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Abstract: When epidemiologic studies are conducted in a subset of the 
population, selection bias can threaten the validity of causal inference. 
This bias can occur whether or not that selected population is the target 
population and can occur even in the absence of exposure–outcome 
confounding. However, it is often difficult to quantify the extent of 
selection bias, and sensitivity analysis can be challenging to undertake 
and to understand. In this article, we demonstrate that the magnitude of 
the bias due to selection can be bounded by simple expressions defined 
by parameters characterizing the relationships between unmeasured 
factor(s) responsible for the bias and the measured variables. No func-
tional form assumptions are necessary about those unmeasured fac-
tors. Using knowledge about the selection mechanism, researchers can 
account for the possible extent of selection bias by specifying the size 
of the parameters in the bounds. We also show that the bounds, which 
differ depending on the target population, result in summary measures 
that can be used to calculate the minimum magnitude of the parameters 
required to shift a risk ratio to the null. The summary measure can 
be used to determine the overall strength of selection that would be 
necessary to explain away a result. We then show that the bounds and 
summary measures can be simplified in certain contexts or with certain 
assumptions. Using examples with varying selection mechanisms, we 
also demonstrate how researchers can implement these simple sensi-
tivity analyses. See video abstract at, http://links.lww.com/EDE/B535.

Keywords: Bias analysis; Selection bias; Sensitivity analysis; Target 
population

(Epidemiology 2019;30: 509–516)

When bias in an epidemiologic study is unavoidable, var-
ious methods can be used to assess the robustness of 

results to factors that limit causal inference, such as unmeas-
ured confounding, measurement error, and selection. While 
there exist relatively simple sensitivity analysis approaches for 
measurement error and unmeasured confounding,1–5 those for 
selection bias are limited by computational or mathematical 
complexity, the need for strong assumptions or the specifica-
tion of a large number of parameters, or applicability only to 
certain selection mechanisms or study designs.6–13

In this article, we show that selection bias can be 
bounded by straightforward expressions that allow for a 
simple approach to sensitivity analysis. We use the term se-
lection bias to describe the extent to which a parameter being 
estimated differs from a causal effect in either the total popu-
lation or some subset of it, due to the restriction of the study 
population. This bias is sometimes defined as that resulting 
from selecting on a collider—that is, a common effect of two 
variables in the causal structure.14 Such selection may be due 
to convenience in study design or analysis, a desire to evaluate 
an exposure–outcome relationship in a subset of the popula-
tion, an attempt to limit other types of bias, or nonparticipa-
tion and loss to follow-up.

For example, in birth defects studies, it is often difficult 
or impossible to collect data on pregnancies that do not result 
in a live birth. Analyzing the exposure–outcome relationship 
in only live births may lead to selection bias when a factor 
determining the probability of live birth is also related to the 
exposure of interest. In other types of studies, a question about 
a particular subpopulation is the motivation for the selection. 
For example, an exposure (e.g., obesity) may be particularly 
harmful or protective among people with certain health condi-
tions (e.g., cardiovascular disease). However, even when selec-
tion is due to interest in a particular subpopulation, selecting 
on a factor of interest does not eliminate the potential for bias, 
if for example that factor itself is related to the exposure.

Solutions to these problems often involve a number of 
assumptions, particularly when the target of causal inference 
is the whole population and not just the subpopulation from 
which the sample was selected. Our simplified approach to 
assessing selection bias makes clear the target of inference 
and limits the number of parameters and assumptions that de-
termine the possible magnitude of the bias. We show that the 
magnitude of the bias in the causal risk ratio can be bounded 
by simple expressions that relate the variables in the causal 
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structure, which may be known or hypothetical. In the eTable 
and eAppendix (http://links.lww.com/EDE/B521), we ex-
tend the results to the risk difference scale. The bounds differ 
depending on the target population of interest and the selec-
tion procedure but require no assumptions about the type 
or number of measured or unmeasured variables that cause 
the bias, or interactions between pairs of variables. We con-
sider several causal structures under which the bounds can be 
applied and motivate their use in the contexts above and with 
other examples. Finally, we show that under certain assump-
tions about the equality of the parameters determining bias, 
a summary measure can be constructed for each of various 
scenarios, which can be used as a simple technique for assess-
ing the robustness to selection bias of results from an epide-
miologic analysis.

