 1
q j Gi jkα jk

(l) = ∑k = 1
q j (Gi jk* α jk

* (l) + Gi jkα jk
0(l)) + α j

(l), where the superscript (l) indicates the 

1th MCMC sample. Then the log(Tn+1) can be predicted by

E log(Tn + 1) Data ≈ 1
L ∑

l = 1

L
∑

j = 1

p
Pn + 1, jβ j

(l)(Gn + 1, j),

where L is the total number of MCMC samples and β j
(l) = h ∑k = 1

q j Gn + 1, jkα jk
(l), λ(l) .

5 Simulations

In this section, we empirically evaluate the variable selection and predictive performance of 

BEHAVIOR through simulation studies. To the best of our knowledge, we are not aware of 

any other methods that carry out the same type of inference as our model; therefore, we 

compare BEHAVIOR to its special case, VCM, which is given by setting A = 0. The setup 

of our simulation mimics the kidney renal clear cell carcinoma (KIRC) data we analyze in 

Section 6.2. We generate p = 9 proteins (for a given pathway) as Pij ~ N(0,1) and for each 

protein j, we generate qj genes Gij = (Giji,…, Gijqj ) ~ N(0,Iqj), where q1 = q2 = 2, q3 = q4 = 

3 and q5 = · · · = q9 = 1. We use the first three proteins to generate the survival times

log(T i) = − 1 + ∑
j = 1

3
Pi jβ j(Gi j) + σϵifori = 1, …, n, (5)

with σ = 1, n = 400 and βj(Gij) = h ßj(Gij),λ} where θ1(Gi1) = —2Gi11, θ2(Gi2) = Gi21
2 − 1

and θ3(Gi3) = 2sin(πGi31/2). The error term ϵi is simulated from a standard extreme value 

distribution ϵi ~ f (ϵi) = exp(ϵi)exp{— exp(ϵi)}. An independent set of censoring times is 

sampled from log(Ci) ~ N(c, 1) where the constant c is chosen such that the censoring rate 
1
n ∑i = 1

n I(T i > Ci) is close to that of the KIRC data (~ 65%) in our later application. We also 

generate an independent test dataset in the same manner for evaluating the predictive power. 
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We consider four scenarios with different true thresholds, λ ϵ {0,0.1,0.3, 0.5}, to reflect 

different true minimum effect sizes.

We use cubic B-splines with 16 interior knots (i.e., 20 bases). The hyperparameters are 

specified as (ατ,bT) = (5,100), v0 = 2.5 × 10−4,bλ = 1, (ασ,6σ) = (10−4,10−4), (ap,bp) = (0.5, 

0.5) to be non-informative (sensitivity analyses are provided in Supplementary Material C). 

For both methods, we run 200,000 MCMC iterations with a burn-in of 100,000 iterations 

and a thinning of 5. For each scenario, we report the results based on 50 repetitions.

To assess the two-level variable selection performance, we calculate the true positive rate 

(TPR), FDR, Matthews correlation coefficient (MCC) and area under the receiver operating 

characteristic curve (AUC) for both gene and protein selections where

MCC = TP × TN − FP × FN
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

with TP, TN, FP and FN denoting the true positives, true negatives, false positives and false 

negatives, respectively. The operating characteristics are summarized in Table 1, with 

prefixes g and p denoting gene and protein, respectively. Clearly, BEHAVIOR is able to 

select important (linear or nonlinear) protein-gene relationships (gAUC~1 for all scenarios) 

with a spike-and-slab prior and spline construction. BEHAVIOR also accurately identifies 

patient-specific prognostic proteins (pAUC>0.99 across scenarios) because we allow patient-

level genomic information to be shared across patients.

In comparison, our method BEHAVIOR outperforms VCM in all scenarios in terms of 

protein selection. This can be easily seen from Figure 2. As expected, the performance of 

VCM is closer to that of our method when the true threshold decreases and the pMCC’s are 

almost identical for the two approaches when the true λ = 0 (i.e., the true model is VCM). 

