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Brains exhibit plasticity, multi-scale integration of information, computation

and memory, having evolved by specialization of non-neural cells that

already possessed many of the same molecular components and functions.

The emerging field of basal cognition provides many examples of

decision-making throughout a wide range of non-neural systems. How

can biological information processing across scales of size and complexity

be quantitatively characterized and exploited in biomedical settings? We

use pattern regulation as a context in which to introduce the Cognitive

Lens—a strategy using well-established concepts from cognitive and compu-

ter science to complement mechanistic investigation in biology. To facilitate

the assimilation and application of these approaches across biology, we

review tools from various quantitative disciplines, including dynamical

systems, information theory and least-action principles. We propose that

these tools can be extended beyond neural settings to predict and control

systems-level outcomes, and to understand biological patterning as a form

of primitive cognition. We hypothesize that a cognitive-level information-

processing view of the functions of living systems can complement reductive

perspectives, improving efficient top-down control of organism-level

outcomes. Exploration of the deep parallels across diverse quantitative

paradigms will drive integrative advances in evolutionary biology, regenera-

tive medicine, synthetic bioengineering, cognitive neuroscience and artificial

intelligence.

This article is part of the theme issue ‘Liquid brains, solid brains: How

distributed cognitive architectures process information’.

1. Introduction
Anatomical pattern control is one of the most remarkable processes in biology.

Large-scale spatial order, involving numerous tissues and organs in exquisitely

complex yet invariant topological relationships, must be established by embry-

ogenesis—a process in which genetic clones of a single gamete cooperate to

construct a functional body (figure 1a). This is often modelled as a feed-forward

process with complex anatomy as an emergent result (figure 1b). However, a

key part of robustness across many levels of organization is the remarkable

plasticity revealed by regulative development and regeneration which can

achieve a specific patterning outcome despite a diverse range of starting con-

figurations and perturbations. For example, mammalian embryos can be split

in half or fused, resulting in normal animals (figure 1c,d). Salamanders can

regenerate perfect copies of amputated legs, eyes, jaws, spinal cords and ovar-

ies. Remarkably, scrambled organs move to correct positions to implement

normal craniofacial pattern despite radically displaced configurations at early

developmental stages (reviewed in [1]).

Cells can work together to maintain a body plan over decades, but

occasional defections in this process result in a return to unicellular behaviours

such as cancer. Yet, this process is not necessarily unidirectional, as
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Figure 1. Illustrations of cognitive processes in embryogenesis and regeneration. Figure modified with permission after [1]. (a) An egg will reliably give rise to a
species-specific anatomical outcome. (b) This process is usually described as a feed-forward system where the activity of gene-regulatory networks (GRNs) within
cells result in the expression of effector proteins that, via structural properties of proteins and physical forces, will result in the emergence of complex shape. This
class of models (bottom-up process driven by self-organization and parallel activity of large numbers of local agents) is difficult to apply to several biological
phenomena. Regulative development can alter subsequent steps to reach the correct anatomical goal state despite drastic deviations of the starting state. (c)
For example, mammalian embryos can be divided in half, giving rise to perfectly normal monozygotic twins each of which has regenerated the missing cell
mass. (d ) Mammalian embryos can also be combined, giving rise to a normal embryo in which no parts are duplicated. (e) Such capabilities suggest that pattern
control is fundamentally a homeostatic process—a closed-loop system using feedback to minimize the error (distance) between a current shape and a target
morphology. Although these kinds of decision-making models are commonplace in engineering, they are only recently beginning to be employed in biology
[2,3]. This kind of pattern-homeostatic process must store a setpoint that serves as a stop condition; however, as with most types of memory, it can be specifically
modified by experience. In the phenomenon of trophic memory ( f ), damage created at a specific point on the branched structure of deer antlers is recalled as
ectopic branch points in subsequent years’ antler regeneration. This reveals the ability of cells at the scalp to remember the spatial location of specific damage events
and alter cell behaviour to adjust the resulting pattern appropriately—a pattern memory that stretches across months of time and considerable spatial distance and
is able to modify low-level (cellular) growth rules to construct a pre-determined stored pattern that differs from the genome-default for this species. (g) A similar
capability was recently shown in a molecularly tractable model system [4,5], in which genetically normal planarian flatworms were bioelectrically reprogrammed to
regenerate two-headed animals when cut in subsequent rounds of asexual reproduction in plain water. (h) The decision-making revealed by the cells, tissues and
organs in these examples of dynamic remodelling toward specific target states could be implemented by cybernetic processes at various positions along a scale of
proto-cognitive complexity [6]. Panels (a,c,d) were created by Jeremy Guay of Peregrine Creative. Panel (c) contains a photo by Oudeschool via Wikimedia Commons.
Panels ( f ) and (g) are reprinted with permission from [7] and [8] respectively. Panel (h) is modified after [6]. (Online version in colour.)
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normalization (tumour reprogramming) allows cells to func-

