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ABSTRACT Crop-wild introgressions have long been exploited without knowing the favorable recombi-
nation points. Synthetic hexaploid wheats are one of the most exploited genetic resources for bread wheat
improvement. However, despite some QTL with major effects, much less is known about genome-
wide patterns of introgressions and their effects on phenotypes. We used two genome-wide association
approaches: SNP-GWAS and haplotype-GWAS to identify SNPs and haplotypes associated with produc-
tivity under water-limited conditions in a synthetic-derived wheat (SYN-DER) population. Haplotype-GWAS
further enriched and identified 20 more genomic regions associated with drought adaptability that did not
overlap with SNP-GWAS. Since GWAS is biased to the phenotypes in the study and may fail to detect
important genetic diversity during breeding, we used five complementary analytical approaches (t-test,
Tajima’s D, nucleotide diversity (p), Fst, and EigenGWAS) to identify divergent selections in SYN-DER
compared to modern bread wheat. These approaches consistently pinpointed 89 ‘selective sweeps’, out
of which 30 selection loci were identified on D-genome. These key selections co-localized with important
functional genes of adaptive traits such as TaElf3-D1 (1D) for earliness per se (Eps), TaCKX-D1 (3D), TaGS1a
(6D) and TaGS-D1 (7D) for grain size, weight and morphology, TaCwi-D1 (5D) influencing drought toler-
ance, and Vrn-D3 (7D) for vernalization. Furthermore, 55 SNPs and 23 haplotypes of agronomic and
physiological importance such as grain yield, relative water content and thousand grain weight in SYN-DER,
were among the top 5% of divergent selections contributed by synthetic hexaploid wheats. These divergent
selections associated with improved agronomic performance carry new alleles that have been introduced to
wheat. Our results demonstrated that GWAS and selection sweep analyses are powerful approaches for
investigating favorable introgressions under strong selection pressure and the use of crop-wild hybridization
to assist the improvement of wheat yield and productivity under moisture limiting environments.
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Genetic variation in food crops has been successfully exploited through
conventional breeding over the last century, resulting in 0.8–1.2% an-
nual genetic yield gain in five major food crops including wheat (Ray
et al., 2013). However, this rate of genetic gain is insufficient to achieve
the 100% increase in production target needed to meet global demand
for food, feed, and fiber by 2050 (Tilman et al., 2011). A steady increase

in genetic gain is required to fulfill the demands of the 2% yearly in-
crease in world population. Such an increase is challenging because
there is little scope to improve harvest index due to the genetic bottle-
neck introduced by modern crop improvement practices reliant on few
parents. Furthermore, weather extremes and continuously shrinking
arable land are additional challenges to increasing yield and yield
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stability in diverse environments (Xu et al., 2017). In conventional
wheat breeding, a limited proportion of the genetic variation available
in the bread wheat genepool for abiotic and biotic stress tolerance and
quality attributes has been explored to maximize genetic gain. Some
estimate that 69% of genetic diversity has been lost through domesti-
cation and modern breeding (Reif et al., 2005). Re-introducing lost
genetic diversity from wheat wild relatives by integration of molecular
genetics and conventional breeding technologies is one way to bridge
this gap (Rasheed et al., 2018).

Exploiting crop wild relatives for quantitative traits is challenging
because the germplasmmay be too diverse to be used directly and a pre-
breeding processwill be required. Therefore, genetic approaches such as
large-scale and systematic identification and characterization of quan-
titative trait loci (QTL) through GWAS could help to identify alleles or
haplotypes thatmaynot exist in crop cultivars but couldbe incorporated
into the existing elite gene pool (Bevan et al., 2017). Synthetic hexaploid
wheat (SHW) developed by hybridizing Aegilops tauschii, D-genome
donor to bread wheat (Triticum aestivum L.), is a source of genetic
diversity and favorable alleles for tolerance to biotic and abiotic stresses
(Börner et al., 2015; Mujeeb-Kazi et al., 1996; Ogbonnaya et al., 2013).
Synthetic hexaploid wheat and their advanced derivatives (SYN-DERs)
have potential to improve drought- and heat-adaptive mechanisms in
bread wheat (Afzal et al., 2017; Reynolds et al., 2005). SYN-DERs have
outperformed their recurrent parents under drought stress and have
proved to be high yielding compared to non-synthetic wheat in various
studies (Jafarzadeh et al., 2016; Lopes and Reynolds 2011; Tang et al.,
2017). Despite several GWAS and QTL mapping studies available in
synthetic hexaploid wheats (Ogbonnaya et al., 2013; Rasheed et al.,
2018), underpinning the recombinations favoring a yield-advantage
in SYN-DER is lacking. Unlocking the genetic potential of genetic
resources requires whole-genome sequence coverage through next-
generation sequencing; however large wheat genome-size (�16Gb)
and incomplete reference genome makes this unfeasible. Alternatively,
single nucleotide polymorphism (SNPs) arrays can be used to define
genomic regions associated with quantitative traits due to their dense
genome coverage (Akhunov et al., 2009; Rasheed et al., 2017; Wang
et al., 2014).

SNPshave been extensively used inmapping experiments to identify
the genetic loci associated with important agronomic phenotypes. In
human genetic studies, haplotype blocks combining two or more SNPs
in strong LD aremore informative than single bi-allelic SNPs (Stephens
et al., 2001). Lorenz et al. (2010) defined haplotypes by several analyt-
ical procedures in barley and confirmed that the distribution of QTL
alleles in nature was unlike the distribution of marker variants, and
hence utilizing haplotype information could capture associations that
would elude single SNPs. Haplotype based GWAS analyses are still rare
in wheat except for few studies (Hao et al., 2017; Jordan et al., 2015),
and have shown promise in Brassica (Wu et al., 2016), barley (Lorenz
et al., 2010) and other crop species (Qian et al., 2017). Bevan et al.

(2017) argued that haplotypes in progenitors and wild relatives of crops
contain a broad range of genetic variation and identification of haplo-
types with fewer deleterious alleles and improved phenotypes could
accelerate genetic gain in crop improvement. Such GWAS approaches
either with bi-allelic SNPs or haplotypes could be combined with
genome-wide selective sweeps which identifies selection signatures that
are beneficial for crop adaptation. Crop breeding selects favorable al-
leles and retains them in new cultivars. These signatures of selection can
be detected by a cross-population comparison approach (Chen et al.
2010). Several lines of evidence have shown that that genomic regions
that exhibit selection signatures are also enriched for genes associated
with biologically important traits (Xie et al. 2015). Therefore, detection
of selection signatures is emerging as an additional approach to identify
and validate novel gene-trait associations (Cadzow et al. 2014).

This study aimed to identify the chromosomal regions under
divergent selection in SYN-DER wheat by comparison to modern
bread wheat cultivars widely grown in the same environments. We
used two GWAS strategies (SNP-GWAS and haplotype-GWAS)
to identify marker-trait associations under divergent selection in
SYN-DERs.

MATERIALS AND METHODS

Germplasm and phenotyping
A total of 240 hexaploid wheat accessions including 171 SYN-DER
wheats and 69 modern bread wheat cultivars and advanced lines were
assessed (Table S1). Among the modern bread wheat cultivars, 32 were
recurrent bread wheat parents used in the development of SYN-DER.
These SYN-DERs were developed by crossing primary SHWs with
advanced lines and elite cultivars of Pakistan and CIMMYT (see
pedigrees in Table S1). More than 800 SYN-DERs were developed
initially at the National Agriculture Research Center (NARC), Pakistan.
This was reduced to 171 following re-selection for better agronomic
characteristics. Field trials were conducted at two locations during
the 2014-15 and 2015-16 cropping seasons at the Barani Agriculture
Research Institute (BARI), Chakwal (33�40/38//N 72�51/21//E, 498m
asl), Pakistan and the National Agriculture Research Center (NARC),
Islamabad (33�43/N 73�04/E, 579 asl), Pakistan. At each location/year,
field trials were conducted in two water regimes i.e., well-watered
(WW) and water-limited (WL) conditions. Chakwal is a rain-fed,
semi-arid area lies at the beginning of the Potohar plateau. The deep,
well-drained soil comprises moderately fine textured particles. It is
slightly calcareous, non-saline, with pH 7.6 and an electrical conduc-
tivity of 0.32 dS/m (Islam et al. 2012). Average rainfall during cropping
season in 2014 was 20 mm and was 22.14 mm in 2015. A field exper-
iment with an alpha lattice design was set up in both WW and WL
conditions. The first environmental condition was established as well-
watered (WW) in which all genotypes with two replications were
planted in the field. Three irrigations were given to well-watered
(WW) plants, and soil moisture was maintained at field capacity
(100%) until harvest. The second environmental condition was water-
limited (WL) in which all genotypes were planted with two replica-
tions in a polyethylene tunnel supported by an iron frame to provide
shelter from precipitation. A 1-m deep ditch surrounded the tunnel to
prevent any seepage of rainwater. Irrigation was stopped at the end of
tillering through the completion of the flowering stage. The crop
growth stages were determined using the Zadoks scale (Zadoks
et al. 1974). Two 2-m long rows were sown with each genotype with
two replications, maintaining an inter-row spacing of 30 cm for both
treatments. The sowing date was November 20 in both years. To
establish uniform stands, we sowed 30 viable seeds of variable kernel
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mass with the help of small plot grain drill for each row. To ensure
sufficient nutrition, standard agronomic practices were followed.