For gene selection, our method slightly outperforms VCM, but the difference is not 

substantial.

For predictive performance, we compute the mean squared prediction error (MSPE) on the 

independent test dataset. Again, our method BEHAVIOR is slightly better than VCM, 

especially when the true λ is larger. For example, when λ = 0.5, the MSPE’s are 0.068 and 

0.088 for BEHAVIOR and VCM, respectively. We construe that the additional prediction 

efficiency gained with BEHAVIOR over VCM is likely due to the extra parsimony and 

better signal detection that BEHAVIOR introduces to the protein-survival relationship by the 

thresholded prior.

We perform additional simulations to assess the performance of BEHAVIOR under different 

sample sizes n, numbers of proteins p and numbers of genes qj per protein. We set true λ = 

0.3, σ = 1 and qj = q for j = i.e.,…, p, i.e. q genes per protein. We consider p + 1 ϵ {20, 

50,100}, n G {100, 200, 300} and q ϵ {5,10}. The data are generated from (5) with the true 

number of protein makers and gene-protein interactions and censoring rate kept 

approximately the same as previous simulation studies. The results are reported in Table 2. 

We found that the overall performance of BEHAVIOR does not deteriorate quickly as 

sample size decreases and the number of proteins and the number of genes per protein 
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increase. And we observe that reducing the number q of genes per protein does not seem to 

affect the protein selection and prediction.

6 Pan-Cancer Proteogenomic Analyses

TCGA launched a Pan-Cancer initiative in 2012 to study differences as well as similarities in 

molecular alterations across cancer types (www.nature.com/tcga). It currently has 

aggregated comprehensive genomic, proteomic and survival data across 33 cancer types.

In Section 6.1, we represent a pan-cancer analyses, across tumor-types that have the most 

mature survival data, and investigate commonalities as well as disparities across these 

cancers. In Section 6.2, we present a more granular analysis for kidney cancer that exhibited 

the strongest prognostic proteogenomic signals.

6.1 Pan-cancer analysis

Several pan-cancer studies (Weinstein et ah, 2013; Omberg et ah, 2013) have shown that 

disparate cancers share many common molecular characteristics. Studying such 

commonalities across cancer types and organs of origin improves our understanding of 

cancer biology, and shared molecular patterns can potentially allow us to extend therapeutic 

discoveries in one cancer to other cancers with similar genomic prohles. Our goal of this 

analysis is to correlate patient outcome with pathways/proteins and differentiate cancer-

specihc pathways/proteins with those related to multiple cancer types.

Through a literature review, we focus on 12 core signaling pathways that have known/estab-

lished role in cancer progression and development: apoptosis, breast reactive, cell cycle, core 

reactive, DNA damage response, EMT, hormone receptor, hormone signaling, PI3K/AKT, 

RAS/MAPK, RTK, and TSC/mTOR. Pathway members (proteins and their coding genes) 

are given in Supplementary Material D; details of selecting these pathways and their 

members can be found in Akbani et al. (2014). We retrieve and match genomic, proteomic 

and clinical data using software TCGA-Assembler (Zhu et al., 2014) and map them to the 12 

pathways. The data generating and preprocessing procedures are described in 

Supplementary Material D. We consider four cancers for which TCGA has the most mature 

survival data (i.e., the greatest number of deaths/events): kidney renal clear cell carcinoma 

(KIRC), ovarian serous cystadenocarcinoma (OVCA), skin cutaneous melanoma (SKCM) 

and head and neck squamous cell carcinoma (HNSC). KIRC and OVCA have similar 

numbers of events, 142 and 135, respectively; SKCM and HNSC have smaller and similar 

numbers of events, 105 and 103, respectively. The characteristics of each cancer is 

summarized in Supplementary Material D. We apply BEHAVIOR separately to each type of 

cancer and pathway combination (4× 12 = 48 analyses). We run four parallel MCMC chains, 

each with 500,000 iterations, a burn-in of 250,000 iterations and a thinning of 5. The 

