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ABSTRACT Poly(A)-tail targeted RNAseq approaches, such as 39READS, PAS-Seq and Poly(A)-ClickSeq,
are becoming popular alternatives to random-primed RNAseq to focus sequencing reads just to the 39 ends
of polyadenylated RNAs to identify poly(A)-sites and characterize changes in their usage. Additionally, we
and others have demonstrated that these approaches perform similarly to other RNAseq strategies
for differential gene expression analysis, while saving on the volume of sequencing data required and
providing a simpler library synthesis strategy. Here, we present DPAC (Differential Poly(A)-Clustering); a
streamlined pipeline for the preprocessing of poly(A)-tail targeted RNAseq data, mapping of poly(A)-sites,
poly(A)-site clustering and annotation, and determination of differential poly(A)-cluster usage using
DESeq2. Changes in poly(A)-cluster usage is simultaneously used to report differential gene expression,
differential terminal exon usage and alternative polyadenylation (APA).
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The abundance of RNA transcripts as well as poly(A)-site positions can
be determined directly from RNAseq techniques that target the junc-
tion of 39UTRs and poly(A) tails. Numerous approaches, including
39READS (Zheng et al. 2016), PAS-Seq (Shepard et al. 2011) and
Poly(A)-ClickSeq (Routh et al. 2017), are commonly and commer-
cially available and can be used to estimate transcript abundance,
differential gene expression, alternative terminal exon usage (TE)
and alternative polyadenylation (APA). In addition to providing in-
formation on the location of poly(A)-sites (PASs) in mRNA tran-
scripts, these methods provide a simple and powerful alternative for
gene abundance quantitation to randomly-primed RNAseq in both
bulk and single-cell RNAseq experiments. We and others have re-
cently demonstrated that poly(A)-targeted RNAseq approaches per-
form differential expression analyses similarly to other RNAseq
strategies, while saving on the volume of sequencing data required
and providing a simpler library synthesis strategy (Elrod et al. 2019).

We present DPAC (Differential Poly(A)-Clustering) as a pipeline
to preprocess raw poly(A)-tail targeted RNAseq data, map to a
reference genome, identify and annotate the location of PASs, gen-
erate poly(A)-clusters (PACs) and determine the differential abun-
dance of PACs between two conditions. DPAC comprises four
major stages; 1) Pre-processing of raw poly(A)-tailed RNAseq in-
cluding estimation of length of poly(A)-tail tracts; 2) mapping to a
reference genome; 3) an optional step that locates all PASs in the
provided data and generates annotated poly(A)-clusters (PACs);
and 4) a differential expression analysis of PACs using DESeq2.
By determining changes in individual PAC abundance, DPAC will
calculate changes in terminal exon usage and gene expression by
collapsing read counts from individual PACs if they are present on
the same exon/intron and whole-gene respectively. DPAC compiles
these results and generates a final output table simultaneously de-
scribing changes in gene expression, terminal exon (or intron) usage
and alternative polyadenylation.

Wedemonstrate the utility of this pipeline by re-analyzing published
39READS+ (Zheng et al. 2016) and PAS-Seq (Shepard et al. 2011)
datasets as well as our previously published data using Poly(A)-Click-
Seq to measure changes in PAC usage in HeLa cells knocked-down for
mammalian Cleavage Factor I 25kDa subunit (CFIm25) (Routh et al.
2017). As expected, DPAC reports that CFIm25 depletion results in
substantial shortening in 39UTRs, while only minimally affecting over-
all gene expression levels. DPAC, along with annotated poly(A)-cluster
databases generated in this manuscript, is maintained and available
at https://sourceforge.net/projects/DPAC-Seq/
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MATERIALS AND METHODS
DPAC is a simple bash batch script with associated python3 scripts, run
with a single command line entry. Details of the locations and identities
of raw data are provided by a user-generated tab-delimited metadata
file. The pipeline can be broken down into 4 main stages, each of which
can be invoked independently to allow re-analysis with new parameters. A
number of software dependencies are listed, though these are common
in RNAseq pipelines and on bioinformatic servers. A flow chart of
each of the main stages of DPAC is shown in Figure 1.