THE SELECTION BIAS BOUNDING FACTOR

The Size and Structure of the Bias
Consider a situation in which a causal population-level 

risk ratio (RR) comparing two levels of an exposure denoted 
A  is the parameter of interest. Although our results hold com-
paring any two values of categorical or continuous A , we will 
assume binary A ∈{ , }0 1  for ease of notation. Let Y ∈{ , }0 1  de-
note the binary outcome and S  be a binary indicator of se-
lection, where S =1 indicates the subset of the population 
included in the study and S = 0 indicates the subset of the 
population excluded in the study. Let C  denote a set of meas-
ured covariates. In case–control studies, the odds ratio (OR) 
may approximate the RR; we assume that this approximation 
holds throughout this article. Furthermore, although cases are 
selected with higher probability than controls in such studies, 
we can ignore that aspect of the selection mechanism, as it 
does not bias the OR.

We will use potential outcome notation wherein Y a indi-
cates the value of Y  under treatment A a= . Let the causal 
RR conditional on covariates C c= , P Y c P Y c( | ) / ( | )1 01 1= =  
be denoted RRtrue

AY  and assume that it is identifiable as 
P Y A c P Y A c( | , ) / ( | , )= = = =1 1 1 0 . This requires that cer-
tain identifiability conditions hold, including consistency, pos-
itivity, and, in particular, exchangeability Y A Ca� | ; that is, 
that Y a is independent of actual exposure A  conditional on 
measured covariates C .15 For simplicity in the development 
that follows, we will assume that all analyses are carried 
out within strata of measured confounders C  as necessary 
and exclude reference to those variables, but all subsequent 
probability expressions can be interpreted as conditional on 
measured covariates C .

Suppose now, due to some selection mech-
anism, we are limited to estimating the RR only within 
a subpopulation, denoted by S =1, so that we estimate 
RRobs

AY P Y A S P Y A S= = = = = = =( | , ) / ( | , )1 1 1 1 0 1 . If we 
restrict analysis to S =1, selection bias occurs if it is not the 
case that Y A Sa� | =1, even though Y Aa�  in the population. 

The bias is not due to the fact that the RRs in the total and 
selected populations differ but to the fact that RRobs

AY  is not a 
causal effect even in the selected population. (Later in the text, 
Results 5A and 5B correspond to the situation in which such 
an effect is of interest.)

Several causal structures in which selection bias may 
occur are shown in the Figure. In each situation, bias is in-
duced by a selection process, which is itself differential with 
respect to the exposure or outcome and some unmeasured (or 
possibly measured) factor(s), denoted U . Consider the setting 
in which conditional on some unmeasured covariate(s) U , we 
have Y S A U� | { , }. This independence holds in the causal 
diagrams in the Figure A, B, and D. For ease of notation, we 
will consider U  to be a categorical variable, but the results 

A

B

C

D

FIGURE. Examples of causal diagrams under which bias for a 
causal effect of A  on Y  can result due to selection. Selection 
is shown with the boxed S , representing that only a selected 
population, which may have different distributions of the vari-
ables upstream of S  than the total population, is studied. For 
simplicity, no confounders of the A –Y  relationship are shown 
but could certainly be present. A, The birth defects example, 
where A  is infection with Zika virus, Y  is microcephaly, S  is live 
birth, and U  is socioeconomic and behavioral factors. B, The 
estrogen cancer example, where selection is based on a fac-
tor U  (symptoms that lead to an intraendometrial diagnostic 
procedure) that is affected by both estrogen use (A ) and the 
presence of endometrial cancer (Y ). C, The obesity paradox 
example, where A  is obesity, S  is a disease such as heart failure, 
and Y  is mortality. D, A study in which only participants who 
agree to DNA collection (S) are selected to a study of the rela-
tionship between (1) a genetic risk score (A ) for smoking (W ) 
and (2) an education outcome (Y ).31
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hold for general U  or vector of variables denoted U . We can 
rewrite the target parameter in terms of U :

RRtrue
AY

s u
P Y A S s U u

P U u A S s P S s A
=

= = = ={
= = = } = =

= ∑0

1
1 1

1

∑ ( | , , )

( | , ) ( | 11

1 0

0 0
0

1

)

( | , , )

( | , ) ( | )

.

s u
P Y A S s U u

P U u A S s P S s A
=∑ ∑ = = = ={

= = = } = =

Let the relative bias due to selection be defined as RR RRobs true
AY AY/ .  

By bounding this value, we can assess the maximum strength 
of the bias in terms of parameters that describe relationships 
between U  and other variables.