Markov chains appear to be convergent by MCMC diagnostics (details provided in 

Supplementary Material D). The average (standard deviation) computation time across 

cancers and pathways is 0.67 (0.19) hours on a 3.5 GHz Intel Core i7 processor. The average 

posterior expected FDR is 8.6% across 4 cancers and 12 pathways. The average numbers of 

selected protein markers per patient per pathway across cancers are provided in Table 3 of 

Supplementary Material D.
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Protein-based analysis.—We find that some protein markers are shared by multiple 

cancers while others are exclusively relevant to one cancer. For example, protein PTEN is 

found to be prognostic for both HNSC and KIRC, which is consistent with the findings from 

the biological literature (Cantley and Neel, 1999; Squarize et al., 2013; Wang et al., 2015). 

The effect of PTEN on patients’ survival times changes with the expression of its coding 

gene and is quite different between HNSC and KIRC, which is depicted in Figure 3 (first 

two plots). The effect of protein PTEN for KIRC is almost always negative, whereas it varies 

between negative and positive values for HNSC. There is an interesting parabolalike 

relationship between the effect of protein PTEN and its coding gene PTEN in KIRC, 

possibly due to a feedback mechanism and interaction with proteins that are also coded by 

gene PTEN. In fact, a previous study (Wang et al., 2015) discovered that gene PTEN codes 

for multiple proteins, some of which (e.g., PTEN and PTEN-Long) are of therapeutic 

significance in KIRC.

There are also protein markers that are only prognostic for a particular cancer type. For 

instance, we found constant effects (independent of their coding genes) of pro-apoptotic 

proteins BIM and BAX that are prognostic in SKCM, which has been shown to be crucial 

for melanoma tumor cell survival (Anvekar et al., 2011). We also found some varying 

effects, for example, a linearly varying effect of protein ATM in OVCA and a nonlinearly 

varying effect of beta-catenin in HNSC are delineated in Figure 3 (right two plots), both of 

which are supported by the oncological literature (Thorstenson et al., 2003; Yang et al., 

2006).

To visualize the genomic-heterogeneity (or homogeneity) patterns between patients, we 

cluster the estimated prognostic protein effects βj(Gij). In Figure 4, we present a heatmap of 

estimated effects for HNSC, with blue (red) indicating negative (positive) effects. The rows 

(patients) and columns (proteins) are grouped by a hierarchical clustering algorithm with 

complete linkage. We observe that patients with similar prognostic protein effects naturally 

form subpopulations. For example, patients are divided into at least three subgroups by the 

effect of PTEN: positive, negative and neutral. Therefore, a treatment that targets PTEN is 

not likely to be successful for patients from all subgroups. Another promising finding is 

androgen receptor (AR) which also exhibits clear heterogeneity across patients (a similar 

heatmap with PTEN removed for better visualization of other protein effects is provided in 

Supplementary Material D). Although PTEN-targeted therapy is limited for HNSC, 

androgen deprivation therapy (ADT) has been proved effective for certain patient 

subpopulations (Rades et al., 2013; Soper et al., 2014; Chintakuntlawar et al., 2016; Dalin et 

al., 2017). Our analysis generates a hypothesis that patients with negative AR effects on 

survival may have better response to ADT. We also observe that the effect of beta-catenin is 

less variable across patients and is mostly negative for HNSC patients. In fact, a potent 

differentiation therapeutic agent, all-trans-retinoic acid, is found to inhibit growth of HNSC 

stem cells by suppressing beta-catenin and its signaling pathway (Lim et al., 2012).