In this manuscript, we differentiate between poly(A)-sites (PASs)
and poly(A)-clusters (PACs) as follows: a PAS corresponds to the exact
nucleotide of the junction between a 39UTRandapoly(A) tract towhich
either one or more sequence reads has mapped; PACs refer specifically
to the annotated regions within the genome (whether exonic, intronic
or intergenic) in which either a single or multiple clustered PASs
are found. The size of the PAC is determined as a function of the
DPAC clustering algorithm, which in turn is determined by the
chosen clustering window size (described below) and the distance
between adjacent PASs.

Initial data prep and poly(A)-site (PAS) mapping
39 end sequencing methods including Poly(A)-ClickSeq (PAC-Seq)
(Routh et al. 2017) generate raw sequence reads overlapping the

junction of the 39 UTR and the poly(A) tail of mRNA transcripts.
The preparation of raw read data in terms of adapter trimming, poly(A)
tail trimming, poly(A) tail length and quality filtering are essentially the
same as previously described (Routh et al. 2017). Mapping to a refer-
ence genome as well as extraction of poly(A) sites is also performed as
previously described. Briefly, reads are trimmed and quality filtered
using fastp (Chen et al. 2018) (parameters: -a AGATCGGAAGAGC
-f 6 -g -l 40 –Q). If using approaches such as 39READS (Zheng et al.
2016) where the poly(A)-tail is present in the reverse orientation (i.e. a
poly(T) tract is present at the beginning of a read), an addition reverse
complementation step is performed using the fastx toolkit (specified
using -c). Trimmed reads are trimmed a second time using cutadapt
(Martin 2011) to remove and measure the poly(A)-tail returning reads
that are longer than a user-defined length (default of 40nts) (parame-
ters: -b A{15} -n 2 -O 10 –m 40). Reads containing poly(A) tracts
shorter than 10 A’s are discarded. Next, reads output from this step
are compared to the raw data to determine howmany A’s (if any) were
removed from the 39 end of the read. This number is appended to the
name of each read for future quality filtering. The preprocessing steps of
DPAC are invoked by default or by using the ‘–p P’ command-line
argument.

After datapreparation, reads aremappedusingdefault settings to the
reference genome usingHISAT2 (Kim et al. 2015). Themapping step of

Figure 1 A flow-chart summarizing each of the stages, required input files and returned output files for the DPAC pipeline. Command-line
options used to invoke each stage are illustrated: -P for raw data preprocessing, -M for mapping, -C for poly(A) cluster generation, -A for poly(A)
cluster database renaming, -B for bedgraphs, -D for the final differential PAC usage analysis. Examples of the output of the DPAC pipeline are
shown for three genes: SCL35E2A, MEGF11, and CD9.
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DPAC is invoked by default or by using the ‘–p M’ command-line
argument. If required, DPAC will also output the individual bed-
graphs annotating all poly(A)-sites and mapping coverage for each
sample by using the command-line argument ‘–p B’. These files can
be loaded into canonical genome browsers and may be useful when
generating figures. However, they are not required for the down-
stream analysis. An example of these output data are shown in Figure
2, illustrating the mapping of PAC-Seq reads and identified PASs for
two samples.