tionally rejoin a metazoan collective [9]. Such dynamic

plasticity and anatomical homeostasis (figure 1e) represent

clear examples of pattern memory and flexible decision-

making by cells, tissues and organs: systems-level functions

such as recognizing damage, building exactly what is

needed in the right location, and ceasing activity when the

correct target morphology is achieved [2]. One of the key

aspects of a homeostatic process is a stored setpoint, to

which the system regulates. Classic data in deer antler regen-

eration (figure 1f ) and recent work showing permanent

reprogramming of planarian target morphology without

genomic editing (figure 1g) reveal the ability to alter the ana-

tomical setpoint in vivo. It is crucial to understand how living

systems encode and regulate toward specific patterning out-

comes, and where on Wiener’s cognitive scale (figure 1h)

the decision-making processes of patterning systems

lie [6,10].

While significant progress has been made with respect to

molecular pathways required for pattern control (e.g. [11]),

the focus to date has been largely on understanding and

manipulating the cellular hardware. The algorithms and

‘software’ that enable cells and molecular networks to make

real-time decisions with respect to much larger systems-

level properties (size of tail, position of eyes, etc.), and to

adjust when the starting state or the setpoint is altered in

real time, are still poorly understood. Likewise, a significant

gulf exists between mechanistic models of gene-regulatory

networks (GRNs) and attempts to understand the functional

goal-directedness of large-scale patterning plasticity from a

control theory or cybernetic perspective [12]. This knowledge

gap is the main barrier to the highly anticipated revolution in

regenerative medicine, which seeks to implement in biomedi-

cal settings the kind of top-down modular control observed

throughout the tree of life. Triggering the repair of damaged

complex organs, and building novel, functional constructs

(living machines or ‘bio-bots’ [13]) in synthetic bioengineer-

ing applications, will require new approaches to

complement molecular biology. Knowing which low-level

rules to change, in order to obtain desired systems-level out-

comes (e.g. adjusting cellular pathways to grow a limb of a

different shape), is a well-known ‘inverse problem’ [14] that

holds back advances in the many areas of biology and medi-

cine that depend on rational control of anatomical structure.

Thus, is it crucial to learn to intervene at the high-level

decision-making modules of complex biological systems

instead of only trying to micromanage the ‘machine code’

of molecular networks directly [15–18].

The field of neuroscience shows a path forward: not only

does it include advances made at multiple levels of descrip-

tion (from synaptic molecules to representation of visual

field contents in neural networks to high-order reasoning in

primate societies), but it readily incorporates deep ideas

from other fields such as dynamical systems theory (DST),

thermodynamics and computer science [19–21]. How can

the rest of biology benefit from a similar approach, in which

multiple levels of analysis and intervention coexist, and in

which a focus on computation and information merges with

studies of molecular mechanism? Here, we attempt to sketch

a roadmap toward filling in the missing pieces for the next

generation of developmental and regenerative patterning: low-

ering the barrier for researchers in pattern regulation to begin

to exploit powerful conceptual tools that will complement
molecular genetics with the crucial computational, cognitive

perspective.

Brains and neurons evolved from far more primitive cell

types that were performing similar functions in the service

of body patterning and physiology. We and others in the

field of basal cognition have argued that, while nervous sys-

tems optimized the speed and efficiency of information

processing for control of motile behaviour [22], many of the

cognitive tricks of brains are reflections of much more ancient

processes that performed information processing and

decision-making with respect to body structure and function.

Many systems, including bacterial films, slime moulds, plant

roots and ant colonies, have been shown to exhibit brain-like

behaviour [10,23,24]; indeed, the same molecular hardware

underlying higher cognition (ion channels, neurotransmitters

and synaptic machinery) was already present in our unicellu-

lar ancestor. While this is not yet a mainstream perspective,

evolutionary contiguity and recent genomic analyses are con-

sistent with the long-known fact that brains and aneural

systems share not only molecular components but also com-

putational functions, allowing many aneural and pre-neural

systems to implement learning and adaptive behaviour.