The Bounding Factor
We bound the relative bias from above, assuming that 

the RR RRobs true
AY AY> . If not, and the bias <1, interest is natu-

rally in a bound from below. We can then reverse the coding of 
A  so that bias >1, resulting in an appropriate bound once the 
coding is reversed.

We define the following parameters:

RR
max

minUY A
u

u

P Y A U u

P Y A U u|( )

( | , )

( | , )
,= =

= = =

= = =1

1 1

1 1

RR
max

minUY A
u

u

P Y A U u

P Y A U u|( )

( | , )

( | , )
,= =

= = =

= = =0

1 0

1 0

RR maxSU A u

P U u A S

P U u A S|( )

( | , )

( | , )
,= =

= = =
= = =1

1 1

1 0

RR maxSU A u

P U u A S

P U u A S|( )

( | , )

( | , )
.= =

= = =
= = =0

0 0

0 1

The RRUY A a|( )=  parameters can be interpreted as the maximum 
relative risks for Y =1 comparing any two values of U  within 
strata of A =1 and A = 0, respectively. It need not be a causal 
relationship that is described by this risk ratio, as U  may be 
downstream of Y  in some situations that are susceptible to 
selection bias (e.g., Figure B). The RRSU A a|( )=  parameters are 
the maximum factors by which selection is associated with an 
increased prevalence of some value of U  within stratum A =1 
and by which nonselection is associated with an increased 
prevalence of some value of U  within stratum A = 0. If RRobs

AY  
has been estimated within strata of measured confounders C ,  
then these parameters are defined conditional on the same 
confounders.

We now present our first result, a proof of which is given 
in the eAppendix (http://links.lww.com/EDE/B521).

Result 1A
If Y S AU� | { , }, then:

RR

RR

RR RR

RR RR

obs

true
AY

AY

UY A SU A

UY A SU A

≤
×

+
= =

= =

|( ) |( )

|( ) |( )

1 1

1 1 −−











×
×

+ −






= =

= =

1

1
0 0

0 0

RR RR

RR RR
UY A SU A

UY A SU A

|( ) |( )

|( ) |( ) 
 .

Result 1A tells us that the bias is guaranteed to be equal to or 
smaller in magnitude than the given expression, which we will 
call in general a bounding factor. A researcher or reader who 
proposes that some factor U  has led to selection bias can pro-
pose values that plausibly describe the relationships between 
that factor and selection and the outcome and calculate the 
bounding factor from these parameters. That bounding factor 
(or set of bounding factors constructed from ranges of values) 
can be divided out of the estimate of RRobs

AY  to come up with 
the smallest possible RR that would be compatible with RRtrue

AY .

Example: Zika Virus
After a rise in microcephaly cases in northeast Brazil 

closely followed an outbreak of Zika virus in that region, ev-
idence from biologic and ecologic data supported a causal 
link.16 In particular, models using surveillance data showed 
that the population risk of microcephaly increased after Zika 
infections in the first semester of pregnancy.17 The relationship 
was seemingly confirmed with the first case–control study 
to examine the association, from which de Araújo et al re-
ported an adjusted OR of 73.1 (95% confidence interval [CI] 
= 13.0, ∞∞).18 Both live and still births were recruited as cases; 
however, pregnancies that resulted in miscarriage or elec-
tive abortion would have been missed by this study design, 
which corresponds to Figure A. The probability of not having 
a termination (S =1) may be affected by exposure to the virus  
(A ) and socioeconomic or behavioral conditions such as lack 
of access to medical care (U ), which may also affect the prob-
ability of microcephaly (Y ) (e.g., giving birth in a public 
hospital, low education, and being unmarried have been asso-
ciated with microcephaly in Brazil19). Selecting only live and 
still births in the analysis may therefore lead to selection bias.

Suppose that access to medical care affected the prob-
ability of microcephaly by up to two-fold among the Zika 
exposed and unexposed (i.e., RR RRUY A UY A|( ) |( )= == =1 0 2) and 
that lack of access to medical care for pregnant women was up 
to 1.7 times more likely for women without an induced abor-
tion among the Zika exposed (RRSU A|( ) .= =1 1 7) and access to 
medical care up to 1.5 times more likely for women with an 
induced abortion among the unexposed (RRSU A|( ) .= =1 1 5), the 
bias factor is then

RR RR

RR RR

RRUY A SU A

UY A SU A

UY A|( ) |( )

|( ) |( )

|(= =

= =

×

+ −









 ×1 1

1 1 1
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The most such selection bias that could alter the esti-
mate can be obtained by dividing the original estimate and 
confidence interval by this bias factor to obtain an OR of 48.4 
(95% CI = 8.6, ∞∞), which is of course still a very large effect 
estimate.