Generating Poly(A)-Clusters (PACs)
The poly(A)-clustering stage of DPAC requires specific BED files of
annotated genes, exons and introns which can be obtained from the
UCSCgenomebrowser tablebrowser.This is not invokedbydefault, but
by using the command-line entry ‘-pC’. Tomaximize the power of PAC
annotation using PAC-Seq, the data from all samples provided by the
user in themetadatafile are first combined and the 39end of all reads are
used to identify the location of PASs across the reference genome. The
number of A’s found in each poly(A)-tract (as determined in the first pre-
processing stage ofDPAC) is utilized to score the confidence of each PAS.
By default, PASs are output to a raw bedgraph file if a PAS is identified by
at least 5 reads each with a poly(A)-tract of at least 25 A’s. These param-
eters can be adjusted in the command-line and must be chosen carefully
depending upon the strategy used for poly(A)-seq library synthesis. In
Poly(A)-ClickSeq libraries (Routh et al. 2017), the oligo-dT primer used
is 21nts but it is not anchored and therefore can prime anywhere within
the poly(A) tail. Therefore, by selecting a number greater than 21 (e.g., the
default is 25), this ensures that PASs are only reported if a greater number
of A’s were in the poly(A)-tail of the sequencing read than can be derived
solely from the oligo-dT primer. In the case of PAC-seq, this provides a
valuable tool to filter out reads resulting from internal or mis-priming
events at the RT stage. For other techniques such as PAS-seq (Shepard
et al. 2011) and 39READS+ (Zheng et al. 2016), the number of A’s found
in the poly(A)-tract at the ends of the read is usually only 10-15nts. In
these cases, the number of required A’s in each sequencing read must be
reduced accordingly to allow PAS annotation. Finally, PASs are filtered
for internal priming by counting the number of A’s in the reference
genome immediately downstream of the identified PASs. If 12 or more

A’s are found within 20 nts downstream, these events are ‘masked’ and
not further utilized.

PASs are predominantly found at a ‘GA’, ‘UA’ or ‘CA’ dinucleotides,
although the exact site is variable (Routh et al. 2017; Derti et al. 2012).
By default, single PASs occurring within 25 nts of one another are
merged into poly(A)-clusters (PACs), which are subsequently treated
as singular features in downstream analyses. To annotate PACs, exon
and intron annotations are first obtained from the UCSC database. The
overlap of each PAC to annotated exons and introns is then determined
using bedtools (Quinlan and Hall 2010). PACs are annotated according
to: the gene name; whether the PAC is exonic, intronic or found just
downstream of a terminal exon; the genomic coordinate; and finally
assigned a number depending upon the number of other PACs found
within the same exon or intron (for example see Table 1). PACs found
in intergenic or otherwise unannotated sequences are numbered se-
quentially depending upon the total number of unannotated PACs
found. This naming scheme is used in the final stage of DPAC to
differentiate between alternative polyadenylation events and alter-
native terminal exon usage.

Rather than performing de novo PAC annotation, pre-existing da-
tabases of poly(A)-clusters generated by DPAC, such as the ones used
in this report, can be found online at https://sourceforge.net/projects/
dpac-seq/files/Poly(A)_Clusters_BED/. Alternatively, other established
poly(A) databases such as from the PolyA_DB (Lee et al. 2007; Zhang
et al. 2005) can be provided to DPAC. As the naming conventions for
PACs described above is essential for the downstream stages of DPAC,
the ‘-p A’ argument must be selected in these instances to evoke a short
script that will rename and sort the PACs.

Examples of two specific poly(A)-clusters within the CD9 gene are
illustrated in Figure 2 in the hg19 Poly(A)-Cluster track in red. In-
formation regarding the most frequent PAS nucleotide or each PAC
is retained as extra columns in the output BED file, illustrated as the
thicker BED line Poly(A)-Cluster track.

Determination of differential Poly(A)-Cluster usage
using DESeq2
In the final stage of DPAC, the mapped reads from each individual
samples are used to determine the frequency of PACs in each dataset by

Figure 2 Read coverage and the detected poly(A) sites (PASs) over the CD9 gene for two samples of Poly(A)-ClickSeq analysis of mocked treated HeLa
cells (blue) and CFIm25 siRNA treated HeLa cells (orange) are depicted. Poly(A)-Clusters (PACs) are illustrated as a track (red) in the UCSC genome
browser. The most frequently detected poly(A)-site within the poly(A)-cluster is highlighted as the thicker portion of the whole poly(A)-cluster in the track.
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determining the overlaps of the 39 ends of the mapped reads with the
provided poly(A) cluster database using bedtools (Quinlan andHall 2010).
A PAC is counted if the 39 end of a mapped read overlaps within a
user-defined distance (10nts by default) of an annotated poly(A)-
cluster and count tables of PACs are returned. Next, if multiple
PACs are found within an exon or intron, then these are col-
lapsed into a single entry, generating a new count table for exons
and introns. Similarly, if multiple PACs are found within a single
gene, these are also collapsed to create a count table just for whole
genes.