Phenotypic traits recorded at each location included chlorophyll
content index (CCI), total chlorophyll (Chl), canopy temperature (CT),
number of grains per spike (GS), grain yield (GY), plant height (PH),
proline, relative water contents (RWC), shoot dry weight (SDW), shoot
fresh weight (SFW), spike length (SL), superoxide dismutase (SOD),
sugar contents (Sugar), thousand grain weight (TGW), and tillers per
plant (TP). Specific suffixes were provided to each trait according to the
water treatment e.g., GYWW (GY in well-watered treatment), GYWL

(GY in water-limited treatment), and GYDIFF (GY for difference in
well-watered and water-limited treatments).

A chlorophyll meter of model CCM200 plus was used to measure
chlorophyll content index. Similarly, canopy temperaturewasmeasured
using an infrared thermometer IRT206 at booting stage (Z45) (Zadoks
et al. 1974). Plant height was measured from the base of the plant to the
spike excluding awns at Z96 stage. Similarly, number of tillers per plant
(TP) and spike length (SL) excluding awns were recorded for ten spikes
from each replicate. Number of grains per spike were calculated after
harvesting on the same 10 random spikes and thousand grain weight
was recorded.

For biochemical analysis, fresh leaf samples were collected at the
onset of flowering stage (Z60) (Zadoks et al. 1974). Sugar contents or
soluble sugar in leaves were estimated (Dobois et al. 1956). For this
purpose, 0.5 g of fresh leaf tissues were taken with 10mL of ethanol and
were heated at 80� in for one hour with continuous shaking. One mL
phenol (18%) was added to the 0.5 ml of pre-heated extract and incu-
bated for one hour. After this, 2.5 mL of concentrated H2S04 was added
and vortexed. The extract was used to measure absorbance at 420 nm
by a UV spectrophotometer (Biochem-2100) and the concentration of
soluble sugar was measured using a standard glucose curve.

Total chlorophyllwasmeasuredusingdimethyl sulphoxide (DMSO)
(Hiscox and Israelstam 1979). Briefly, 0.5 gram of leaf tissues were
taken in a preheated tube filled with 6 mL DMSO. Material was heated
in a hot water bath at 65� for 35-40min. Then extract was transferred to
a new tube and DMSO was added until total volume reaches 10 mL.
Finally, total chlorophyll contents were measured by recording absor-
bance of the extract at 660 nm using RS-1100 equipment and fitting
into the equation of Arnon (1949).

Proline was measured following protocol of Bates et al. (1973). For
this, 0.3 g of fresh leaf sample was homogenized with 5 mL of sulfo-
salyclic acid (3%) in a test tube. Then two mL of mixture was added to
2mL of glacial acetic acid and 2mL of ninhydrin and incubated for one
hour at 100�. The reaction was stopped with ice and then four mL
toluene was added to reaction mixture. The mixture absorbance value
recorded at 420 nm using UV spectrophotometer. A standard curve
was made using authentic proline and proline was calculated as
mmol/g.

The concentration of superoxide dismutase (SOD) in leaf was
measuredwith following protocol. First 0.5 g of freshwheat leaf samples
were ground in a chilled mortar and pestle with 10 mL of chilled
phosphate buffer (50 mM) in an ice bath. The mixture was centrifuged
at 13,000 RPM at 4� for 25 min and was filtered in four layers of
cheesecloth. The supernatant obtained was used to assay SOD activity
(Beauchamp and Fridovich 1971; Giannopolistis and Ries 1977). The
extract obtained was illuminated under 40 W fluorescent lamps at 25�
with 100 mL of 1.3 mM riboflavin and 3 mL of 0.1 M SOD buffer for
8 min until a dark color appeared. For the samples from well-water
conditions, the same protocol was followed but in darkness. A blank
check without any leaf sample was prepared. The absorbance of all
three mixtures was measured at 560 nm in the UV spectrophotometer.

The concentration of SOD is the quantity of enzyme preventing 50%
of photoreduction by nitroblue tetrazolium (NBT) in contrast to the
sample mixture that lacks plant material.

Relative water content (RWC)was measured as per method devised
by Bar and Weatherly (1962) with slight modifications. Three fully
expanded flag leaves from randomly chosen plants in each plot were
collected from both environmental conditions (WWandWL) at Z45 of
booting stage (Zadoks et al. 1974). Top and bottom of the leaves with
any dead tissue was removed off to leave a 5 cm mid-section. All
samples were then immediately placed in pre-weighed air tight falcon
tubes to stop any moisture loss/gain from the system. Tubes were then
transferred to a cooled and insulated container (at around 10�–15�; but
not frozen). All tubes with sample were then weighed and recorded
under TW + FW. Tubes were then filled with 1 mL of distilled water
and placed in refrigerator (4�) for 24h. This will make leave turgid.
After carefully blotting with dry paper to remove moisture, hydrated
leaves were weighed and recorded under TW. All leaf samples were
then transferred to labeled envelopes to oven (70�) for 24h. Samples
were then reweighed and recorded under DW. RWC was measured
by using formulae;

Leaf RWCð%Þ ¼ ½ðFW-DWÞ=ðTW-DWÞ� · 100
where FW= leaf fresh weight, TW= leaf turgid weight, and DW= leaf
dry weight.

Genotyping and analysis of genotyping datasets
Five viable seeds of each genotype were planted in 5 cm diameter pots.
DNA was extracted per the CIMMYT Molecular Genetics Manual
(Dreisigacker et al., 2013) from fresh leaf samples of 25-day-old seed-
lings. DNA samples (50–100 ng/ml per sample) were sent to Depart-
ment of Primary Industries, Victoria, Australia for genotyping with
high-density wheat 90K infinium SNP array (Wang et al., 2014).
Genotypic clusters for every SNP were determined following the man-
ual for Genome Studio version 1.9.4 with the polyploid clustering
version 1.0.0 (Illumina; http://www.illumina.com), based on the data
from all the genotypes.

ThephysicalpositionofSNPson thewheat genomeweredetermined
based on IWGSC RefSeq version 1.0 (IWGSC 2018). Polymorphism
information content (PIC) was used to determine genetic diversity at
each locus. Markers with ambiguous SNP calls, that were monomor-
phic or with missing values of more than 20% and less than 5% MAF
(minor allele frequency) were removed from the dataset. Genetic sim-
ilarities between wheat genotypes were estimated using PowerMarker
v.3.0 with a Dice coefficient based on the proportion of shared alleles
(Liu and Muse 2005).

Population structure was assessed with 1000 unlinked SNPmarkers
using STRUCTURE software 2.3.3, which implements a model-based
Bayesian cluster analysis. Structure matrix (Q-matrix) was formed by
organization of all population entries into clusters. An assumednumber
of subpopulation (k) ranging from 1 to 10 was evaluated using 100,000
burn-in iterations followed by 500,000 recorded Markov-Chain itera-
tions. Robustness (sampling variance) of inferred population structure
was estimated by carrying out 10 independent runs for each k. The
optimumnumber of subpopulations was determined utilizing ADHOC
statistics Dk based on the rate of change in log probability of data
between successive k (Evanno et al. 2005).

