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Abstract

Alzheimer’s disease (AD) is a degenerative brain disease that affects millions of people around the 

world. As populations in the United States and worldwide age, the prevalence of Alzheimer’s 

disease will only increase. In turn, the social and financial costs of AD will create a difficult 

environment for many families and caregivers across the globe. By combining genetic information, 

brain scans, and clinical data, gathered over time through the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI), we propose a new Joint High-Order Multi-Modal Multi-Task Feature Learning 
method to predict the cognitive performance and diagnosis of patients with and without AD.
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1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative condition characterized by the progressive 

loss of memory and cognitive functions. The Alzheimer’s Association recently released a 

report [1] in which they described various societal costs of AD in the United States. They 

found that in 2017 the total spending of caring for individuals with AD surpassed $259 

billion. In addition, they report that 1 in 10 people aged 65 or older suffer from some form of 

Alzheimer’s dementia. Given the widespread effects of AD on patients, their families, and 
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caregivers, it is important that the scientific community investigates methods that can 

accurately predict the progression of AD.

Following the body of work done through the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI), we present a new joint regression and classification model, inspired by our previous 

works [13,14], that has shown great performance in the identification of relevant genetic and 

phenotypic biomarkers in patients with AD. Our newly proposed method consists of three 

major components as follows. First, we use the ℓ2,1-norm regularization [5] to effectively 

associate input features overtime and generate a sparse solution. Second, we utilize a new 

group ℓ1-norm regularization proposed in our previous works [10–12,14] to globally 

associate the weights of the input imaging and genetic modalities, where a modality 
indicates a single data grouping (e.g. brain imaging data, genetic data, diagnostic data, etc.). 

The group ℓ1-norm regularization is able to determine which input modality is most effective 

at predicting a particular output. Third, we incorporate the trace norm regularization 

[2,4,15,16] to determine relationships that occur within modalities.

2 Joint Multi-modal Regression and Classification for Longitudinal 

Feature Learning

Joint multi-task learning (e.g. performing regression and classification at the same time) can 

help discover more robust patterns than those discovered when the tasks are performed using 

separate objectives [13,14]. These robust patterns can arise when the learned parameters for 

the regression task become outliers for the classification task.

In the ADNI data set, a collection of input modalities (e.g. VBM, FreeSurfer, SNP) have 

been collected from patients in every six months. The input imaging features are represented 

by a set of matrices 𝒳 = X1, X2, …, XT ∈ ℝD × n × T. The stacked matrices in 𝒳

correspond to measurements recorded at T consecutive time points. Each matrix Xt ∈ ℝD × n

is composed of k input modalities where Xt = [X11, X12, … , X1k]. Each input modality Xtj 

consist of dj features such that D = ∑ j = 1
k d j. 𝒳 is a tensor with D imaging features, n 

samples, and T time points.

In addition to the input modalities, the ADNI also collected cognitive information from each 

patient. The output of our model, a prediction of cognitive diagnoses and scores, is 

represented by the tensor 𝒴 = Y1, Y2, …, YT ∈ ℝn × c × T where at each time point t from 

(1 ≤ t ≤ T) a matrix Yt = [Ytr Ytc] represents the horizontal concatenation of the clinical 

diagnoses (classification tasks) and cognitive scores (regression tasks) of each patient who 

participated in the ADNI study.

In order to associate the longitudinal imaging markers and the genetic markers to predict 

cognitive scores and diagnoses over time, we introduce a tensor implementation of the 

widely used ℓ2,1-norm:
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𝒲(1) 2, 1 = ∑
i = 1

d
∑
t = 1

T
wt

i
2
2, (1)

where wt
i denotes the i-th row of the coefficient matrix Wt at time t. Here we define 𝒲(n) as 

the unfolding operation of 𝒲 along the n-th mode. Given this definition, it follows that 

𝒲(1) = W1 W2…WT ∈ ℝd × (c × T). The ℓ2,1-norm regularization in Eq. (1) will ensure that 

each feature will either have small, or large values, over the longitudinal dimension.

In heterogeneous feature fusion, the features of a specific input modality can be more 

discriminative than others for a given task. For example, the features associated with the 

brain imaging modality may be more useful in determining cognitive scores than the 

corresponding genetic modality. Conversely, the genetic modality may be more 

discriminative in predicting a disease diagnosis. To incorporate this global relationship 

between modalities we use the group ℓ1-norm (G1-norm) proposed in our previous works 

[10,11,14]:

𝒲(1) G1
= ∑

i = 1

c
∑
j = 1

k
w j

i
2, (2)

where k is the number of input modalities.