Pathway-based analysis.—To further evaluate the prognostic abilities of proteomic 

path-ways, we score each pathway/cancer combination by a concordance index (c-index) of 

within-sample survival time prediction. C-index is a measure of how well the survival model 
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predicts the data and is defined as the ratio of the number of concordant predicted survival 

times against the number of all possible pairs that can be ordered,

C − index = 1
O ∑

(i, j) ∈ O
I(Ti < T j),

where O = {(i, j)|Δi = 1, Yi < Yj}. C-index reaches 1 when the prediction is perfect (in terms 

of ranking) and equals 0 when the ranking of the prediction is completely reversed. C-index 

is usually above 0.5, the value for which the model has no power in predicting survival. We 

show c-indices across cancers and pathways using a radial plot in Figure 5, which is also 

reported as a table in Supplementary Material D. In the radial plot, the distance between a 

dot and the center represents the c-index for different cancers (indicated by color) and 

pathways (indicated by radius).

Interestingly, some pathways are unique to certain cancers while others are shared by several 

cancers. For example, the hormone receptor pathway is only prognostic for F1NSC and 

KIRC. The former is confirmed by the biological literature (Akbani et ah, 2014) and the 

latter is a potential target for novel molecular drugs. In contrast, the breast reactive pathway 

appears to be prognostic for all four cancers and the apoptosis pathway is prognostic for 

KIRC, OVCA and SKCM. An effective therapy that targets a particular pathway for one 

cancer can be potentially used to treat other cancers for which the same pathway shows 

similar prognostic relevance. Since the analysis for KIRC shows the strongest signal among 

the four cancers (Figure 5), which is also observed from a pan-cancer proteomic analysis on 

virtually the same TCGA dataset by Akbani et al. (2014), we present a more comprehensive 

analysis for KIRC in Section 6.2.

6.2 Detailed analysis for kidney renal clear cell carcinoma

Kidney renal clear cell carcinoma (KIRC) is a chemotherapy-resistant cancer that is in great 

need of personalized molecular therapy (TCGA, 2013). We have data available from 428 

patients, 286 of whom are censored (67% censoring rate). The median survival time is 2256 

days from Kaplan-Meier estimates.

Our BEHAVIOUR analyses identify a total of 44 protein markers across 12 pathways, some 

of which have well understood biological and clinical significance in KIRC. For example, 

DNA repair protein RAD50, a member of the DNA damage response pathway, shows a 

linearly varying effect on patients’ survival times (Figure 6). Individuals with mutations in 

RAD50 and the DNA damage response pathway are at higher risk of developing KIRC 

(Margulis et al., 2008). Interestingly, the sign for the effect of RAD50 changes around 7, and 

the implication is that if a drug targeting RAD50 is assigned to two groups of patients with 

distinct genomic profiles (e.g., one group with gene expression of RAD50 > 7 and another 

with RAD50 < 7), they may experience very different responses to the drug.

We also find protein BCL2 to be prognostic for KIRC, which is supported by the findings 

from prior studies (Lee et al., 2003) that oncoproteins of the BCL2 family are important 

regulators of apoptosis (programmed cell death). This is consistent with our finding that the 

effect of BCL2 is mostly negative on patients’ survival times (Figure 6). The exception is 
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when the expression of oncogene BCL2 is between around 7 and 8. Treatments that aim to 

downregulate BCL2 may show little effect for patients with BCL2 expression within that 

range.

Another interesting finding is that the effect of protein AKTPT308 (also known as 

phosphoAKT-PT308) varies with two coding genes, AKT2 (nonlinearly) and AKT3 

(linearly), which is presented as a 3-D plot in Figure 6. Protein AKT is a hub for key 

oncogenic processes, including cell proliferation, survival and angiogenesis for multiple 

cancers such as KIRC (Banumathy and Cairns, 2010). In KIRC in particular, AKT is 

constitutively activated compared to its status in normal renal tissue (Lin et al., 2006). Our 

study suggests there may be a complex interaction or feedback loop within the AKT family, 

that is, interaction between AKTPT308 and proteins that are also coded from AKT2 and 

AKT3, which further implies that therapy that simultaneously blocks multiple members of 

the AKT family would be more likely to be effective than treatment that targets 

phosphoAKT-PT308 alone. We also assess the prognostic effect aggregated across patients 

of each protein for all pathways in KIRC in Supplementary Material D.