A Summary Measure
Instead of calculating each of the parameters in the 

bounding factor individually, we may be interested in assess-
ing the overall susceptibility of a result to selection bias. This 
can be done with a single value that summarizes the extent to 
which an RR >obs

AY 1 may be a spurious finding entirely due to 
selection bias.

Result 1B
If Y S A U� | { , }, then the minimum magnitude of each 

of the four parameters that make up the bounding factor, 
assuming the four are equal, that would be sufficient to shift 
a given RRobs

AY  to the null is given by the following equation:

RR RR RR

RR RR RRobs ob

UY A UY A SU A

SU A AY AY

|( ) |( ) |( )

|( )

= = =

=

= =

= ≥ +

0 1 0

1
ss obsRR− AY .

For example, if RRobs
AY = 3, then all four of the param-

eters in the bounding factor must be equal to or greater than 

3 3 3 2 9+ − = .  to have generated sufficient selection bias. 
If one of the four is smaller than 2.9, then one or more of the 
parameters must be greater than 2.9 to compensate. Because 
it only depends on RRobs

AY , this summary measure is easy to 
calculate and compare across studies. However, it is context 
specific: it is interpreted relative to the selection mechanism in 
a given study and conditional on whatever confounders have 
been controlled for in the analysis. Based on content know-
ledge, investigators and readers can judge whether there exists 
an U  that could be so strongly related both to the outcome and 
to selection within strata of the exposure and the measured 
confounders.

Such calculations can also be performed using the lower 
limit of the confidence interval instead of RRobs

AY , to see what 
strength of the selection parameters would be necessary to re-
sult in a confidence interval that includes the null value of 1.

Example: Zika Virus Revisited
With no assumptions about the exact nature of the un-

measured factors U, we can use Result 1B to assess the plausi-
bility that the Zika–microcephaly association is fully explained 
by selection bias. By calculating the summary measure 

73 1 73 1 73 1 16 6. . . .− + = , we come to conclusions about 
the strength of the relationships with the unmeasured behav-
iors or socioeconomic conditions (such as lack of access to 
medical care) that would be necessary to produce an RRobs

AY  of 
73.1 if RRtrue

AY =1. Selection bias could explain the observed 
association if there was an unmeasured variable (e.g., lack of 
access to medical care) that increased the risk of microcephaly 

by 16.6-fold in both exposed and unexposed women, that was 
16.6 times higher among exposed women with live or still 
births than among those whose pregnancies were terminated, 
and that was also 16.6 times lower among the unexposed. 
However, weaker relationships between the unmeasured fac-
tor and both selection and microcephaly would not suffice to 
fully explain the observed exposure–outcome association. 
Risk ratios of that magnitude are rarely seen in epidemiologic 
research, particularly in the context of behavioral differences, 
lending confidence that the increased microcephaly risk is not 
the result of selection bias. We can repeat the calculation with 
the lower bound of the confidence interval, 13.0, to assess the 
magnitude of selection bias necessary to shift the confidence 
interval to include the null. This gives a summary measure of 
6.7; although it is perhaps plausible that one of the parameters 
is that large, it seems unlikely that all four are. Assuming that 
confounding was fully accounted for in the study via matching 
and multivariable control and that all variables were correctly 
measured, it seems that even in the presence of possible se-
lection bias, the evidence is very strong that Zika infection in 
pregnant women causes microcephaly.

SPECIAL CASES AND THEIR BOUNDING 
FACTORS AND SUMMARY MEASURES
Here, we consider a number of special cases that result 

in modified bounding factors and summary measures. The 
Table summarizes the results, and derivations are provided in 
the eAppendix (http://links.lww.com/EDE/B521).

When S U=  (Results 2A and 2B)
In some situations, U  may not be unmeasured and may 

be common to the entire selected population. This is the case, 
for example, when some characteristic defines or directly 
leads to selection into a study. When this is true, the bounding 
factor is simplified.