Despite the unquestioned suitability of hierarchical neural

architectures for advanced types of representation, the phys-

iological, behavioural and metabolic robustness of single cells

reflects computational needs that are different in degree, not

kind, from the obvious cognitive capacities of brains. In

metazoans, the somatic and central nervous system compu-

tational systems interact, as brains provide instructive cues

for organ patterning from the earliest stages of development

[25] as well as signals needed for cancer suppression [26],

while conversely, brains are able to adjust their cognitive pro-

grammes to function well in radically altered body

architectures, such as effective vision via eyes made to

develop on the backs of animals [27].

The basal cognition field, and the open puzzles of

dynamic pattern regulation, challenge us to develop a

broader understanding of what kind of physical systems

can underlie cognitive processes. When does it make sense

to analyse a system as a cognitive system as opposed to an

exclusively biochemical perspective? What tools are available

for unifying mechanistic or dynamical systems perspectives

with information or computation-based ones? Here, we intro-

duce the strategy of the Cognitive Lens—a view of biological

systems from a fundamentally cybernetic perspective, asking

what measurements, actions, representations, goal states,

memories and decisions are being undertaken at the various

levels of organization. This view seeks to complement (not

replace) molecular descriptions of biological systems; more-

over, we do not claim that any one perspective is uniquely

correct [16]; next-generation biology requires a versatile

toolkit with a variety of Lenses, any of which can be useful

to different degrees in specific cases.

We have two main aims in introducing the Cognitive

Lens, which is not yet often used outside of behavioural

studies and neural systems. First, to briefly overview the

idea (fully developed elsewhere, [28–30]) that a mechan-

ism-based (bottom-up) perspective can be complemented

with a cybernetic, top-down one for more efficient control

of large-scale pattern in regenerative medicine and synthetic

morphology settings. Second, to introduce biologists to

deep concepts from other fields and illustrate their inter-

relationships, in order to lower the barrier for the application
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Figure 2. Mapping between various tools and the most related cognitive
concepts. A taxonomy mind-map of tools to analyse cognitive phenomena,
broadly decomposed into deterministic and statistical. The deterministic tool-
set further consists of dynamical and algorithmic sub-categories, while the
statistical set consists of the information-theoretic and least-action principles
sub-categories (see §3a – e for detailed explanation). The mapping between
the tools and the cognitive phenomena is not necessarily one-to-one. For
example, the dynamical concept of ‘attractor’ can be used to study both
the cognitive concepts of ‘decision-making’ and ‘memory’. We explain
some of the cognitive phenomena and the tools mentioned here in §§2
and 3; for definitions of those not described in those sections we refer
the reader to the Glossary (box 1). Moreover, the list of tools and phenomena
shown here is not exhaustive. For example, the well-known ‘Hamilton’s prin-
ciple’ (Glossary) is a type of least-action principle that belongs to the
dynamical systems toolset (not shown here). Finally, the mappings between
the tools and the phenomena that could be studied with them are proposals,
some of which are described in §3. (Online version in colour.)
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of new kinds of models to patterning contexts (figure 2). We

first review several key principles of cognition, computation

and cybernetics. We then outline methods for quantitative

analysis using various well-established mathematical tools

and illustrate examples of systems analysed simultaneously

by both DST and cognitive science. Regenerative biology

serves as an ideal context in which cognitive explanations

can facilitate better prediction and control of complex systems.

Advances in taming the mechanism–cognition duality will be

highly impactful for regenerative medicine, evolutionary

biology, cognitive science and artificial intelligence.
2. A cognitive perspective of biological
patterning

(a) Overview
Metazoan embryogenesis reliably builds an exquisitely com-

plex body plan, which (in many taxa) is actively defended

from injury, ageing and cancer by a variety of processes

that orchestrate individual cell behaviour towards a specific

target morphology. The ability to reach a defined systems-

level outcome from diverse starting states is homologous to

familiar cognitive processes such as memory and goal-seek-

ing behaviour. While complex outcomes certainly can

emerge from iteration of low-level rules with no encoded

goal state [30–32], data from regenerating planaria, deer

antlers, crab claws and salamander limbs, reveal that target
morphology can be re-written (reviewed in [1,14]). Bioelectric

circuits in planarian flatworms can be transiently shifted to a

state that induces a double-headed worm to form upon

future rounds of amputation, while trophic memory in deer

produces ectopic tines at locations of prior years’ damage

in the new antler rack. All of these examples are induced

by physiological or mechanical stimuli (experience), not

genomic editing, underscoring the parallels with memory:

somatic tissues, like brains, can store different information to

guide future behaviour (memory) in the substrate specified

by the same genome. In other words, the pattern to which

regenerative processes build can be permanently re-specified

by altering biophysical properties that encode large-scale

endpoints [2,8,33]. Thus, evolution makes use of beneficial fea-

tures of both the emergent complexity (for filling in local

details) and homeostatic feedback loops that store anatomical

set-points (large-scale goal states). Control circuits that establish

and maintain specific system-level patterning states further

forge a conceptual link between developmental mechanisms

and the cybernetic processes that occupy the transitional

domain along the continuum ranging from purely physical

events to information-processing computations.