For comparison, we include the tumor stage as a predictor in our analysis. Expectedly, c-

index is increased across 12 pathways (by 0.09 on average). However, the number of 

selected protein markers was significantly reduced by 65.5% (0.81 vs 2.36 proteins per 

patient per pathway) because the tumor stage is so informative to the prognostics that it 

overwhelms the contribution of proteomic and genomic data in predicting the survival. We 

also apply a sparse AFT model with elastic net penalty (Wang et al., 2008b) to protein data 

only. We find BEHAVIOR has a greater predictive power (higher c-index) in 8 out of 12 

pathways.

7 Web application for visualization and supplementary materials

In order to allow for broad dissemination of our results and software, we have created, using 

the R package shiny (Chang et al., 2015), an interactive web application (available at https://

sites.google.com/site/yangniresearchsite/behavior) to interactively display the varying 

effects of prognostic proteins of different critical pathways in response to the user’s choice 

of the desired expressions of their respective encoding genes. This allows our results easily 

accessible to the broader scientific and research community. We provide two screenshots of 

the application in Figure 7.

Supplementary materials and the Matlab program implementing our method are available 

with this paper at the journal’s website.

8 Discussion

In this article, we propose a general regression framework, Bayesian hierarchical varying- 

sparsity regression (BEHAVIOR), to model complex interactions between multiple-levels of 

hierarchical covariates on a given outcome. Our semi-parametric spline-based formulations 

allow for flexible relationships between the covariates as well as distinguish the functional 

form of the relationships. Furthermore, through a combination of spike-slab priors and 

thresholding functions, we impose a two-levels of sparsity, both in outcome-covariate and 
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covariate-covariate relationships. We show that the traditional varying coefficient models are 

a special case of our model and show that BEHAVIOR outperforms VCM in terms of both 

variable selection and prediction.

Our methods are motivated by a novel dataset in proteogenomics, wherein we model 

patients’ survival times integrating their corresponding genomic and proteomic data across 

multiple cancers. Applying BEHAVIOR to this TCGA proteogenomic dataset, we found 

proteins and pathways that are prognostic for only some specific cancers as well as proteins 

and pathways that are shared by multiple cancers. We reconstruct the functional form of the 

relationship between genomically driven protein markers and their coding genes, which may 

potentially aid in developing personalized treatments that target these specific markers. Our 

analysis for KIRC demonstrates how the effect of a prognostic marker changes across 

patients according to their genomic profiles, and therefore the traditional “one-size-fits-all” 

treatment may have disparate outcomes for different patients. Our study also suggests that 

some markers may function in groups and their interactions are nonlinear and complex, 

which in turn implies that a treatment that blocks protein markers and their close interactants 

may be more effective than a treatment that targets one marker alone.

We do note that currently BEHAVIOR only considers one cancer at a time and therefore 

may be less efficient than a joint approach that models different cancers simultaneously. This 

inefficiency may be somewhat mitigated as we obtain more mature data for each cancer. 

From a modeling perspective, a joint approach that accounts for associations across cancers 

may be more efficient and possibly detect more signals from the existing data. This is one 

direction for our future work.

In our current framework, we only utilize transcript expressions of known isoforms that are 

available from TCGA. However, de novo isoforms also provide important information 

complementary to existing measurable isoform and protein abundances. Inference on novel 

isoforms is by itself an interesting research topic, which is, however, not the focus of this 

paper.