Result 2A
If S U= , then

RR

RR
RR RR

obs

true
AY

AY
UY A UY A≤ |( ) |( ) .= =×0 1

We can also construct a summary measure for this situation. 
It can be used in the same way as that in Result 1B but only 
describes the minimum magnitude of the two parameters in 
the modified bounding factor in Result 2A.

Result 2B
If S U= , then the minimum magnitude of each of the 

two parameters that make up the bounding factor in Result 
2A, assuming they are equal, that would be sufficient to shift 
a given RRobs

AY  to the null is given by the following equation:

RR RR RRobs
UY A UY A AY|( ) |( ) .= == ≥0 1
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Assumptions About Directionality (Results 3A 
and 3B)

Although Result 1A requires minimal assump-
tions, sometimes we can make assumptions that de-
crease the magnitude of the bounding factor, which can 
provide us with more confidence that a given result is 
not due to selection bias. The bounding factor is great-
est when P Y A S P Y A S( | , ) ( | , )= = = > = = =1 1 1 1 1 0 and 
P Y A S P Y A S( | , ) ( | , )= = = < = = =1 0 1 1 0 0 ; that is, when 
selection is associated with increased risk of the outcome 
among the exposed and with decreased risk among the unex-
posed. However, if selection is associated with increased risk 
among both groups, then we have the following result.

Result 3A
If Y S A U� | { , } and if P Y A S( | , ) /= = =1 1 1  

P Y A S( | , )= = =1 1 0  and P Y A S P Y( | , ) / ( |= = = =1 0 1 1
A S= =0 0, ) are greater than 1, then

RR

RR

RR RR

RR RR

obs

true
AY

AY

UY A SU A

UY A SU A

≤ |( ) |( )

|( ) |( )

= =

= =

×

+
1 1

1 1 −−1
.

Results are analogous with decreased risk for both groups, 
with A = 0 replacing A =1 in each of the parameters. (If se-
lection is associated with decreased risk among the exposed 
and increased risk among the unexposed, the bias ≤ 1 , so A  
should be recoded to construct a meaningful bound.)

If assumptions about the consistency of the direction of 
the selection–outcome relationship can be made, then we can 
also use simpler expressions as the summary measures; for 

increased risk in both groups, the summary measure is stated 
in the following result.

Result 3B
If Y S A U� | { , } and if P Y A S P Y( | , ) / ( |= = = =1 1 1 1  

A S= =1 0, )  and P Y A S P Y A S( | , )/ ( | , )= = = = = =1 0 1 1 0 0
are greater than 1, then the minimum magnitude of each of 
the two parameters that make up the bounding factor in Result 
3A, assuming they are equal, that would be sufficient to shift 
a given RRobs

AY  to the null is given by the following equation:

RR RR RR RR RRobs obs obs
UY A SU A AY AY AY|( ) |( ) ( ).= == ≥ + −1 1 1

When the outcome risk is decreased with selection in both expo-
sure groups, the summary measure refers to the minimum strength 
of the parameters RRUY A|( )=0  and RRSU A|( )=0 . Results 3A and 3B 
have the same analytic form of the recently proposed “E-value” 
calculated to assess robustness to unmeasured confounding.20

When S U=  with Directionality Assumptions 
(Results 4A and 4B)

When S U=  and we can make assumptions about the 
increase or decrease in risk in both exposure groups with se-
lection, we can combine earlier results. For increased risk in 
both groups, we have the following result.

Result 4A
If S U=  and if P Y A S( | , ) /= = =1 1 1

P Y A S( | , )= = =1 1 0  and P Y A S P Y( | , ) / ( |= = = =1 0 1 1
A S= =0 0, ) are greater than 1, then

TABLE. Summary of Bounding Factors for Selection Bias on the Risk Ratio Scale and Their Summary Measures Under Different 
Scenarios

Bounding Factora (A) Summary Measureb (B)

Result 1. General selection biasc,d RR RR

RR RR

RRUY A SU A

UY A SU A

UY A|( ) |( )

|( ) |( )

|(= =

= =

×

+ −









 ×1 1

1 1 1
== =

= =

×

+ −











0 0

0 0 1
) |( )

|( ) |( )

RR

RR RR
SU A

UY A SU A

RR RR RRobs obs obs
AY AY AY+ −

Result 2. When S U= c,e RR RRUY A UY A|( ) |( )= =×0 1 RRobs
AY

Result 3. Increased risk with selection in both 

exposure groupsc,f

RR RR

RR RR
UY A SU A

UY A SU A

|( ) |( )

|( ) |( )