The regularizations defined above in Eqs. (1–2) couple the learning tasks over time and learn 

the relative significance of each input modality for a given task. We know, as AD develops, 

that many cognitive measures are related to one another. This kind of correlation, when 

combined with a multivariate regression model and the hinge loss from a support vector 

machine (SVM) classifier, can be modeled by minimizing the rank of the unfolded 

coefficient matrix 𝒲 in the following objective:

min
𝒲

J2 = ∑
t = 1

T
‖Xt

TW tr − Y tr‖F
2 + ∑

t = 1

T
h Xt, Y tc + γ1‖𝒲(1)‖2, 1 + γ2‖𝒲(1)‖G1

+ γ3‖𝒲(1)‖*,

(3)

where ∥M∥* = Tr(MMT)1/2 denotes the trace norm of the matrix M ∈ ℝn × m, which has 

been shown as the best convex approximation of the rank-norm [2]. The rank minimization 

will develop joint correlations across each of the learning tasks at different time points. We 

call J2 in Eq. (3) the Joint High-Order Multi-Modal Multi-Task Feature Learning model. We 

will use this newly proposed model to effectively predict the cognitive scores and diagnoses 

of AD patients.
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The algorithm to solve the proposed objective in Eq. (3) is summarized in Algorithm 1. Due 

to the space limit, the derivation of this algorithm and the rigorous proof of its global 

convergence will be supplied in an extended journal version of this paper.

3 Experiments

In this section, we will evaluate the proposed method on the data set provided by the ADNI. 

The goal of our experiments is to determine the relationships between the brain imaging data 

(FreeSurfer and VBM), genotypes encoded by SNPs, and the corresponding cognitive scores 

and AD diagnoses.

We downloaded 1.5 T MRI scans, SNP genotypes, and demographic information for 821 

ADNI-1 participants. We performed voxel-based morphometry (VBM) and FreeSurfer 

automated parcellation on the MRI data by following [6], and extracted mean modulated 

gray matter (GM) measures for 90 target regions of interest (ROIs). We followed the SNP 

quality control steps discussed in [8]. We also downloaded the longitudinal scores of the 

participants’ Rey Auditory Verbal Learning Test (RAVLT) and their clinical diagnoses in 

three categories: healthy control (HC), mild cognitive impairment (MCI), and AD. The 

details of these cognitive assessments can be found in the ADNI procedure manuals. The 

time points examined in this study for both imaging markers and cognitive assessments 

included baseline (BL), Month 6 (M6), Month 12 (M12) and Month 24 (M24). All the 

participants with no missing BL/M6/M12/M24 MRI measurements, SNP genotypes, and 

cognitive measures were included in this study; this resulted in a set of 412 subjects with 

155 HC, 110 MCI, and 147 AD.

3.1 Joint Regression and Classification Performance

In order to evaluate the effectiveness of our new Joint High-Order Multi-Modal Multi-Task 
Feature Learning method, we tested its regression and classification performance against an 

array of popular machine learning models. In each experiment, we fine tune the parameters 

of our model (γ1, γ2 and γ3) by searching a grid of powers of 10 between 10−5 to 105. The 

experiments are performed using a classical 5-fold cross-validation strategy for each of the 

chosen algorithms.
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Results.—In Table 1 we can see that our proposed algorithm performs significantly better 

than a collection of “out-of-the-box” machine learning methods. The significant 

performance improvements in both regression and classification are due to the fact that our 

algorithm is the only one capable of incorporating the important longitudinal information 

into its prediction. The various regularizations (ℓ2,1-, group ℓ1- and trace norms) that we apply 

to the unfolded matrix 𝒲 ensure that our proposed algorithm is able to incorporate the 

longitudinal patterns that are intrinsic to many clinical studies (including the ADNI).

3.2 Identification of Longitudinal Imaging Biomarkers

FreeSurfer.—The coefficients associated with the FreeSurfer modality in 𝒳 are extracted 

from 𝒲 at each time point (BL, M6, M12, M24). Each corresponding coefficient is mapped 

onto Automated Anatomical Labeling (AAL) [9] regions of the brain (Fig. 1). When we 

look at the FreeSurfer brain heatmap we can draw a few interesting conclusions. First, the 

images show the same sparse image representation over time. This observation shows us that 

that the ℓ2,1-norm is working as expected and is successfully associating features across time, 

which illustrates the longitudinal predictive potential (a clinically important distinction) of 

our method. Second, we see that multiple parts of the brain related to the frontal gyrus have 

high weights compared to other parts of the brain not connected to AD, which is nicely 

consistent with existing clinical findings [3].