Genome-wide linkagedisequilibrium(LD)was evaluated acrossA,B
and D genomes. Using TASSEL v.5.0, the LD parameter r2 was cal-
culated for all the pairwise markers which could be aligned to the
consensus map for both entire panel and model-based subgroups.
To examine LD due to the physical linkage in particular, the critical

Volume 9 June 2019 | GWAS in Synthetic-Derived Wheats | 1959

http://www.illumina.com


r2 value (Breseghello and Sorrells 2006) was investigated. This was
calculated by taking the 95th percentile of the square root transformed
r2 data of unlinked markers (Breseghello and Sorrells 2006). An r2

beyond the critical r2 value was declared to be caused by genetic
linkage. Only the LD pairs significant at (P , 0.001) were included
in LD decay plots and stacked bar plots.

Statistical analysis of phenotyping datasets
The phenotypic data were collected from the two locations over two
consecutive years under well-watered and water-limited conditions.
The data were averaged for both years x locations leading to two
datasets i.e., well-watered and water-limited for each trait. ANOVA
was used to test the statistical significance of different sources of
variation for each of the nine traits. In the ANOVA model, pheno-
typic effect was partitioned into overall mean, treatment effect,
replication (i.e., block) within environment (year and location
combination) effect, genotypic effect, environment effect, ge-
notype by environment effect, genotype by treatment effect,
and random error effect. Let ylijk be the observed value of a trait
of interest for the ith accession in the kth replication under the
jth environment (equivalent to location and year in this study)
and the lth treatment. The linear model used in ANOVA is
therefore,

ylijk ¼ mþ Dl þ Rk=j þ Gi þ Ej þ GEij þ GDil þ elijk; [1]

where l = 1, 2, ..., L (L = 2 for well-watered and water-limited treat-
ments), i = 1, 2, ..., n (n = 203), j = 1, 2, ..., e (e = 4 with two locations
and two years), k = 1, 2, ..., r (r = 2), is overall mean of the whole
population, Rk/j is the kth replication effect in the jth environment,Gi is
genotypic effect of the ith accession, Ej is environmental effect of the jth

environment, GEij is interaction effect between the ith accession and
the jth environment,GDil is interaction effect between the ith accession
and the lth treatment, and elijk is random error effect which was
assumed to be normally distributed with a mean of zero, and variance
s2
e . The ANOVA described above was implemented with the GLM

procedure in SAS software (SAS Institute, Cary, NC, 2007).
The BLUP of genotypic value for each accession under each water

treatment was used as the phenotype for all subsequent comparisons.
BLUPswere calculated as follows: the observed value of traitwas defined
as yijk for the ith accession in the kth replication in the jth environment
(equivalent to location and year in this study). The mixed model used
for BLUP was therefore,

yijk ¼ mþ Rk=j þ Gi þ Ej þ GEij þ eijk; and eijk � Nð0;s2
e Þ;

[2]

where i = 1, 2, ..., n (n = 203), j = 1, 2, ..., e (e = 4 with two locations
and two years), k = 1, 2, ..., r (r = 2), m, Rk/j, Gi, Ej, and GEij were the
same as the description above. Except for, all the effects were viewed
as random effects following the normal distributions Rk=j � Nð0;s2

RÞ,

n Table 1 Genome coverage, minor allele frequency (MAF) and polymorphic information contents (PIC) values on each chromosome in
synthetic-derived diversity panel

SNPs Haplotypes

Chr Number MAF PIC
Number of
haplotypes SNPs/block

Average block
size (kb)

Maximum block
size (kb)

1A 1162 0.24 0.33 151 4 34.28 198.1
1B 1796 0.23 0.33 245 4 32.59 197.8
1D 422 0.31 0.34 77 4 31.77 195.7
2A 1197 0.29 0.33 157 3 29.04 199.6
2B 1940 0.25 0.34 247 4 28.55 199.8
2D 647 0.21 0.31 95 3 28.47 182.2
3A 988 0.24 0.33 129 4 42.11 199.6
3B 1360 0.24 0.33 163 4 33.09 197.25
3D 326 0.19 0.33 29 3 24.77 199.5
4A 831 0.25 0.34 102 4 21.98 198.4
4B 657 0.2 0.28 71 4 31.45 198.2
4D 143 0.21 0.3 9 3 24.36 192.8
5A 1173 0.26 0.35 135 4 40.84 199.7
5B 1819 0.24 0.33 202 4 51.58 198.8
5D 319 0.19 0.28 43 4 39.51 199.3
6A 1035 0.27 0.35 127 4 43.61 198.1
6B 1228 0.25 0.34 157 3 28.03 196.7
6D 229 0.26 0.33 48 3 25.14 181.02
7A 1080 0.24 0.33 142 4 29.32 194.84
7B 1057 0.25 0.34 120 4 26.78 190.7
7D 267 0.21 0.3 27 3 18.65 196.4
Group 1 3380 0.26 0.33 473 4 32.88 197.2
Group 2 3784 0.25 0.33 499 4 28.69 193.8
Group 3 2674 0.22 0.33 321 4 33.32 198.8
Group 4 1631 0.22 0.31 182 4 25.93 196.4
Group 5 3311 0.23 0.32 380 4 43.98 199.2
Group 6 2492 0.26 0.34 332 4 32.26 191.9
Group 7 2404 0.23 0.32 289 4 24.92 194.0
A 7466 0.26 0.34 943 4 34.45 199.7
B 9857 0.24 0.33 1205 4 33.15 199.1
D 2353 0.23 0.31 328 3 27.52 199.5
Total 19676 0.24 0.33 2476 4 31.71 195.9
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Gi � Nð0;s2
GÞ, Ej � Nð0;s2

EÞ, and GEij � Nð0;s2
GEÞ, where s2

R, s
2
G,

s2
E , and s2

GEwere the variances explained by replication, genotype,
environment, and genotype by environment interaction, respectively.
The BLUPs were calculated with the MIXED procedure in SAS soft-
ware (SAS Institute, Cary, NC, 2007).

Genome-wide association studies and selective sweeps

Genome-wide association analysis using SNP markers: For marker-
trait associations (MTAs), a mixed linear regression (MLM) model
controlling both population structure (Q matrix) and kinship matrix
(K matrix) was applied in TASSEL Standalone v.5.0 (Yu and Buckler
2006). Quantile-quantile plots of estimated vs. observed P values
fromMTAs were also produced and deviations from the expectation
demonstrated that statistical analysis might cause spurious associ-
ations. Bonferroni corrections were applied, and a P-value of 1025

was defined as the threshold for significant MTAs. SNPs with
P-values in the range of 1023-1024 for one trait and P-values,1025

for another trait were also reported. The LD decay distance at r2 =
0.1 was used as the support interval to avoid multiple significance
within one LD block.

Genome-wide haplotype blocks and haplotype-GWAS: Genome-
wide haplotype blocks were constructed using PLINK with the de-
fault parameters as used by Haploview 4.2 software package (http://
www.broadinstitute.org/haploview/haploview). The package defined
haplotype blocks based on 4 gametes, and provided the number of
haplo-groups and their genetic length (bp) for each block, as well as
the number of tag SNPs based on solid spine of linkage disequilibrium
(LD) (Extend spine if D9.0.8). In brief, this meant that the first and the
last marker in a block were in strong LD with the intermediate markers
that were not necessarily in LD with each other. All the haplotype

blocks consisting of two haplo-groups were removed to rule out perfect
LD and similarity to SNP polymorphism. Haplotype frequency was
calculated using a custom Perl script. If a haplotype block is only
observed in one group (SYN-DER or BW) but not in the other group,
it is considered to be a group-specific block. If a haplotype block was
simultaneously detected in both groups, the haplotype block was con-
sidered to be a common block. Haplotype-GWAS was performed
using the linear regression procedure implemented in PLINK
(Purcell et al., 2007), where phenotype BLUPs were regressed on
the number of haplo-groups of a particular haplotype using PLINK
linear option, including population structure as covariate. The
P-value threshold of 1025 was defined to declare haplo-groups as-
sociated with phenotypes.

Identification of loci Under selection for selective sweeps: Five
statistical methods/parameters were used to detect the loci under
selection. (1) Difference in allele frequencies for the mth marker locus
between the bread wheat (BW) set and the SYN-DER set were tested by
Student’s t-test:

t ¼ f1 2 f2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð 1
2n1

þ 1
2n2

Þfexpð12 fexpÞ
q

where fexp ¼ f1n1 þ f2n2
n1 þn2

, f1 and f2 were the allele frequencies of a specific
marker locus in the BW and SYN-DER sets, respectively, and n1 and
n2 were the sample sizes in the BW and SYN-DER sets, respectively.
The population-specific alleles were determined for each subpopulation
based on zero allele frequency in one subpopulation and non-zero in
another subpopulation; and different allele frequencies between two
subpopulations at significance level P , 0.001.