We have elsewhere detailed the many parallels between

patterning processes and cognitive ones [33], as well as

highlighted the many known roles of neurotransmitters, bio-

electric circuits, electrical synapse-mediated tissue networks,

etc., in mediating decision-making among non-neural cells

during morphogenesis [12]. Whereas brains process infor-

mation to move the body through three-dimensional space,

non-neural bioelectric networks control cell behaviour to

move the body configuration through anatomical morpho-

space. The processes that guide behaviour and cognition are

thus parallel to those that guide adaptive pattern remodel-

ling, in both their functional properties and their molecular

mechanisms. Likewise, the persistence of functional mem-

ories during the dynamic remodelling and even

replacement of brain structures [34,35] is revealing the tight

integration of cognitive content and body structure control.

This suggests that techniques used to probe cognitive mech-

anisms could profitably be applied to understand the

dynamics of pattern regulation. While this approach has

driven advances and new capabilities in appendage regener-

ation [36], control of organ specification in embryogenesis

[37] and cancer normalization [38], it is often resisted because

of its teleological aspects: a focus on pattern homeostasis and

the ability of cells to work towards implementing pre-speci-

fied (but re-writable) anatomical outcomes. Fortunately,

cybernetics, control theory and other areas of engineering

have long provided rigorous formalisms within which to

understand goal-seeking devices and processes [39]. Thus,

there is significant need and opportunity for new, quantitat-

ive theory to smoothly integrate data and models made at the

level of molecular mechanisms with those formulated to

understand decision-making in morphogenetic contexts

from a cognitive perspective.
(b) Defining ‘cognition’
Disparate views exist on what precisely is meant by cogni-

tion, which we broadly classify into the following

categories: informational, dynamical, statistical and learning.

From an informational viewpoint, Neisser defines ‘cognition’

as any process where sensory information is transformed,
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reduced, elaborated, stored, recovered and used [40,41]. Lyon

defines cognition as any set of information-processing mech-

anisms that enables an organism to sense and value its

environment geared towards vital functions such as survival

[42]. From a dynamical viewpoint, Maturana & Varela [43]

define cognition essentially as life itself, in that they both

require sensorimotor coupling or perception–action (a

specific type of information-processing mechanism) routed

via the environment. From a statistical point of view, cogni-

tion may be defined as a process that resists the dispersive

tendencies imparted by the second law of thermodynamics

by a system containing a boundary that separates it from

the environment. Specifically, it imposes a lower bound on

the dispersion of the sensory states, by selectively sampling

them and using those states to actively infer their causes

[44]. A more nuanced take argues that cognition can exist in

a system only when a hierarchically separate self-organizing

dynamic subsystem (e.g. nervous system or something analo-

gous) within the more basal self-maintaining metabolic

system appears, and the two interact to serve the organism’s

survival [41,45]. The perspective of learning is the simplest

of all, where it is purported that any system capable of learn-

ing (with respect to intentions) and goal-seeking (to satisfy

intention by implementing learned strategies) is a cognitive

system [41,46,47]. Goodwin argues that a system that can

learn and transmit higher-level ‘laws’ (e.g. those coded in

the genome or in the brain that generates language) compared

with the lower levels of physics and chemistry are cognitive

systems, since these laws constitute the ‘knowledge’ contained

by the system of its own behaviour in the context of some

environment (e.g. morphogenesis) [47].

A spectrum of definitions of cognition is available in this

emerging, interdisciplinary field (see [41] for more). It is well

known that defining cognition is a difficult task and that

there is no real consensus yet [41]. For this reason, we do

not adopt any one definition, but rather focus on tools that
can in principle help characterize any of the various forms of cogni-
tion. For illustration, in §3e we demonstrate how some of

these tools can be applied to characterize one of the most

well-known forms of cognition, namely learning. Moreover,

our goal in this paper is not to definitively resolve an uncon-

troversial definition of cognition, but to present tools that can

help with research. We believe that progress in experiment

and analysis will result in refining an accepted definition,

and that it would be premature to establish it at this time.