Voxel-Based Morphometry.—The coefficients associated with the VBM modality in 𝒳
are extracted from the coefficient matrix 𝒲 at each time point. Each coefficient weight is 

mapped onto AAL regions of the brain (Fig. 2). The images associated with the VBM 

modality share the same longitudinal sparsity that we observed in the FreeSurfer coefficient 

matrix. Although, in this case, a completely different set of brain imaging features was 

discovered: features associated with the hippocampus. Here we see the remarkable effect of 

the G1-norm regularization combined with the trace norm. Hippocampus atrophy has been 

shown to be highly predictive of AD.

Single Nucleotide Polymorphism.—The coefficients associated with the SNP modality 

in 𝒳 are extracted from the coefficient matrix. 𝒲. Similar to two previous modalities, there 

was little difference between the coefficient matrices at each time point. The only orange bar 

in Fig. 3 is the coefficient that is associated with the rs429358 SNP: the apolipoprotein E 

(ApoE) gene. Schuff et al. [7] and many others have discovered that the ApoE gene is 

related to increased rates of hippocampus atrophy. It is surprising that no other SNPs show 

up given that SNPs on the same gene are frequently associated with one another. One reason 

for this could be that the tuning coefficient on the ℓ2,1-norm is too large.

4 Conclusion

Learning effective mappings between different input and output modalities is an important 

research task in AD research. In the proposed Joint High-Order Multi-Modal Multi-Task 
Feature Learning model, we use various regularizations to learn the relationships between 

modalities over time. Our proposed method shows superior performance compared to 

traditional machine learning models.
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Fig. 1. 
Visualization of the FreeSurfer modality coefficients derived from 𝒲 at various times 

(BL/M6/M12/M24). The top ten AAL regions are as follows (largest to smallest): 

Fusiform_L, Fusiform_R, Frontal_Med_Orb_L, Frontal_Inf_Tri_L, Frontal_Med_Orb_R, 
Frontal_Inf_Tri_R, ParaHippocampal_L, Insula_L, Pallidum_R, and Pallidum_L.
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Fig. 2. 
Visualization of the voxel-based morphometry modality coefficients derived from 𝒲 at 

various times (BL/M6/M12/M24). The top ten AAL regions are as follows (largest to 

smallest): Hippocampus_L, Amygdala_L, Hippocampus_R Temporal_Inf_R 
Temporal_Mid_R, Temporal_Inf_L, ParaHippocampal_L, Amygdala_R, Temporal_Mid_L, 
ParaHippocampal_R, Angular_R, and Temporal_Pole_Sup_L.
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Fig. 3. 
Heatmap visualization of the SNPs along the x-axis against the corresponding coefficients 

derived from 𝒲. The single orange line on the right-hand side is the weight associated with 

rs429358.

Brand et al. Page 9

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Brand et al. Page 10

Table 1.

Regression: Root mean squared error (RMSE) results of the proposed algorithm compared to linear 

regression, ridge regression, Lasso regression, K-nearest neighbors (KNN), and a multi-layer perceptron 

(MLP) classifier. Classification: F1 scores of classifying HC, MCI, and AD patients of the proposed 

algorithm compared to logistic regression, random forest, support vector machine (SVM) (with RBF kernel), 

K-nearest-neighbors (KNN), and a multi-layer perceptron (MLP) regressor.

Regression Performance (RAVLT)

Linear Ridge Lasso

RMSE 1.41e+13±1.19e+12 0.333±0.016 0.333±0.016

KNN MLP Ours

RMSE 0.344±0.009 0.318±0.026 0.284±0.011

Classification Performance (Diagnosis)

Logistic RandomForest SVM

F1 (HC) 0.472±0.054 0.434±0.048 0.310±0.073

F1 (MCI) 0.420±0.065 0.448±0.045 0.460±0.071

F1 (AD) 0.456±0.044 0.494±0.098 0.450±0.088

KNN MLP Ours

F1 (HC) 0.340±0.069 0.424±0.089 0.560±0.034

F1 (MCI) 0.396±0.054 0.386±0.092 0.508±0.039

F1 (AD) 0.354±0.093 0.444±0.039 0.644±0.120
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