Bydefault, onlyPACs found inexonic regionsare collapsed intogene
counts as introns can often contain repetitive and/or transposable
elements whose inclusion can artificially inflate count numbers. How-
ever, intronic PACs can play important roles in the regulation of gene
expression, particularly for long transcripts (Wang et al. 2019).
Therefore, this parameter can be overturned to force inclusion of
intronic PASs by selecting ‘-i’ in the command-line. In this case, to
help prevent gene-count inflation from reads mapping to repetitive
elements that may potentially be mis-mapped, an additional option
(‘-m’) is provided to filter out PACs that overlap with annotated re-
petitive and mobile elements (provided by the user with an additional
BED or GTF file), such as from the RepeatMasker database (Smit et al.
2013–2015).

Three sets of count tables are thus generated (see example counts
for CD9 and its exons/PACs in Table 1) and passed individually into
DESeq2 (Love et al. 2014). Data normalization and statistical tests are
applied using the canonical DESeq2 pipeline using local dispersion
estimation and Independent Hypothesis Weighting (IHW) (Ignatiadis
et al. 2016) to estimate false discovery rates and for power maximiza-
tion. Thus, differential usage of PACs, exons/introns and whole-genes
are calculated and the results are output as csv files. As illustrated in the
flow-chart in Figure 1, these files are returned for inspection, figure
generation and other downstream analyses.

Output

After DESeq2 analysis, a final compiled table is generated containing
informationaboutPACusage for eachgene(includingonly exonsunless
the –i option is selected). If a gene only has one PAC and thus one
terminal exon, only the gene information is returned. Genes with dif-
ferential expression (fold-change . 1.5; padj , 0.1) are annotated as
‘DOWN’ or ‘UP’. If there is no significant change, genes are labels as
‘NC’ (No Change). Alternative polyadenylation (APA) or differential
terminal exon usage (TE) is reported when a gene has two or more
PACs (minimum occupancy of 5% per PAC), with at least one PAC
undergoing differential usage with an IHW padj,0.1 and resulting in a
fractional change of the PAC usage by at least 10%. If two PACs are
found in different exons, this is annotated as a differential terminal
exon usage event (denoted as ‘TE’). If the two PACs are found in the
same exon, then this annotated as an APA event. The relative locations
of the PACs is then used to determine whether the APA results in
39UTR shortening or lengthening. If three or more PACs (again
with minimum occupancy of 5% per PAC) are found within a single

exon and one of the middle PACs changes in abundance, then this can
simultaneously result in changes of abundance of both upstream and
downstream PACs, resulting in both a shortening and a lengthening
phenotype. These are annotated as ‘APA_both’.

Data Availability Statement
All data used in the manuscript is available at the NCBI SRA database
as deposited by their respective authors: HeLa cell PAC-Seq data
(PRJNA374982); HeLa cell 39READs+ data (PRJNA328218); and
MEF cell PAS-seq data (PRJNA436720). Annotated PAC datasets
generated in this manuscript are available in supplementary material
and at https://sourceforge.net/projects/dpac-seq/files/Poly%28A%29_
Clusters_BED/ DPAC is freely available (MIT license), is maintained
and available at https://sourceforge.net/projects/DPAC-Seq. Supplemen-
tal material available at FigShare: https://doi.org/10.25387/g3.7635971.