A key aspect of our perspective is that the right question is

not whether a given system is cognitive or not, but, eschew-

ing an artificial binary classification, the degree to which a

given system might be cognitive. We ask what kinds of infor-

mation-processing models might provide the most efficient

prediction and control of the information-processing drivers

of the system behaviour, and where on the Wiener scale

(figure 1h) it might lie. This view suggests the applicability

of a wide range of conceptual tools (figure 2) to problems

outside of neuroscience to which they are traditionally

applied.

Cognition is thus a general phenomenon that is substrate-

independent, and by implication a higher-level phenomenon,

in the sense that diverse cell- and molecular-level mechan-

isms are dynamically harnessed toward system-level

outcomes [2]. For this reason, we suggest that taking a cogni-

tive view of biological processes will aid top-down control.

As a further consequence of its higher-level form, cognition
does not require a special organ like the brain (we illustrate

this important point in §3f with the help of a learning-

based example). Even single cells in a multi-cellular organism

[46] or single-celled organisms like bacteria possess basal cog-

nitive capacities [2,9], and interestingly use brain-like

bioelectric dynamics [48]. Escherichia coli, for example, has

pathways for perception and for adaptation, which enables

it to efficiently perform chemotaxis, tolerating a broad

range of environmental uncertainty by implementing a

memory-based mechanism [9]. While some authors believe

that life is fundamentally cognitive (requiring information

processing at the genetic, physiological and behavioural

levels to stay alive in a hostile environment), this is not

necessarily the case. While today’s living organisms, which

have passed a very stringent selection filter, are no doubt sig-

nificantly cognitive, it is possible that artificial constructs can

(and soon will) be created by synthetic biologists which are

alive but not cognitive, and thus would not be ecologically

competitive outside the laboratory.

The various forms of cognition like those described above

can be characterized using tools like those described herein.

For example, the sulfur regulome of Pseudomonas can be

viewed, through the lens of information theory (§3b), as an

‘information channel’ where information about the environ-

mental features is received in an encoded form and

transmitted in a decoded form [49]. Thus, an important

aspect of the Cognitive Lens is that it can be applied to a

wide class of systems, from evolved natural organisms, to

synthetic bioengineered ‘biobots’, to artificially intelligent

systems.

(c) Specific patterning mechanisms as a form of
cognition

Cell signalling can be viewed as a type of dynamical cogni-

tion, since the outcome depends on history of the states

(e.g. protein concentrations) and the recursive interactions

that determine how the states unfold [50]. For example, the

phenomenon of how various cell types emerge from a

single type (the germ cell) can be described by a process of

symmetry breaking caused by a small change in the inter-

action between genes (specifically known as ‘bifurcation’;

see Glossary, box 1), where molecules in slightly different

states suddenly polarize into extremal states (cell types)

[50]. This context-dependency lies at the core of cognitive

information processing.

Alan Turing proposed a mechanism underlying the emer-

gence of heterogeneity in patterns, which can be classified as

a type of informational cognition. He designed a reaction–

diffusion system (molecules can both react, altering their con-

centrations, and diffuse) that generates patterns like stripes,

spirals and spots that are strikingly realistic. Turing proposed

that such a mechanism underlies the phenomenon of identi-

cal cells differentiating and creating patterns by reorganizing

themselves [53]. Turing patterns are traditionally compared

with biological patterns that are not based on neurons (e.g.

shells). However, neural underpinnings of Turing patterns

have also been investigated, thus demonstrating that Turing

patterns can, in principle, show cognitive properties [54,55].

In a similar vein, associative memory has been shown to be

possible in reaction–diffusion systems that are not neural in

nature [56], and chemistry-based systems that do not expli-

citly model neurons have been shown to demonstrate



Box 1. Ontology glossary (see also [39,51])

Active inference: A mechanism by which biological systems employ the ‘free energy principle’, where they minimize free

energy either by updating the internal prediction model (beliefs) or by acting to fulfil the prediction.

Adaptation: A set of actions taken by a system to adjust to the environment. It typically involves tuning of the parameters

(e.g. via backpropagation) or the states of a system.

Algorithmic information dynamics: An approach to characterize causation in dynamical systems that involves constructing

algorithmic generative models that reproduce empirical data. It is purported to be a robust alternative to information

theory, as it picks up subtle patterns in cases where the latter, which depends on aggregate properties, may not.

Allostasis: A set of actions taken by a system to establish homeostasis possibly far in the future by anticipating threatening conditions.

Attractor: A type of limit set to which trajectories converge over time.

Backpropagation: A technique used to tune the parameters of an artificial neural network (ANN) such that it accomplishes a

given task. It involves calculating the derivative of the output error with respect to the parameters, and then making small

changes to the parameters in the direction in which the error decreases.