= =

= =

×

+ −
1 1

1 1 1
RR RR RRobs obs obs

AY AY AY+ −( )1

Result 4. S U=  and increased riskc RRUY A|( )=1 RRobs
AY

Result 5. Inference in the selected populationg RR RR

RR RR
UY S AU S

UY S AU S

|( ) |( )

|( ) |( )

= =

= =

×

+ −
1 1

1 1 1
RR RR RRobs obs obs

AY AY AY+ −( )1

aThe relative bias due to selection of the observed risk ratio, RR RRobs true
AY AY/ , is guaranteed to be less than this value. The parameters that define each bounding factor are defined 

in the main text.
bIf all of the parameters in the bounding factor are equal, then each must be greater than this value to shift RRobs

AY  to 1.
cThe bounding factor and summary measure hold under the assumption that Y S AU� |{ , }.
dThe parameter of interest, RRtrue

AY , is the causal risk ratio for the whole population.
eThe factor responsible for selection bias, U, is common to the entire selected population.
f P Y A S P Y A S( | , ) / ( | , )= = = = = =1 1 1 1 1 0 and P Y A S P Y A S( | , ) / ( | , )= = = = = =1 0 1 1 0 0 are greater than 1.
gThe parameter of interest, RRtrue

AY S|( )=1
, is the causal risk ratio in the selected population only. The bounding factor and summary measure hold under the assumption that 

Y A S Ua� |{ , }= 1 .
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RR

RR
RR

obs

true
AY

AY
UY A≤ |( ) .=1

The summary measure describing the minimum magnitude of 
the sole parameter is also simplified.

Result 4B
If S U=  and if P Y A S( | , ) /= = =1 1 1

P Y A S( | , )= = =1 1 0  and P Y A S P Y( | , ) / ( |= = = =1 0 1 1
A S= =0 0, ) are greater than 1, then the minimum magnitude 

of RRUY A|( )=1  that would be sufficient to shift a given RRobs
AY  to 

the null is given by the following equation:

RR RRobs
UY A AY|( ) .= ≥1

Example: Endometrial Cancer
For many years, the relationship between estrogen re-

placement therapy and endometrial cancer was clouded by 
controversy over proper study design to minimize bias. In 
an attempt to limit differential outcome detection by es-
trogen exposure, Horwitz and Feinstein21 simultaneously 
performed a case–control study of exogenous estrogens 
and endometrial cancer in a population of women who 
had undergone intraendometrial diagnostic procedures and 
one with a more “conventional” sampling method. They 
claimed their estimates of an OR of 2.30 using the “al-
ternative” sampling method and an OR of 11.98 with the 
conventional method supported their worry about biased 
cancer detection. However, their selection procedure was 
shown to induce bias.22 The structure leading to this bias 
is shown in Figure B, in which U  represents a diagnostic 
procedure; in this case, all of those selected (S) have under-
gone such a procedure. We can use a bounding factor to 
assess how plausible it is that selection bias could explain 
the authors’ much reduced OR. In this context, we are cu-
rious about whether bias could shift the result to a specific 
value and not to the null.

Because our proposed RR RRtrue obs
AY AY= > =11 98 2 30. . ,  

the bias <1 and we recode the exposure for a relative bias of 
11.98/2.3 = 5.2. Because everyone in the selected population 
had symptoms that led to a diagnostic procedure, we will use 
the bounding factor that assumes S U= . If we assume that 
having a hysterectomy is associated with increased cancer 
prevalence in both estrogen-exposed and unexposed women, 
we have by Result 4B that 5 2 1. |( )< =RRUY A  (recalling that 
A =1, after recoding, now refers to those unexposed to es-
trogen). This means that in order for the difference in ORs to 
be possibly explained by selection bias (that is, for the RRobs

AY  
of 2.30 to shift to at least 11.98 after accounting for selection 
bias), the prevalence of endometrial cancer in nonusers of es-
trogen who have undergone hysterectomy or other diagnostic 
procedure must be greater than 5.2 times that in nonusers who 
have not.

THE SELECTED POPULATION AS THE  
TARGET POPULATION

In some studies, the causal risk ratio in the selected pop-
ulation, and not in the entire population, may be the target pa-
rameter. This may occur, for example, when S  is an indicator 
of a well-defined population for which an estimated causal 
effect is desired and not simply the result of poor sampling or 
selective attrition.