We also remark that BEHAVIOR does not take into account the uncertainty or error in the 

data quantification and bioinformatics pre-processing procedures for the raw-level 

transcriptomic and proteomic data. To fully account for the uncertainty, researchers need to 

work directly with the raw data, which is both statistically and computationally challenging.

While the focus of this paper is prognostic models, a varying-sparsity coefficient can be 

incorporated into many other models. For example, we may use logistic regression to 

classify cancer subpopulations with a varying-sparsity coefficient that is conditional on 

clinical covariates. This would allow each patient to have his/her unique set of covariates 

that are relevant for classification. Similarly, in quantile regression, the quantile regression 

coefficients can also be replaced by varying-sparsity coefficients. We plan to work on 

extensions of our model in the future.

Another contribution of our work is towards establishing the translational relevance of the 

functional proteome and pathways in research and clinical settings. To this end, we have 
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created an online repository of all our results, scores and pathway signatures that are easily 

accessible to the scientific and research community.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Illustration of the model. Y1,…, Yn denote patient-specific clinical outcomes for n patients, 

P1,…, Pp denote proteins and G1,…, Gg denote genes. Double-lined arrows represent the 

patient-level relationship between clinical outcome and proteins, and single-lined arrows 

connect genes to their protein products on the population level.
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Figure 2: 
Matthews correlation coefficient (solid lines) and false discovery rate (dashed lines) are 

plotted against the true values of the thresholds. Triangular markers indicate BEHAVIOR; 

circular markers indicate VCM.
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Figure 3: 
Protein markers. For each graph, the fitted curve of protein effects (solid line) with 95% 

credible bands (dashed line) are shown in the top portion, and marginal posterior inclusion 

probabilities are shown in the bottom portion. The gene expression that modifies the protein 

effect is given on the x-axis. Blue horizontal line is the 0.5 probability cutoff. Red lines and 

curves indicate significant coefficients.
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Figure 4: 
Heatmap of prognostic protein effects βj (Gij) for HNSC. The rows (patients) and columns 

(proteins) are grouped by hierarchical clustering with complete linkage. Color scale is given 

in the top left corner.
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Figure 5: 
Radial plot of c-index. C-indices of survival time prediction are computed across 4 cancers 

and 12 pathways. Pathways are shown at the outer ring and cancer types are represented by 

different colors, for which the legend key is given on the right. Each dot lies on one of the 12 

radii and represents a c-index for a specific pathway/cancer combination. The c-index takes 

values of 0, 0.5 and 1 at the center, inner ring and outer ring, respectively.
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Figure 6: 
Protein markers for KIRC. For the first two graphs, the fitted curve (solid line) with 95% 

credible bands (dashed line) are shown in the top portion, and marginal posterior inclusion 

probabilities are shown in the bottom portion. Blue horizontal line is the 0.5 probability 

cutoff. Red lines and curves indicate significant coefficients. The last graph is a 3-D plot 

with gene expressions of AKT2 and AKT3 on X- and Y-axes, and the effect of protein 

AKTPT308 on Z-axis.
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Figure 7: 
Screenshots of varying protein effects in respective encoding genes the web application. The 

application interactively displays the response to the user’s choice of the desired expressions 

of their through sliders in the left panel.
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Table 1:

Varying-sparsity accelerated failure time model versus generalized additive coefficient model in four 

scenarios. The numbers are calculated on the basis of 50 repetitions; standard errors are within parentheses.

λ BEHAVIOR VCM λ BEHAVIOR VCM

0 0.3

gTPR 1.000 (0.000) 1.000 (0.000) gTPR 1.000 (0.000) 1.000 (0.000)

gFDR 0.035 (0.088) 0.020 (0.069) gFDR 0.035 (0.088) 0.030 (0.082)

gMCC 0.976 (0.060) 0.986 (0.047) gMCC 0.976 (0.060) 0.979 (0.056)

gAUC 1.000 (0.000) 1.000 (0.000) gAUC 1.000 (0.000) 1.000 (0.000)

pTPR 0.929 (0.037) 1.000 (0.000) pTPR 0.976 (0.029) 1.000 (0.000)

pFDR 0.018 (0.041) 0.077 (0.117) pFDR 0.056 (0.063) 0.180 (0.130)

pMCC 0.927 (0.046) 0.926 (0.119) pMCC 0.936 (0.058) 0.832 (0.165)

pAUC 0.996 (0.010) 0.965 (0.061) pAUC 0.998 (0.004) 0.926 (0.084)