Basin of attraction: The set of all trajectories that converge to an attractor.

Bayesian inference: A statistical procedure for updating the likelihood of a hypothesis based on new evidence. The crux of the

method relies on a simple law of probability known as Bayes’ rule.

Bifurcation: A description of how the limit sets change as a function of the parameters of the system. Period-doubling bifurcation is

a well-known case in chaotic dynamical systems where the number of attractors keeps doubling as the parameter value increases.

Cellular automaton: A type of discrete dynamical system (DS) consisting of a set of cells embedded in a lattice, where each cell

can be in one of two states, ON or OFF, and all cells have the same transition function.

Dynamical system: A set of variables and parameters, and a set of equations describing how they relate with each other and

how the states evolve over time.

Free energy principle: A conceptual framework that describes how biological systems might maintain order. According to this

principle, biological systems strive to minimize the difference between the observed and predicted (encoded as ‘beliefs’)

sensory inputs—the ‘free energy’—thereby limiting sensory surprise.

Flow: The set of all possible trajectories of a DS.

Hamilton’s principle: A formulation of the principle of stationary action which states that the path taken by a physical system is

the one that requires the least total amount of action (e.g. energy).

Homeostasis: A condition of a system where all variables, or a set of essential variables, maintain their states within viable

conditions (e.g. body temperature, blood pressure, etc.)

Inverse problem: In some complex systems, many agents follow local rules, resulting in a complex emergent outcome (e.g. ant-

hills and intelligent ant colony behaviour emerging from simple rules executed in parallel by millions of ants, or body cells

whose activity gives rise to a complex body). The inverse problem is the difficult task of knowing how to change rules at

the small scale to result in a desired change in the large-scale (systems-level) outcome.

Kolmogorov complexity: The length of the shortest algorithm that produces the observed empirical data.

Learning: A set of actions taken by a system to accommodate mapping of new environmental stimuli to the system’s own

behaviour, typically in such a way as to enhance survival.

Limit set: A small subset of the state space that trajectories never leave. A limit set can be a single point or a cycle of points in

the state space.

Memory: A state of a DS, in terms of the variable or parameter states, that represents some past event or environmental stimuli.

Multistability: The property of a DS referring to its characteristic of containing multiple attractors.

McCullogh–Pitts neuron: A highly simplified model of a neuron whose activity is ‘all or none’ [52]. The neuron fires if and

only if the weighted sum of the activities of its input neurons crosses a certain threshold.

Parameter: A component of a DS whose value remains fixed.

Phase portrait: A pictorial representation of the limit sets of the system. It is useful in understanding the long-term behaviour

of the system without worrying about the detailed structure of the trajectories.

Saddle point: An equilibrium point in the state space that has some directions that are attractive and some that are repulsive.

Stable equilibrium point: A fixed point in the state space where trajectories converge over time.

State: The ordered set of values of the variables of a DS.

State space: The set of all possible states of a DS.

Statistical complexity: A set of statistical measures used to quantify the degree of deviation from randomness in a system.

Trajectory: A geometric description of a solution of the system obtained by starting at some point in the vector space and

following the vectors.

Transition function: A rule or a mathematical function that dictates the dynamic behaviour of a single node (variable) in a DS.

Ultrastability: The ability of a DS to change its parameters in response to environmental stimuli that threaten to disturb its homeostasis.

Variable: A component of a DS whose value changes with time.

Vector space: A geometric description of the system where every point in the state space is assigned a vector that describes

how the states change (direction and magnitude).
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Figure 3. Cognitive systems. A schematic of an analysis approach for cognitive
systems: what to analyse (Marr’s three levels of analysis) and how to analyse
( proposed tools of analysis spanning across the levels). Any tool can in principle
be used to study any level ( figure 2). Here is an example of how to relate dyna-
mical systems tools with the three levels, in the context of the problem of
associative learning (§3f ). At the computational level, the associative learning
problem may be specified as ‘associate two stimuli, natural and neutral, of
which the natural stimulus evokes a response while the neutral one does
not. In dynamical systems (DS) language, this may be translated as ‘a
system with two attractors, each associated with a stimulus, corresponding
to low-response and high-response’ (please see figure 6 for details). At the
algorithmic level of analysis, the problem may be solved as ‘every time
both stimuli are supplied, let the ability of the natural stimulus to evoke a
response also strengthen the ability of the neutral stimulus to evoke the
response such that over time the two stimuli become equivalent’. In DS
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neural-like behaviour [57,58]. Thus, non-neural systems can

display cognitive properties as well. In summary, natural

links exist between mechanisms of symmetry breaking and

emergent spatial patterning and the mechanisms by which

past events influence subsequent behaviour (contextual

decision-making).