(2) Fst was calculated for individual SNPs by

Figure 1 a) Genome-wide SNP marker density on each bread wheat chromosome, and b) phylogenetic analysis of diversity panel including bread
wheat (red) and SYN-DER (blue) genotypes, and c) genetic diversity visualization in diversity panel using 90K SNP array by principal component
analysis.
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Fst ¼
s2
f

�f ð12�f Þ ¼
2

P2
l¼1

wlð fl2�f Þ2
" #

�f ð12�f Þ
where �f and s2

f were the mean and variance of allele frequencies,
respectively, w1 ¼ n1

n1 þ n2
, and w2 ¼ n2

n1 þ n2
(Weir and Cockerham

1984). VCFtools (https://vcftools.github.io/index.html) were used to
calculate Fst with a sliding window of 100 kb and a step size of 10 kb
(Schmutz et al., 2014) over the whole genome, and the regions with
the top 5% of Fst values were regarded as highly diverged across the
two groups.

(3) A search for loci under selection using genome-wide association
of eigenvectors was implemented by EigenGWAS (Chen et al., 2016)
requiring three steps. First, a genetic relationship matrix was generated
for the 235 accessions, 69 from BW set and 171 from SYN-DER panel.
Assuming that Xi ¼ ðxi1; xi2; :::; xiMÞT was a vector of genotype for the
ith individual, where x was the number of the alleles and M was the
number of marker loci, the genetic relationship matrix A for each pair
of 240 accessions was calculated by

Aij ¼ 1
M

XM
m¼1

ðxim 2 2fmÞðxjm2 2fmÞ
2fmð12 fmÞ

where fm is the allele frequency for the mth marker locus. Second, the
principle component analysis (PCA) was conducted on the A matrix
(Price et al. 2006). Then matrix E with dimension N·C was retained,
where Ec was the eigenvector corresponding to the cth largest eigen-
vector. In this study, c was set as 10 to calculate the top 10 eigenvalues
and eigenvectors. Finally, single marker regression on Ec was
conducted to estimate the effect of each marker.

Further, (4) Tajima’s D, and (5) nucleotide diversity (p) relative
to the founder population (pSYN-DER/pBW) were calculated using
VARISCAN version 2.0 with a sliding window of 100 kb and a step
size of 10 kb.

Data availability
The authors affirm that all data necessary for confirming the conclusion
of this article are represented fully within the article and its tables and
figures. Supplemental material available at FigShare: https://doi.org/
10.25387/g3.7356923.

Ethics statement
The field trials were permitted byNational Agriculture Research Center
(NARC), Islamabad, Pakistan andBaraniAgricultureResearch Institute
(BARI), Chakwal, Pakistan. The remaining experimentation does not
require any ethical statement.

Figure 2 a) Haplotypes density along each of the wheat chromosomes. b) Distribution of haplotypes along wheat genome, where y-axis
represent size of the haplotype block (kb) and size of the bubble represent number of SNPs/block. Green haplotype blocks are specific to the
SYN-DER panel.

1962 | F. Afzal et al.

https://vcftools.github.io/index.html
https://doi.org/10.25387/g3.7356923
https://doi.org/10.25387/g3.7356923


RESULTS
A total of 19,676 SNPs was retained after quality control (Table 1). SNP
marker density on each wheat chromosome is visualized in Figure 1a.

PIC value was highest on chromosomes 5A and 6A (0.35) and least on
chromosomes 3D and 5D (0.19). Overall, PIC value was highest on
the A genome (0.34) followed by the B genome (0.33) and D genome

n Table 2 Pairwise linkage disequilibrium statistics in synthetic-derived diversity panel classified into sub-genomes and various physical
distance classes

Parameters Genome

Classes

0-10Kb 11-100 Kb 100-1000Kb .1000Kb

Total pairs A 73072 259469 155402 167586
B 105802 371339 209739 205547
D 12833 47703 41567 91475

Significant pairs A 33285 117226 63333 65116
B 50225 169722 96122 85213
D 4600 15855 14310 29608

Significant pairs (%) A 45.55 45.18 40.75 38.86
B 47.47 45.70 45.83 41.46
D 35.84 33.24 34.43 32.37

Mean r2 A 0.22 0.18 0.16 0.14
B 0.25 0.22 0.2 0.18
D 0.36 0.30 0.23 0.20

Pairs in complete LD (%) A 2.97 1.60 1.35 0.78
B 4.43 2.82 2.46 1.60
D 4.75 2.91 1.84 2.30

Pairs in r2 .0.5 (%) A 7.26 5.44 3.76 2.98
B 8.69 6.76 6.38 4.28
D 12.07 9.01 5.94 6.76

Mean of r2 .0.5 A 0.82 0.78 0.8 0.78
B 0.87 0.83 0.84 0.81
D 0.84 0.82 0.8 0.82

Figure 3 Linkage disequilibrium (LD) decay in the SYN-DER panel based SNP markers. The locally weighted polynomial regression-based
(LOESS) representing decay of r2 along physical distance (kb) is illustrated for a) A-genome chromosomes, b) B-genome chromosomes, and c)
D-genome chromosomes. Stacked bar plots of the LD statistic r2 as a function of physical distance (kb) between fraction of SNP pairs in SYN-DER
for d) A-genome chromosomes, e) B-genome chromosomes, and f) D-genome chromosomes.
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n Table 3 Marker-traits association based on SNP-GWAS identified in water-limited conditions

P valued

Traita Marker Chr MAFb Positionc WW WL DIFF Co-localizatione

CCI IWB9746 1A 0.22 551050619 1.52E-05
CCI IWB72768 3A 0.10 4352727 6.01E-05 7.78E-81
CCI IWB21984 3B 0.09 39603457 9.05E-06
CCI IWB63113 3B 0.40 611176702 2.36E-08 4.67E-13
CCI IWB6756 4A 0.30 24757405 1.58E-05
CCI IWB41634 5D 0.34 544614652 9.41E-09 2.52E-05
CCI IWB45289 7A 0.31 607556072 7.21E-05 TaMoc1
CCI IWB27075 7D 0.12 627325333 2.64E-07
Chl IWB36330 1B 0.39 17892275 6.96E-04 6.31E-12
Chl IWB58640 1D 0.17 206310986 5.88E-04
Chl IWA4651 4B 0.19 725661138 7.30E-04
Chl IWB28688 4D 0.50 2306721 3.94E-04
Chl IWB1744 5A 0.27 534083687 7.68E-04 1.36E-20
Chl IWB7864 5B 0.34 2559480 3.97E-04
CT IWB37531 1A 0.07 9556706 2.11E-05
GS IWB51237 6B 0.26 291778439 7.74E-06 2.32E-06
GS IWB55521 7B 0.32 43880890 2.12E-05
GY IWB72112 2A 0.48 779818833 1.52E-05
GY IWB24186 4A 0.25 687548787 3.39E-05 TaCwi-4A
GY IWB61578 5D 0.08 393057411 1.27E-06 1.95E-81
PH IWB8266 5A 0.33 46232547 7.30E-05
Proline IWB61587 2A 0.27 5267865 4.06E-04 2.80E-04 3.63E-21
Proline IWB48659 2B 0.29 664219887 6.77E-04 1.39E-18
Proline IWA1156 7A 0.23 130613253 3.84E-04 4.46E-04
RWC IWB2303 1D 0.33 438369398 2.39E-09 2.84E-06 3.87E-17
RWC IWB40605 2B 0.22 411517081 1.47E-08
RWC IWB31146 3B 0.17 409545629 5.49E-06 2.44E-37
RWC IWB61562 3D 0.39 6955053 2.01E-05
RWC IWB50770 3D 0.28 311662828 4.88E-05 3.28E-19
RWC IWB53305 5B 0.11 327790108 6.28E-08 1.06E-60
RWC IWB13408 6A 0.07 542232293 3.94E-06
RWC IWB43804 6D 0.25 7104862 4.90E-05
RWC IWB43363 7A 0.07 705688072 2.99E-06 Hap-7A-RWC1,1.53E-108
SDW IWB75332 1D 0.21 325672368 2.89E-05 1.97E-27
SDW IWB33249 5D 0.42 4608766 6.47E-05 6.26E-07
SDW IWB15529 6D 0.30 50743512 6.41E-05 3.05E-17
SFW IWB11543 1A 0.37 512878328 6.18E-05
SFW IWA5594 3D 0.12 782836300 6.64E-05
SFW IWB63863 5A 0.09 685991984 6.84E-06 3.44E-74; AWN
SFW IWB59042 5B 0.10 220817473 2.08E-06
SFW IWB18780 6D 0.40 143644031 7.58E-07 3.73E-12
SFW IWB67174 7D 0.20 3924400 8.68E-06
SL IWB48031 1B 0.34 49886407 1.98E-04
SL IWA4073 1D 0.27 8726971 8.93E-04 8.14E-21
SL IWB48188 2A 0.26 776290034 1.81E-04
SL IWB61861 2B 0.27 69014963 6.41E-04
SL IWB55762 6A 0.10 615780928 3.14E-04
SL IWB14155 6B 0.14 715704473 7.52E-04
SL IWA1949 7A 0.31 53051117 8.78E-04
SL IWB6450 7A 0.31 712309084 7.54E-04 6.65E-17
SOD IWB29553 3D 0.09 496676602 8.98E-05
SOD IWB4492 5D 0.07 394102098 5.52E-05
Sugar IWB20120 1A 0.07 224826985 6.45E-05 4.54E-04
Sugar IWB53805 3A 0.43 513608135 3.79E-04 2.60E-04
Sugar IWB56874 3D 0.46 5889027 3.75E-04
Sugar IWB23415 5D 0.20 549864711 7.83E-04
Sugar IWB70872 6A 0.17 545828799 2.93E-04
TGW IWB65286 2A 0.18 553276150 4.03E-04 TaCwi-A1
TGW IWB6655 3A 0.10 657945858 3.30E-04 7.17E-86
TGW IWB16311 3D 0.25 48365010 6.51E-04
TGW IWB8919 5B 0.09 576923927 7.28E-04 1.90E-04 Vrn-B1