RESULTS

Re-analysis of Poly(A)-ClickSeq data of CFIm25 knock-
down in HeLa cells
To evaluate this pipeline, we re-analyzed the PAC-seq data deposited at
NCBI SRA (PRJNA374982) from the original PAC-Seq publication
(Routh et al. 2017). The six datasets were derived from total cellular
RNA extracted from three technical replicates each of mock-treated
and CFIm25 KD HeLa cells. We applied our pipeline to locate and
annotate de novo poly(A)-clusters (PACs) and then to determine the
differential usage of PACs between each condition. Annotation data
and example command-line entries are provided in the DPACmanual
to repeat these analyses.

During de novo PAS clustering, a total of 44,422 poly(A) clusters
(PACs) with.25 reads were identified in the datasets. Of these, 27,958
were exonic, 7,441 were intronic, 928 were found within 250nts down-
stream of annotated 39 terminal exons; and 8,094 were intergenic or
otherwise unannotated (Supplementary Data 1).

To detect differential poly(A)-cluster usage, we performed the final
stage ofDPACusing the three following conditions: 1) only considering
exonic PACs, 2) considering all PACs (exonic or otherwise) butfiltering
out PACs overlapping with the hg19 RepeatMasker database; and 3)
considering all PACs (exonic or otherwise) but using the poly(A)
database (PolyA_DB) instead of de novo PAC annotation. Summaries
of the output are shown in Table 2. Reports of both differential gene
expression and differential PACs usage (IHW-padj , 0.1, fold-
change .1.5) are provided in Supplemental Datasets 2, 3 and 4.

When considering all PACs (including intronic) our pipeline found
PACs mapped over a total of 12,886 genes, of which 5,880 (47%)
exhibited multiple PACs (Table 2), similar to rates previously reported
(Routh et al. 2017; Lee et al. 2007). By virtue of measuring differential
usage of each individual PAC independently, DPAC revealed differen-
tial usage of PACs outside of annotated regions. Indeed, of the total
1,233 identified differentially expressed PACs, 94 (7.6%) were intronic
and 99 (8.0%) were found in unannotated regions. Volcano plots illus-
trating changes in gene expression and PAC abundance are shown in

n Table 1 Example of count table used or DESeq2 for CD9, CD9 exon, and CD9 poly(A)-clusters

Table Gene/Exon/PAC Ctrl1 Ctrl2 Ctrl3 CFIm25-Kd1 CFIm25-Kd2 CFIm25-Kd3

Gene: CD9 1993 1820 1900 6639 4021 6806
Exon: CD9_exon_chr12:6346929 1993 1820 1900 6639 4021 6806
PACs: CD9_exon_chr12:6346929_PAS-1 5 267 388 4061 2537 4262

CD9_exon_chr12:6346929_PAS-2 1988 1553 1512 2578 1484 2544
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Figure 3. Due to changes in PAC abundance, DPAC reported that
647 genes exhibited APA with the shortening of 457 39UTRs and
lengthening of 78 39UTRs. 109 exons exhibited both lengthening
and shortening, due to the presence of multiple PACs within
39UTRs. The predominant shortening of 39UTRs upon knock-
down of CFIm25 is the expected phenotype and is consistent with
our and others’ previous analyses (Routh et al. 2017; Zhu et al.
2018; Chu et al. 2019). Differential PAC usage resulted in alterna-
tive terminal exon usage in 236 genes and only 25 genes exhibited
APA and TE simultaneously.

DPAC outputs a report detailing changes in gene expression, exon
usage and PAC usage (Supplemental Datasets 2, 3 and 4). Specific
examples of the final output are shown in Figure 1. SLC35E21 has two
PACs found in two different terminal exons, but there is no significant
change in their usage and therefore no alternative terminal exon
usage. MEGF11 has only one PAC, and this gene is significantly
up-regulated upon CFIm25 KD. CD9 is also up-regulated upon
CFIm25 KD due to the up-regulation of one of two PACs found
within the same terminal exon with a net effect of 39UTR shortening.
The mapping of the raw data over CD9 and the detected PASs and
PACs are shown in Figure 2.