There are numerous examples of neural systems display-

ing learning-based cognition, but non-neural systems with

similar capabilities have begun to surface as well. For

example, GRNs have been shown to develop ‘associative

memory’ [59–61]—a concept traditionally associated with

neural networks, e.g. Hopfield networks [59,60,62]. Interest-

ingly, similar phenomena have been described over a much

longer timescale, where population dynamics during evol-

ution can be described by not only gene frequencies but

also a kind of associative memory paradigm [60,63–66],

where ‘gene networks evolve like neural networks learn’

[60, p. 5]. The central idea of evolutionary associative

memory is that phenotypes that are more often visited tend

to become more robust owing to stronger evolved associ-

ations between the co-occurring genes underlying that

phenotype [60]. An analogous ‘selectionist’ principle at play

over developmental timescales was proposed by Edelman

as a possible mechanism behind brain development and cog-

nition [67]. Decision-making and memory have also been

attributed to non-neural bioelectric networks that regulate

embryogenesis and regeneration [1,68,69], and cytoskeletal

structures inside single cells [70,71].
terms, this may be translated as ‘let the internal state associated with the natu-
ral stimulus steer that associated with the neutral stimulus to the high-
response attractor’. Finally, at the implementation level, the problem becomes
‘design a network with three nodes consisting of two stimuli and one response,
where there is a connection between each stimulus and the response, such that
the strength of the connection between the neutral stimulus and the response
increases over time with the joint application of the two stimuli’. In DS terms,
this is equivalent to ‘design a 3-variable (two weights and one response)
coupled DS with a positive feedback loop such that the weight-state of
the natural stimulus steers the weight-state of the neutral stimulus from
the low-response basin of attraction through the basin-boundary to the
high-response basin of attraction’. (Online version in colour.)
3. A cognitive toolkit to analyse biological
patterning

David Marr proposed to analyse any cognitive system at

three different levels (top to bottom): computational (what

is the system trying to solve), algorithmic (how it solves the

problem) and implementational (what mechanisms does it

use to solve the problem) [72]. This strategy for biology is

compatible with recent work on expanding explanatory para-

digms beyond the molecular focus [16]. Below, we present a

cognitive toolkit—a suite of well-established analytical

methods that can be applied to understand and control com-

plex biological outcomes. Importantly, these methods are

agnostic, hence orthogonal, to the levels of analysis

(figure 3). For example, the set of variables used in the dyna-

mical systems analysis could refer to the spiking activity of

neurons, cell types or behavioural performance of entire

organisms (e.g. maze studies; also, figure 3 legend describes

a more detailed example based on learning). Furthermore,

we emphasize that the tools in this suite offer a view through

which to analyse cognition in all of its manifestations, while

being agnostic to its various substrates (whether living or

non-living); we illustrate this in §3f with respect to a specific

cognitive phenomenon, namely, learning.

We broadly classify the tools to characterize cognitive

phenomena into four categories (figure 3): dynamical sys-

tems, information-theoretic, least-action principles and

algorithmic approaches. The same tool can be used to study

different phenomena, and the same phenomenon can be

studied using different tools (figure 3). For example, both

the dynamical tool of attractors and the information-theoretic

tool of mutual information can be used to characterize learn-

ing from complementary perspectives (described in more
detail in §3f). Likewise, the statistical tool of Bayesian infer-

ence can be used to study both decision-making and

memory (see, for example, [73,74]). Thus, a given cognitive

phenomenon has various aspects (dynamical, statistical,

etc., as described in §2b) that can be simultaneously studied

using the toolkit. In the following, we describe each of the

four types of tools in detail along with examples.
(a) Dynamical systems-based approaches
DST constitutes a set of analytical methods that help under-

stand how processes, including cognitive ones, unfold over

time, and how they are individually and collectively influ-

enced by endogenous and exogenous entities [75–77]. It is

specifically aimed at characterizing the overall behaviour of

a complex dynamical system (DS) which is mathematically

defined as a set of coupled differential or difference

equations. These techniques depict the attractor states, the

number and types of attractors, the basins of attraction associ-

ated with each attractor, the way these properties change as

the parameters of the system are varied, etc. (see Glossary
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for definitions of the terms). DST methods have been exten-

sively applied to study biological systems. For example, a

technique known as ‘bifurcation analysis’ (see Glossary)

helps explain why a network of interconnected cells and sig-

nalling pathways can lead to cells assuming different

identities (cell types) despite initial homogeneity [50]. Like-

wise, the ‘parameter’ of a DS (e.g. coupling strength among

cells) can impart it with a potential to exhibit multiple

stable states that may for instance correspond to multiple

cell types. For example, dynamical systems approaches offer

possible explanations for how a cancerous state might orig-

inate and stabilize over time [50,78]. Similarly, stochastic

outcomes of planarian regeneration experiments [4,79]

reveal the need to understand the circumstances that dictate

stability of specific outcomes and the stimuli that might

shift a system among the different stable anatomies.