(continued)
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(0.31). In total, 2476 haplotypes were identified in SYN-DER with
an averaged block size of 31.71 kb. Results from haplotype analysis
followed similar trend to that of single SNPwithmost haplotypes identified
on the B genome (1205) and chromosome 1B (245), while the least were
identified on the D genome (328), particularly chromosome 4D (9).
Haplotypes in BW and highlighted SYN-DER specific haplotypes are
shown in Figure 2a and 2b. There was a significant difference between
SYN-DER and BW for number of haplotypes and haplotype block size
(kb); 23% of haplotypes were divergent in SYN-DER at chromosomal po-
sitionswhere BWdid not generate any haplotype (SupplementaryTable S2).

PCA with high quality SNP markers clearly separated bread wheat
cultivars from SYN-DER in various sub-clusters (Figure 1b). The first
five principal components explained 39.7% of the total variability.
Population structure based on PCA is presented in Figure 1c, where
the first three PCs are presented as a 3D biplot. All the BW cultivars
were in different clusters from SYN-DERs except those that were used
in developing SYN-DERs.

LD was estimated by r2 at P # 0.001 from all pairs of SNPs along
each chromosome. Pairs of loci in significant LD on the sub-genome
level was 45.55%, 47.47% and 35.85% on A, B and D genomes, respec-
tively (Table 2). The average r2 of genome-wide LD was 0.22 in the A
genome, 0.25 in the B genome and 0.36 in the D genome. The propor-
tion of pairs of markers in complete LDwas 2.97%, 4.43% and 4.75% on
the A, B and D genomes, respectively. The extent and distribution of
LD were graphically displayed in decay plots and bar plots between the
fraction of SNP pairs in SYN-DER by plotting intrachromosomal r2

values for loci in significant LD atP# 0.001 against the genetic distance
in kb and a second-degree LOESS curve was fitted (Figure 3). The
critical value for significance of r2 was estimated as 0.22 according to
Breseghello and Sorrells (2006), and thus all values of r2 . 0.22 were
estimated to be due to genetic linkage.

Phenotypic variations in diversity panel
Estimatesof variance components showedsignificantdifferencesamong
locations, treatments and genotypes for all traits. All the traits showed
significant variations inWWandWL conditions in both SYN-DER and
BWdatasets (Figure S1). All the agronomic traits includingGY,GS, PH,
TPandTGWwere significantly reducedby19.4%(TGW) to62.8%(GY)
underWL conditions. However, CT, SOD, Sugar, Chl and Proline were
significantly increased by 10.3% (CT) to 22.3% (SOD). In the WW
environment, very high heritability (0.79 – 0.92) was observed for
almost all physiological traits. In diversity panel, SYN-DER showed
high performance on an average for all traits, for example GY in WL

conditions was 16.7% higher in SYN-DER as compared to BW and can
be visualized in violin distribution plots (Figure S1). In the WW envi-
ronment, GY was positively correlated with SL (r = 0.29), TP (r = 0.61),
GS (r = 0.40), and TGW (r = 0.74). Among biochemical traits, Chl was
positively correlated with Sugar (r = 0.37), while proline was positively
correlated with GS (r = 0.43) and SL (r = 0.28) (Figure S2). Other
biochemical components had moderate to low correlation with grain
yield and yield components. In theWL environment, GYwas positively
correlated with TGW (r = 0.66), GS (r = 0.72) and SL (r = 0.53), while
SDW was negatively correlated with PH (r = -0.14) and Chl was neg-
atively correlated with CTspike (r = -0.16) (Figure S2).

GWAS for phenotypic traits based on SNPs
Atotal of 181 lociwere associatedwith15phenotypes inSNP-GWAS, of
which 66were inWWconditions, 67 inWLand62were associatedwith
the difference betweenWW andWL (DIFF) conditions (Table 3; Table
S3). Of these 181 loci, 55 SNPs were located on the D genome, 22 of
which were also identified as selective sweeps. An important chromo-
somal region on 1A between 512.2 to 574.3 Mb was associated with
multiple physiological traits including RWC, CCI, SFW and SOD
(Table S3). Nine SNPs were associated with GYWW, three with GYWL,
and one with GYDIFF, of these four were located within selective sweep
regions. Six SNPs were associated with GSWW, two with GSWL, and one
with GSDIFF. Of these, two were distributed on chromosomes 1A and
6D that were under selection (Table S3). For TGW, an important yield
component trait, three SNPs were associated with TGWWW, six with
TGWWL, and 10 with TGWDIFF. Among these, six SNPs were un-
der selective sweeps, two of which were located on the D genome
(i.e., chromosomes 3D and 7D). Three important loci were associated
with phenotypic traits under both WW and WL conditions including
SNP IWB20120 on chromosome 1A which was associated with sugar
contents, IWB2303 on chromosome 1D linked to RWC and IWB8919
on chromosome 5B associated with TGW (Table 3).

GWAS for phenotypic traits based on haplotypes
In haplotype-GWAS, 127 haplotypes were associated with phenotypes
under different water regimes. Of these, 71were identified inWW, 43 in
WL and 20 in ‘Diff’ (Table 4; Table S4). Co-localization of loci under
divergent selection and haplotype-GWAS identified 23 loci within the
regions under selection in SYN-DERs (Table 4 and Supplementary
Table S4). Only eight loci were common under both SNP-GWAS
and haplotype-GWAS, including Hap-2B-RWC2, Hap-2B-CCI,
Hap-3D-SFW1, Hap-4A-PH1, Hap-5A-GY2, Hap-7A-RWC1,

n Table 3, continued

P valued

Traita Marker Chr MAFb Positionc WW WL DIFF Co-localizatione

TGW IWB58464 6A 0.09 38453171 6.28E-04 3.03E-96
TGW IWB15372 7D 0.25 559459585 3.34E-04 Hap-7D-TGW1
TP IWB61466 1B 0.34 520899317 5.04E-04 8.57E-16
TP IWA3583 2B 0.12 535137547 1.59E-04 6.75E-66
TP IWB73711 3A 0.22 57012959 3.09E-04
TP IWB10457 4A 0.24 690845337 5.98E-04 4.70E-26
TP IWB6762 5A 0.13 535138119 3.50E-04 Vrn-A1
a
Chl: chlorophyll contents (mg/g); CCI: chlorophyll content index; CT: Canopy temperature (�C); GS: grains per spike; GY: grain yield (g m-2); PH: plant height (cm);
Proline (mmol/g); RWC: relative water contents (%); SDW: shoot dry weight (g); SFW: shoot fresh weight (g); Sugar (mg/g); TGW: thousand grain weight (g); TP: tillers
per plant.