Under the same notation and assumptions as above, we 
denote RRtrue

AY S P Y S P Y S|( ) ( | ) / ( | )= = = = = =1 1 01 1 1 1 . Again, 
because it is not true that Y A Sa� | =1, this is not identifiable 

as RRobs
AY P Y A S P Y A S= = = = = = =( | , ) / ( | , )1 1 1 1 0 1 . In-

stead, if Y A S Ua� | { , }=1 , the RR of interest is identified by 
marginalizing over the distribution of U  in the selected popu-
lation, resulting in

RRtrue
AY S

u

u

P Y A S U u P U u S

P Y A S|( )

( | , , ) ( | )

( | ,= =
= = = = = =

= =
∑
∑1

1 1 1 1

1 0 == = = =1 1, ) ( | )
.

U u P U u S

Again we are concerned with the relative bias RR RRobs true
AY AY S/ |( )=1 .  

This bias can be conceptualized as equivalent to that due to 
unmeasured confounding, which occurs when U  is associated 
with the exposure A  and also affects the outcome Y . Although 
A  and U  are marginally independent, as in Figure A, C, and D, 
an association between the two is induced by conditioning on 
selection into the study, represented by the boxed S in the dia-
grams. Then, within stratum S =1, we have a situation equiv-
alent to confounding by U , due to its relationships with the 
exposure and outcome. Extending previously published bounds 
for bias due to unmeasured confounding,5 we have a bounding 
factor for inference in the selected population as follows.

Result 5A

If Y A S Ua� | { , }=1 , then

RR

RR

RR RR

RR RR

obs

true
AY

AY S

UY S AU S

UY S AU|( )

|( ) |( )

|( )=

= =

=

×

+1

1 1

1

≤
||( )

,
S = −1 1

where

RR max
max

minUY S a

u

u

P Y A a S u

P Y A a S u|( )

( | , , )

( | , , )
,= =

= = =

= = =1

1 1

1 1

RR
max

minAU S
u

u

P U u A S

P U u A S|( )

( | , )

( | , )
.= =

= = =

= = =1

1 1

0 1

The parameter RRUY S|( )=1  is the maximum risk ratio for the 
outcome given any two values of U  among either the unex-
posed selected population or the exposed selected population. 
Because data are available on a sample of this population, 
this could be approximated using available data on measured 
confounders.
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Because the second parameter, RRAU S|( )=1 , represents 
an association induced between two marginally independent 
variables (i.e., the dependence due to collider stratification), it 
is not as intuitive to specify. However, it is conceptually sim-
ilar to one of the two required to define a bound for bias in 
the natural direct effect,23 where the A –U  relationship is in-
duced by conditioning on a mediator. In that situation, an ap-
proximate bound can be used.24 Similarly, the bound that uses 
the maximum RR for S =1 comparing two values of U  or the 
maximum risk ratio for S =1 comparing two values of A  could 
be used here. Depending on the structure of the selection bias 
mechanism, one of these two parameters might be more intu-
itive to quantify and can generally replace RRAU S|( )=1  for an 
approximate bounding factor.

Summary Measure
The summary measure that follows from Result 5A can 

then be given in the following result.

Result 5B
If Y A S Ua� | { , }=1 , then the minimum value of 

RRAU S|( )=1  and RRUY S|( )=1 , assuming the two parameters are 
equal, that would be sufficient to shift a given RRobs

AY  to the null 
is given by the following equation:

RR RR RR RR RRobs obs obs
UY S AU S AY AY AY|( ) |( ) ( ) .= == ≥ + −1 1 1

Results 5A and 5B have the same analytic form of the recently 
proposed E-value calculated to assess robustness to unmeas-
ured confounding.20

Example: Obesity Paradox
The obesity paradox is a well-known phenomenon in 

chronic disease epidemiology in which overweight and obe-
sity are associated with increased survival compared with 
normal weight among patients with certain conditions.25 
Whether this is a real causal effect (which could result in dif-
ferent weight recommendations for people living with chronic 
conditions) or due to bias—in particular, bias resulting from 
selection on a common effect (chronic disease) of both obe-
sity and some unmeasured factor that is also related to death 
(Figure C)—is the subject of much debate.26–29 Gruberg et al30 
investigated the relationship between body mass index and 
1-year risk of death among patients who were treated for ad-
vanced coronary artery disease (CAD), finding that 10.6% of 
patients with normal body mass index died, more than double 
the percentage among the obese patients. Using the OR from 
their adjusted model, we can calculate that the mortality risk 
was 1.50 times higher (95% CI = 1.22, 1.86) in patients for 
whom body mass index was 10 units lower (corresponding 
approximately to the difference between obesity and normal 
weight).30 The authors controlled for a number of measured 
confounders including age and heart function.