MSPE 0.061 (0.034) 0.062 (0.039) MSPE 0.065 (0.034) 0.070 (0.040)

0.1 0.5

gTPR 1.000 (0.000) 1.000 (0.000) gTPR 1.000 (0.000) 1.000 (0.000)

gFDR 0.025 (0.076) 0.025 (0.076) gFDR 0.033 (0.092) 0.035 (0.088)

gMCC 0.983 (0.052) 0.983 (0.051) gMCC 0.977 (0.065) 0.976 (0.060)

gAUC 1.000 (0.000) 1.000 (0.000) gAUC 1.000 (0.000) 1.000 (0.000)

pTPR 0.954 (0.034) 1.000 (0.000) pTPR 0.973 (0.023) 1.000 (0.000)

pFDR 0.036 (0.056) 0.141 (0.132) pFDR 0.060 (0.070) 0.243 (0.122)

pMCC 0.933 (0.054) 0.867 (0.144) pMCC 0.932 (0.061) 0.784 (0.138)

pAUC 0.997 (0.007) 0.938 (0.077) pAUC 0.998 (0.003) 0.907 (0.076)

MSPE 0.066 (0.030) 0.066 (0.038) MSPE 0.068 (0.033) 0.088 (0.043)
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Table 2:

BEHAVIOR models under different combinations of the sample size n and the number of proteins p. The 

number of gene per protein is set to qj = q for j = 1,…, p. The summary is based on 50 repetitions; standard 

errors are within parentheses.

n = 400, q = 1 p + 1 = 10, q = 1 n = 400, p + 1 = 10

p + 1 n q

20 50 100 100 200 300 5 10

gTPR 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.927 (0.139) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

gFDR 0.005 (0.035) 0.078 (0.122) 0.143 (0.183) 0.060 (0.145) 0.081 (0.150) 0.102 (0.197) 0.034 (0.142) 0.058 (0.123)

gMCC 0.997 (0.023) 0.955 (0.071) 0.917 (0.112) 0.885 (0.185) 0.926 (0.151) 0.884 (0.259) 0.973 (0.133) 0.967 (0.071)

gAUC 1.000 (0.000) 0.999 (0.003) 0.998 (0.005) 0.998 (0.011) 1.000 (0.000) 1.000 (0.000) 1.000 (0.002) 1.000 (0.002)

pTPR 0.984 (0.019) 0.969 (0.032) 0.971 (0.024) 0.945 (0.061) 0.939 (0.041) 0.947 (0.037) 0.985 (0.025) 0.965 (0.073)

pFDR 0.089 (0.088) 0.148 (0.147) 0.220 (0.194) 0.236 (0.136) 0.113 (0.109) 0.062 (0.068) 0.089 (0.097) 0.088 (0.119)

pMCC 0.933 (0.056) 0.896 (0.089) 0.854 (0.125) 0.744 (0.138) 0.854 (0.092) 0.908 (0.052) 0.911 (0.094) 0.894 (0.116)

pAUC 0.999 (0.001) 0.999 (0.002) 0.999 (0.001) 0.972 (0.024) 0.988 (0.007) 0.994 (0.005) 0.997 (0.003) 0.993 (0.028)

MSPE 0.074 (0.043) 0.097 (0.062) 0.146 (0.124) 0.459 (0.215) 0.183 (0.071) 0.109 (0.057) 0.084 (0.046) 0.098 (0.148)
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