b
MAF: Minor allele frequency.

c
Position of SNP based on IWGSC Ref sequence version 1.0 (https://urgi.versailles.inra.fr/blast_iwgsc/blast.php)

d
P-value significance for marker-trait associations in well-watered (WW), water-limited (WL) and difference between well-watered and water-limited (DIFF) conditions.

e
Co-localization of marker-trait associations with divergent selective sweeps (in case of p-value) and/or functional genes.
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Hap-7B-TGW3, and Hap-7D-TGW1. Due to the greater diversity of
the D-genome in SYN-DER, 21 haplotypes were identified on D
genome, of which seven haplotypes were under divergent selection.
Thirteen haplotypes were associated with GYWW, four with GYWL,
and one with GYDIFF, one of which was in the region of selective
sweeps. Similarly, two haplotypes were associated with GS in WL.
Nineteen haplotypes were identified for TGWWW and one for
TGWWL; four of these were under selective sweeps and two were
located on the D genome (i.e., chromosome 7D). Three of the
TGW associated haplotypes were under divergent selection, while
two haplotypes were closely linked to vernalization (Vrn-A1 and
Vrn-B1 genes) response on chromosomes 5A and 5B.

Allelic effects of SNPs and haplotypes on phenotypes
SNPs and haplotypes associated with two important phenotypic traits;
GY and RWC were used to show the allelic effects in each of the WW,
WL, and ‘DIFF’ environments (Figure 4 - Figure 7). Three SNPs (Figure
4e and Figure 5c, f) and four haplotype blocks (Figure 4b,c,d) associated
with GYWL were assessed for their allelic effects on phenotypes in all
water regimes. Among these SNPs, only IWB1876 on chromosome 4A
was associated with GYWL, GYWW and GYDIFF, while another two
SNPs; IWB72112 (2A) and IWB61578 (5D) were only associated with
GYWL. These SNPs gave a yield advantage of 46.2, 26.5 and 28.2 gm-2 in
water-limited conditions. Each of the three haplotype blocks consisted
of three haplo-groups and favored haplo-groups significantly increased

n Table 4 Marker-traits associations based haplotype-GWAS identified in water-limited conditions

P-valuesc

Traita Haplotype block Chr Positionb Haplo-group WW WL Diff Co-localizationd

Chl Hap1B-Chl-1 1B 4320839 GATACT 7.93E-06
Chl Hap3B-Chl-1 3B 480341620 TT 2.05E-06
Chl Hap4A-Chl-1 4A 12399327 CC 8.00E-06
Chl Hap4A-Chl-2 4A 726215255 GA 1.64E-07
Chl Hap4A-Chl-2 4A 726215255 AG 2.48E-07
Chl Hap4B-Chl-1 4B 651800378 TCGGCCC 1.61E-08
Chl Hap6A-Chl-1 6A 4427440 CA 5.26E-06
CT Hap4A-CT-1 4A 614870817 CC 8.91E-06
GS Hap1B-GS-1 1B 548536105 TTTTCTGCCAATTGGCGTGTCAG 2.68E-06
GS Hap4A-GS-1 4A 631922510 TTAT 9.28E-06
GY Hap1A-GY-1 1A 12306177 CT 2.63E-06 1.16E-46
GY Hap1B-GY-1 1B 20589424 ACG 6.17E-06
GY Hap5B-GY-1 5B 10888795 CC 5.33E-06
GY Hap7B-GY-1 7B 3148623 AC 5.74E-06
PH Hap1B-PH-1 1B 15166232 GCA 3.04E-06
PH Hap1B-PH-1 1B 15166232 AAG 3.04E-06
PH Hap2A-PH-1 2A 118446554 TC 4.54E-06 Sus2-2A
PH Hap2A-PH-2 2A 319042351 CC 8.94E-06
PH Hap2A-PH-3 2A 712706867 TGC 6.67E-09 1.56E-25
PH Hap2A-PH-3 2A 712706867 CAT 1.88E-08 1.56E-25
PH Hap2B-PH-3 2B 683003143 TGCTTTAT 4.41E-08
PH Hap2D-PH-1 2D 9826098 GG 9.75E-09
PH Hap2D-PH-3 2D 572074690 CTTTC 3.09E-08
PH Hap2D-PH-3 2D 572074690 TCGCT 3.09E-08
PH Hap3B-PH-1 3B 24940169 TAG 8.74E-06
PH Hap4A-PH-1 4A 732511707 GACAT 4.22E-07 1.74E-31
PH Hap5A-PH-1 5A 679489793 GAGAAA 2.15E-06 AWN
PH Hap5B-PH-1 5B 580085162 GG 8.42E-06
PH Hap6B-PH-1 6B 15781175 CCG 6.64E-06
PH Hap6B-PH-2 6B 709531181 GTT 8.41E-06
Proline Hap4D-Proline-1 4D 42538561 GT 1.60E-06 4.70E-07
RWC Hap2A-RWC-1 2A 41232496 ACTCCG 5.10E-06 Ppd-A1
RWC Hap2B-RWC-2 2B 643682900 CGTGGGG 7.48E-06 4.94E-06
RWC Hap3B-RWC-1 3B 40184024 TGTAGGGC 3.01E-06
RWC Hap7A-RWC-1 7A 701493027 GACTAAC 8.85E-06
SDW Hap2D-SDW-1 2D 64190307 AG 7.56E-06 1.19E-07
SFW Hap2A-SFW-1 2A 709836654 ATAG 8.35E-06
SFW Hap2D-SFW-1 2D 571077641 GCAATTAGT 7.27E-07 2.19E-21
SFW Hap3A-SFW-1 3A 666229575 CG 1.81E-06
SFW Hap3A-SFW-1 3A 666229575 TA 1.88E-06
Sugar Hap4B-Sugar-1 4B 535049503 TTGCGAAA 4.23E-06
Sugar Hap4B-Sugar-1 4B 535049503 CCAAAGGG 4.23E-06
TGW Hap5B-TGW-2 5B 603881835 ATTCTCGTT 4.18E-06
a
Chl: chlorophyll contents (mg/g); CCI: chlorophyll content index; CT: Canopy temperature (�C); GS: grains per spike; GY: grain yield (g m-2); PH: plant height (cm);
Proline (mmol/g); RWC: relative water contents (%); SDW: shoot dry weight (g); SFW: shoot fresh weight (g); Sugar (mg/g); TGW: thousand grain weight (g).

b
Position of SNP based on IWGSC Ref sequence version 1.0 (https://urgi.versailles.inra.fr/blast_iwgsc/blast.php)

c
P-value significance for marker-trait associations in well-watered (WW), water-limited (WL) and difference between well-watered and water-limited (DIFF) conditions.

d
Co-localization of marker-trait associations with divergent selective sweeps (the numeric values are the p-value of selection sweep) and functional genes.
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GYWL by 39.7 to 87.2 gm-2. Similarly, the favored SNP alleles gave an
advantage of 2.9–6.3% for RWCWL. Three haplotype blocks; Hap2A-
RWC1, Hap3B-RWC1 and Hap7A-RWC1 were associated with
RWCWL and consisted of 3, 6, and 4 haplo-groups, respectively (Figure
6b,c,d). The favored haplo-groups in each haplotype block were asso-
ciated with 3.4–8.7% increases in RWCWL.