Re-analysis of 39READs+ and PAS-Seq data
TheDPACpipelinewasconceivedduring thedevelopmentof analysis of
Poly(A)-ClickSeq datatypes. Nonetheless, the DPAC pipeline is appli-
cable to any data type provided that there are poly(A) tracts (or poly(T)
tracts in the negative sense) retained within the read data that are of at
least10nts in lengthand the read lengthafterpoly(A) trimming isgreater
than 25nts. There are many current poly(A)-tail focused methods for
RNAseq (Zhang et al. 2018), that yield similar read data focused on the
39UTR and poly(A)-tail junction. So to demonstrate this functionality,
we ran the DPAC pipeline using previously deposited and published
datasets to generate de novo PAC datasets: 1) 39READs+ data derived
from HeLa cells (human) (Zheng et al. 2016) and 2) PAS-Seq datasets
derived fromMEF cells (murine) (Chang et al. 2018). Summaries of the
output are shown in Table 3 and the final PAC datasets (BED format)
are available in Supplementary Datafiles 5 and 6 respectively.

DISCUSSION
In summary, DPAC performs each of the necessary steps required for
preprocessing, poly(A)-site identification, poly(A)-clustering and dif-
ferentialPACusage required forpoly(A)-targetedRNAseqexperiments.
Our pipeline is suitable for analysis of multiple different strategies for
poly(A)-tail sequencing, provided that stretches of the poly(A)-tail
greater than 10nts are retained within the sequencing data. We further
recommend that read-lengths are sufficiently long, once accounting for
removal of the poly(A)-tract, so that at least 40nts of 39UTR sequence
remain. While shorter reads can be tolerated (e.g., as demonstrated in
Table 3), this ensures that reads are mapped unambiguously, which
may be particularly important for large genomes.

In principle, DPACmay also be used to analyze canonical random-
primed RNAseq data or RNAseq data enriched coarsely for 39UTRs,
such as in QuantSeq (Moll et al. 2014), as many of these reads will map
over the junction of the 39UTR and poly(A) by chance, although the
frequency of these reads may be low. However, there exist other so-
phisticated tools for poly(A)-site annotation and measurement of al-
ternative polyadenylation such as DaPars (Xia et al. 2014) and TAPAS
(Arefeen et al. 2018) that are designed specifically for these data types.

DPAC reports the expected findings upon reanalysis of Poly(A)-
ClickSeqdatasets comparingmockandCFIm25-knockdownHeLacells.
By virtue of assessing changes in all PACs regardless of whether they are
found in annotated genomic regions, DPACmay also allowdiscovery of
novel mRNA transcripts and/or changes in the expression of ncRNAs

Figure 3 Volcano plots of the differential expression of
Genes (left) and Poly(A)-Clusters (right) in HeLa cells
upon siRNA KD of CFIm25 using default settings of
DPAC (data from Table 2, column 1). Red dots indicate
genes or PACs with a fold changes greater than 1.5 and
a p-adjusted value less than 0.1.

n Table 2 Summaries of findings of DPAC analysis of CFIm25 KD
HeLa cells using three different sets of parameters

Exons
only

All PACs
(inc. introns)

PolyA_DB
PACs

Genes mapped 12499 12886 11523
- Increase 267 335 261
- Decrease 117 121 103
Exons or introns mapped 14025 26217 14367
- Increase 342 412 392
- Decrease 130 146 127
Terminal Exon Change 154 235 194
PACs mapped 29411 41573 20949
- Increase 1167 925 1052
- Decrease 307 308 271
Genes with multiple PACs 5067 5880 3881
Genes undergoing APA 861 647 638
- Shortening 620 457 485
- Lengthening 82 78 89
- Both 153 109 60
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and/or non-coding transposable elements. DPAC therefore provides a
singular pipeline to simultaneously report differential gene expression,
terminal exon usage and alternative polyadenylation.
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‘-a 10’ (Minimum A-tract length)
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