Because we are interested in the population of CAD 
patients, we can use Result 5B to assess the plausibility of 

such a result being due to some unmeasured common cause of 
heart failure and death: 1 50 1 50 1 50 1 2 37. . ( . ) .+ − = . The un-
measured factor must increase the risk of death among normal 
weight or obese CAD patients by a factor of 2.37 (independent 
of the factors already included in the model) and differ be-
tween the obesity exposure categories in CAD patients by the 
same factor, if there were truly no protective effect of obe-
sity on death in that population. Because the latter relation-
ship, between obesity and the unmeasured factor, would be 
one induced solely by the selection of CAD patients, it may 
be difficult to specify. It may be more intuitive to consider an 
unmeasured factor that directly increases the risk of CAD by 
the same factor of 2.37, which will generally also suffice to 
bound the selection bias. We can repeat the calculation and 
interpretation with the lower bound of the confidence interval, 
which gives us a summary measure of 1.74, to assess the bias 
necessary for the confidence interval to include the null.

DISCUSSION
Because selection bias can be difficult to quantify, it is 

often ignored in sensitivity analysis or only explored in com-
plex analyses that must be relegated to appendices. A simple 
way to characterize the possible extent of selection bias in 
terms of the relationships in the causal structure that induces 
it will allow researchers to more easily assess the plausibility 
of this bias with minimal assumptions.

Thinking about selection bias as described in this ar-
ticle will also force researchers to clearly define the target 
population of interest, whether that be the total population or 
those with the characteristics of the selected sample. Making 
assumptions to simplify the bounding factor can also compel 
them to think through the mechanisms by which selection 
bias occurs and the direction of the various effects. However, 
no such assumptions are required to use our main results. 
While this article focused on the relative bias of observed 
RRs, as relative effect measures are common in epidemi-
ology and RRs are often approximated by ORs and hazard 
ratios under certain assumption, analogous bounds for 
observed effects on the risk difference scale are presented in 
the eTable (http://links.lww.com/EDE/B521), and their cor-
responding derivations in the eAppendix (http://links.lww.
com/EDE/B521).

The bounds we presented in this article can be used 
in several ways. If researchers have quantitative knowledge 
about factors influencing selection in their study, such as in a 
situation with loss to follow-up or participation in a sub-study, 
realistic RRs for unmeasured factors can be used as param-
eters in the bounds to explore to what extent these could affect 
RRobs

AY . If only ranges of possible parameters are proposed, the 
bounds can be varied across those ranges in a table or figure 
to allow readers to consider the most plausible combinations. 
Finally, if all that is desired is a summary measure of the ex-
tent to which a result could be rendered null by selection bias, 
or shifted to any other proposed true value, the bounds can be 

http://links.lww.com/EDE/B521
http://links.lww.com/EDE/B521
http://links.lww.com/EDE/B521


Smith and VanderWeele Epidemiology • Volume 30, Number 4, July 2019

516 | www.epidem.com © 2019 Wolters Kluwer Health, Inc. All rights reserved.

used to describe the magnitude of the parameters that could 
result in such an observed value.

There are nonetheless several limitations to these 
bounds. First, they are only applicable under certain causal 
structures that lead to selection bias. The results here describe 
the maximum bias that could result from the parameters; the 
same parameters could also induce less bias. This conserva-
tive approach is useful when less is known about the selection 
mechanism and a simple exploration of the possible bias is 
desired. When more information is available, a more com-
plex but precise method may be preferred.7,8,10–12 Next, the 
RRAU S|( )=1  parameter in the bound for the selected population 
is unintuitive and may be hard to specify even in the pres-
ence of solid knowledge about the selection mechanism; how-
ever, RRs relating the exposure or selection to the unobserved 
factor can usually be used in its place.24 Finally, this article 
only addresses bias due to selection and assumes that other 
criteria for causal inference, such as control of exposure–out-
come confounding and lack of measurement error, have been 
met. Future work could combine this approach to selection 
bias with other methods for bias analysis and could take into 
account the possibility that factors leading to selection bias 
could be sources of other types of bias.
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