Divergent selections and their co-localization With
drought QTL in SYN-DER wheats
Genome-wide divergent selection was investigated in SYN-DER by
comparing allele frequencies in the twopanels. Five different approaches
were used to provide complementary information (Figure 8; Table S5).
The Student’s t-test was used to identify significantly different allele
frequencies (Table S5; Figure 5). Fst was calculated with a sliding win-
dow approach and only the top 5% of Fst values were regarded as
selective loci. This was further validated by a new EigenGWAS
approach where eigenvectors were used as phenotypes for GWAS.
Tajima’s D and p were calculated in each of the subpopulations. All
the results were analyzed comparatively to identify genomic regions
consistently under divergent selection in SYN-DER. In total, 291 SNPs
representing selective sweep were narrowed down to 89 loci based on
the LD (r2. 0.7). These 89 loci or divergent selections were present on
all 21 chromosomes (Table S5). The number of loci under divergent
selection differed among the three genomes, and the most loci were
located on the D-genome (32), followed by the B- (29) and A-genomes
(28). Similarly, EigenGWAS was plotted against SNP-GWAS and
haplotype-GWAS to highlight GY and RWC associated loci under
divergent selection (Figure 5b and Figure 7b, respectively). Among
these loci, 31 were regarded as ‘hard sweeps’ where contrasting
alleles were fixed (MAF. 0.9) in both subsets or where the –log(P)
value for EigenGWAS was among the top 5% (Table S5). Based on

the extent of LD in the SYN-DER panel, 20 loci were within the
close proximity of functional genes such as Elf3-D1 and Vrn-D3 for
flowering time, TaCwi-A1, TaCKX-D1, TaSus1-7A, and TaGS-D1
for grain size and weight, and 1fehw3, TaMoc1 and SST-A1 for sugar
metabolism and transport (see Table S5 for complete list of genes).

DISCUSSION

Genetic diversity in SYN-DER
Crop wild relatives provide enhanced diversity and new favorable genes
and gene recombinations that potentially increase additive variation for
traits of breeding interest.Thegoat grass (Ae. tauschii) referencegenome
sequence has recently been published (Luo et al., 2017; Luo et al., 2013;
Zhao et al., 2017). This sequence is an important tool for better under-
standing of wheat biology, adaptation and productivity. In parallel,
Ae. tauschii diversity has been globally exploited in breeding through
the use of synthetic hexaploid wheats (Börner et al., 2015; Ogbonnaya
et al., 2013). The current study showed that SYN-DER wheats have
different patterns of genetic diversity and population structure com-
pared to modern bread wheat as revealed by PCA, phylogenetic tree
and haplotype blocks (Figure 1 and 3). Since these SYN-DER have been
selected in the field for agronomic superiority, it is possible that major
proportions of the bread wheat genome have been retained because
empirical selection can lead to a differential loss of genetic diversity
in targeted genomic regions of agronomic importance. This in return
enhances the diversity of neutral genes through promotion of gene
flow, recombination and exchanges between diverse populations
(Olsen and Wendel 2013). There is potential ascertainment bias in
the 90K SNP array because the SNP array was developed based on
transcriptome sequencing of few bread wheat cultivars (Wang et al.,
2014) and variation in promoter regions and introns where much

Figure 4 Histogram for grain yield and boxplot for SNPs and haplotypes associated with grain yield in different water regimes. a) Histogram for
grain yield under well-watered (WW) and water-limited (WL) conditions. Allelic effects of Hap1A-GY1 b), Hap1B-GY1 (c), Hap5B-GY1 (d) and SNP
IWB72112 (e) on GY across three water regimes (all information is annotated).
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of the variation is present were not surveyed (Zheng et al., 2014).
Despite these limitations, we were able to identify differential patterns
of diversity and 89 loci were under divergent selection in SYN-DERs.

Important candidate regions identified by GWAS for
agronomic and physiological traits in SYN-DER
GWAS was performed on 15 agronomic and physiological traits under
twowater regimes (WWandWL) and their difference (DIFF) leading to
45 phenotypic datasets in total. We further calculated LD between all
SNPsassociatedwithphenotypes and excluded those SNPswith r2. 0.8
and finally 181 MTAs (66 in WW, 68 in WL, and 63 in DIFF) are
presented for 45 phenotype datasets. SNP-GWAS identified a relatively
high number of MTAs (181) compared to haplotype-GWAS (128). We
used physical positions of SNPs based on Chinese Spring reference
genome sequence version 1.0 (https://urgi.versailles.inra.fr/download/
iwgsc/IWGSC_RefSeq_Assemblies/v1.0/), while all the previous studies
used genetic maps based on linkage mapping population. Therefore, it
is hard to compare the results with previous findings. Acuña-Galindo
et al. (2015) previously used a meta-analysis approach and developed
consensus QTL positions from various mapping experiments. As the
reference genome sequences of bread wheat and some progenitors are
available (Avni et al., 2017; Luo et al., 2017; Zhao et al., 2017), there is
urgent need to translate QTL location information to a position in the
wheat genome. We found very few common MTAs between WW and
WL (3),WWandDIFF (9) andWL andDIFF (5). Such a phenomenon
has been reported in most of the abiotic stress experiments where QTL
under c ontrol conditions do not significantly overlap with QTL under
stress conditions probably due to different evolutionary trajectories
(Makumburage and Stapleton 2011; Ogbonnaya et al., 2017).

A yield MTA for GYWL on chromosome 5D (393.05 Mb) is a novel
MTA because it is under strong divergent selection (-log(p)=81.9) and
the favorable allele gave a yield advantage of 76.2 gm-2. This MTA was
also associated with SODWL. Two other MTAs for GYWL on chromo-
somes 2A and 4A are likely to be MQTL13 and MQTL32 (Acuña-
Galindo et al., 2015) based on genetic positions of associated SNPs
on the wheat consensus genetic map (Quraishi et al., 2017). A TGWWL

MTA on chromosome 2A (553.2 Mb) is within the vicinity of grain
weight gene TaCwi-A1 (Ma et al., 2012). Based on the association with
multiple phenotypes, we identified three genomic important regions
such as chromosome 1D at 438.3 Mb that was associated with physi-
ological traits RWC, SFW, and SDW. RWC in leaves is a sensitive
parameter for estimating plant water balance (Clavel et al., 2005),
and also shows a positive relationship with yield in cereals (Merah
2001). The second important region on chromosome 3D (5.1-48.3
Mb) is associated with Sugar, RWC, and TGW which are important
parameters in drought adaptability. This genomic region was not under
divergent selection, so it is likely that it was retained from bread wheat
parents of SYN-DER. A third important genomic region on chromo-
some 6A (542.7-615.3 Mb) was associated with RWC, Sugar and SL.
Based on genetic positions, these two regions are likely to be the
MQTL29 and MQTL49 based on the meta-QTL map (Acuña-Galindo
et al., 2015). Two drought tolerance related genes TaCwi-4A and
TaMoc1 (7A) were co-localized with GYWL and CCIWL MTAs.
Zhang et al. (2015) reported that TaMoc1 is an important gene asso-
ciated with yield-related traits and is involved in regulating axillary
meristem initiation and growth, while TaCwi-4A is an important
drought related gene only expressed in anthers and is involved in pollen
sterility under drought stress. The association of these genes directly

Figure 5 a) Manhattan plots for SNP-GWAS for GY in WL (inner-most), WW (middle) and DIFF (outer-most) conditions, b) Biplot showing
co-localization of GY-GWAS and EigenGWAS highlighting the loci under divergent selections, c) Allelic effects of SNP (IWB1876) on GY across
three water regimes, d) Manhattan plots for haplotype-GWAS for GY in WL (inner-most), WW (middle) and DIFF (outer-most) conditions, e) Allelic
effects of haplotype (Hap7B-GY1) on GY across three water regimes, f) Allelic effects of SNP (IWB61578) on GY across three water regimes.
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withGYWL in SYN-DER indicated the potential usefulness of thisMTA
because the minor allele frequency is higher (0.25), while the TaCwi-4A
favorable allele is highly fixed during modern wheat breeding (Jiang
et al., 2015).

Haplotype-GWAS, a powerful complement With SNP-
GWAS
Consistentwith reports fromother studies, haplotype-GWASproved to
be an effective strategy to increase the resolution ofGWAS experiments.
However, this strategy is rarely implemented inwheat, eventhough ithas
shown promise in Brassica (Wu et al., 2016), barley (Lorenz et al., 2010)
and other crop species (Qian et al., 2017). Our results were in agree-
ment with Hao et al. (2017) that haplotype-GWAS was able to identify
MTAs where individual SNPs were ineffective. This was because hap-
lotypes containing a group of closely linked SNP markers can increase
the level of polymorphisms and overcome the drawback of using single
SNP markers by creating more combinations (haplotypes) (Supple-
mentary Table S3). This can increase the power and the effectiveness
of haplotype-based association (Hamblin and Jannink 2011; Lorenz
et al., 2010). Several haplotypes associatedwith phenotypes in our study
were not identified by SNP-GWAS and it is likely due to the fact that
patterns of LD in the population and the marker density along with the
genetic architecture of the trait affect the detection of haplotypes asso-
ciated with phenotypes (Lorenz et al. 2010). Moreover, the information
content of haplotypes is dependent on the particular mutational and
recombinational history of the QTL and nearby markers which could
be unlike the distribution of single SNPs. Therefore, it was recommend
to routinely use both single SNP and haplotype markers for GWAS to
take advantage of the full information content of the genotype data.

We identified three haplotypes associated with GYWL and each
haplotype had three haplo-groups (Figure 4). The favored haplotypes

significantly increased GYWL by 39.7 to 87.2 gm-2. This is important
because none of the single SNPs were associated with GYWL in these
genomic regions. Similarly, Hap-7B-GY-1 was associated with grain
yield across three water treatments i.e., WW,WL and DIFF, while only
two haplo-groups (AC and GC) of this haplotypes block showed sig-
nificant differences for GY and a third haplo-group ‘AT’ remained non-
significant. In haplotype block Hap-1B-GY-1, there was no significant
difference between GYWL of two haplo-groups ‘ATG’ and ‘GTA’, while
the ‘ACG’ variant had a significantly different effect on GY (Figure 4).
Haplotype-GWAS identified several genomic regions closely linked to
functional genes such as a haplotype on chromosome 2B (643.6-690.1
Mb) that was associated with multiple physiological traits RWC, SFW
and PH and was linked to glutamine synthase2 gene, TaGS2-B1
(Li et al., 2011). Previously, haplotypes at TaGS2-B1 were associated
with nitrogen use efficiency and several agronomic traits including
shoot and root dry weight (Li et al., 2011), which corroborates results
from this study. Similarly, haplotypes on chromosome 5A (504.6 Mb)
associated with TGWandGY are within the same region of theVrn-A1
gene. On chromosome 5B (603.8 Mb), the haplotype associated with
TGW is within the proximity of Vrn-B1. These two genes are homeol-
ogous to VERNELIZATION1 (Vrn1) gene, a key regulator of flowering
time in cereals that have pleiotropic effects on agronomic traits like
plant height and root traits (Chen et al., 2015; Voss-Fels et al., 2017).
Two closely linked haplotypes on chromosome 2A (31.9-41.2Mb) were
linked to functional genes Ppd-A1 (Beales et al., 2007) and Sus2-2A
(Hou et al., 2014), which modulate the flowering time and yield
related traits, respectively. Most of the synthetic hexaploid wheats
have the GS-105 type 1,117 bp deletion in Ppd-A1 gene (M. Khalid
et al., unpublished data), which is the Ppd-A1a photoperiod in-
sensitive allele in durum wheat. This allele is different from
Ppd-A1a allele in bread wheat and has higher transcript levels

Figure 6 Histogram for relative water contents (RWC %) and boxplot for SNPs and haplotypes associated with RWC in different water regimes. a)
Histogram for RWC under well-watered (WW) and water-limited (WL) conditions. Allelic effects of Hap3B-RWC1 b), Hap7A-RWC1 c), SNP
(IWB50770) d), SNP (IWB53305) e) on RWC across three water regimes (all information is annotated).
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(Wilhelm et al., 2009). In conclusion, the simultaneous use of
SNP-GWAS and haplotype-GWAS dissected the complex quanti-
tative traits at higher resolution and several genomic regions har-
boring functional and candidate genes of agronomic importance
were identified.

Divergent selections associated with phenotypes and
future breeding strategies
Although traditional linkage mapping and association mapping are
effective for identifying large-effect trait loci, they are limited to phe-
notypes used in analyses and may fail to detect a large portion of the

Figure 7 a) Manhattan plots for SNP-GWAS for relative water contents (%) in WL (inner-most), WW (middle) and DIFF (outer-most) conditions, b)
Biplot showing co-localization of RWC-GWAS and EigenGWAS highlighting the loci under divergent selections, c) Allelic effects of SNP
(IWB22779) on RWC across three water regimes, d) Manhattan plots for haplotype-GWAS for RWC in WL (inner-most), WW (middle) and DIFF
(outer-most) conditions, e) Allelic effects of haplotype (Hap2A-RWC1) on RWC across three water regimes, f) Allelic effects of SNP (IWB2303) on
RWC across three water regimes.

Figure 8 Circos plot of five analytical procedures
(legends are given above) used to identify selection
loci in SYN-DER and modern bread wheat panels
and then highlighting ‘divergent selections’ in SYN-DER.
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genetic changes associated with plant domestication and improvement
(Morrell et al., 2011). During the development of adapted lines, selec-
tion imposed by humans favored alleles of traits valuable for agricul-
ture. When selection increases the frequency of beneficial alleles in a
population, it impacts the standing variation of surrounding geno-
mic regions resulting in reduced diversity, extended linkage disequi-
librium, or strong inter-population allele frequency differentiation.
To detect these local patterns of variation, also referred here to as
‘divergent selective sweeps’, we first investigated the genome-wide
divergent selections in SYN-DER panel using various complemen-
tary analytical approaches (Supplementary Table S4). However,
only some of these selection loci could be associated with pheno-
types. In a second step, we compared the SNPs in selection loci to
those identified in SNP-GWAS and haplotype-GWAS to narrow
down the selection loci associated with phenotypes of significant
agronomic value. This approach resulted in the identification of
53 SNPs (Table 3) and 23 haplotypes (Table 4) of agronomic im-
portance that appeared to be loci under selection. We have shown
selection loci as EigenGWAS as –log10(p) associated with GY and
RWC (Figure 5b and 7b). These loci could provide novel adaptabil-
ity and agronomic superiority in drought stressed environments.

As the narrowgenetic base of theD-genome in breadwheat is widely
acknowledged, divergent haplotypes in the D-genome in SYN-DER
could be amean to introduce new genetic diversity for traits of breeding
interest. The co-localization of these haplotypes with functional genes
strongly supported the idea that conventional haplotypes strongly fixed
during domestication or modern breeding have been replaced by new
haplotypes from Ae. tauschii through synthetic wheats. For example,
the close proximity of these haplotypes with functional genes like
TaElf3-D1 (1D at 468.7 Mb) and Vrn-D3 (7D at 70.8 Mb) for earliness
per se (Eps) and flowering time (Wang et al., 2009; Zikhali et al., 2016),
TaCKX6-D1 (3D at 137.4 Mb), TaCwi-D1 (5D at 557.3 Mb) and
TaGS-D1 (7D at 6.7 Mb) (Jiang et al., 2015; Zhang et al., 2012;
Zhang et al., 2014) for grain size andweight indicated that novel genetic
introgressions from synthetic hexaploidwheatsmay have been selected.

The benefit of using synthetic wheats or other crop-wild introgres-
sions is that new useful haplotypes could be generated due to the
differential recombination rates and patterns (Rasheed et al., 2018;
Wingen et al., 2017). Such new favorable haplotypes contribute to
additive genetic variation for complex quantitative traits, which can
replace the conventional haplotypes exhaustively utilized during mod-
ern wheat breeding; thus improving the rate of genetic gains. The
breeding strategies such as genomic selection can be applied following
the identification of molecular markers linked to those haplotypes. For
example, Spindel et al. (2016) identified SNPs associated with agro-
nomic traits and fitted these markers as fixed effects in a rrBLUPmodel
(referred to as a GS + de novo GWAS model). They showed that
this new model outperformed six other prediction models for various
traits. Furthermore, the prediction accuracies of extended GS models
outperformed classical models using phenotype data from dry seasons,
implying that this approach is particularly suitable for the improvement
of drought-resilience in future crop cultivars. Because of their increased
information content compared to bi-allelic SNP markers, fitting hap-
lotypes with statistically significant trait associations to phenotypes as
fixed effects in GS models could further improve prediction accuracies
(Voss-Fels et al., 2017). The use of haplotype-assisted GS should more
accurately depict the complex relationships between genotypic infor-
mation and phenotypes than single SNPs alone; hence, this approach
could ultimately help to further increase selection gain per unit of time.

Our analytical approaches successfully identified the divergent se-
lections in SYN-DER, dissected the complex architecture of quantitative

traits under drought stress and identified the favorable SNP and
haplotypes underpinning traits of breeding interest through crop-wild
introgressions.
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