A central insight of DS-based modelling is that a DS

capable of some cognitive task, e.g. object discrimination,

does not necessarily know how to solve the task via formal

representation; problem-solving can emerge through a

dynamic interaction between the DS and the environment

[75]. One of the simplest applications of DST concepts is

the view of cell type as an attractor state in the state space

of gene expression [80,81]. Importantly, it is the same GRN

that is instantiated in every normal cell, and yet the

expression profile of one cell may differ from others. In

other words, the fate of the cell type depends on the basin

of attraction the cell finds itself in, which may be determined

by contextual inputs [78]. One possible mechanism by which

progenitor cells differentiate into specific types is by destabi-

lizing the attractive state of the former, a process known as

critical transition [82].

DS modelling has helped illuminate the control aspects of

several patterning systems. For example, an analysis of a

dynamical network model of Drosophila disc segmentation

has shown that it is sufficient to control a small set of genes

to guarantee specific segmentation patterning outcomes

[83]. Likewise, an analysis of a dynamical network model

of the leukaemia signalling network has revealed how to sys-

tematically steer the state of the system into a cancerous state

or apoptotic state, also involving the control of small subsets

of genes [84].

What kinds of dynamical systems are cognitive? Various

views have been offered on this deep philosophical question

[45], which can be broadly categorized as behaviour-based

and organization-based. The former characterizes cognition

as a specific form of behaviour (e.g. a closed-loop brain–

body–environment interaction [75]), whereas the latter [45]

posits a form of behaviour that is also weakly and bidirection-

ally coupled with the metabolic processes that scaffold the

behavioural system itself (e.g. homeostasis is an integral

part of cognition [85]). In this paper, we have stepped aside

of this important issue, and rather focused on using dynami-

cal systems as a tool to characterize cognition.
(i) Artificial neural networks
Artificial neural networks (ANNs) constitute a class of bio-

logically inspired dynamical systems that are often used to

make classifications (e.g. distinguish among images of dog

breeds) and predictions (e.g. forecast stock prices). Concep-

tually, connectionist ideas at the dawn of the ANN field

were important because they forged a rigorous link between
simple physical signalling systems and logic operations and

memory, which are the primitives of cognition [52,86–89].

This is because, for every set of logical propositions there is

a McCulloch–Pitts neural network (see Glossary) that

implements it, and vice versa [52]. More generally, for any

DS (not just neural networks), there exists an ‘interpretation’

function that maps logical propositions to the regions of its

state space [90]. The central idea that connects neural proces-

sing and patterning is succinctly laid out by Grossberg [21]: it

is the same principle at play in the brain, where neurons

sense information, communicate it among themselves and

construct neural patterns, that must underlie patterning in

systems outside of the brain as well. Accordingly, ANNs con-

stitute an important class of models in various domains of

developmental biology: Planarian morphogenesis [91], Droso-
phila embryogenesis [92] and many more [93]. In all these

models, ANNs either learn or control the corresponding

developmental process.

An ANN consists of a network of processing ‘units’

known as ‘neurons’ (figure 4). A unit typically follows a non-

linear threshold-like behaviour, where the ‘firing rate’ which

depends on the firing rates of the input neurons follows an S-

shape curve (that is, beyond a threshold total input, the

output rises dramatically). Every ANN has an ‘input’ layer,

zero or more ‘hidden’ (processing) layers and an ‘output’

layer. An ANN computes the output from the input infor-

mation by processing it in the hidden layers. For example, a

classifier-ANN might receive the pixels of the image of a

dog in the input layer, and output a number representing

the breed by processing various features of the image (size,

colour, shapes of the ear flaps, etc.). A predictive-ANN, for

example, might receive a sequence of words in the input

layer over time, and output the words that it would predict

to follow by processing it in the hidden layer (e.g. by drawing

from a memory of exposure to past example word

sequences).

There are mainly two different types of ANN architec-

tures, namely feed-forward and recurrent. Connections in

the former flow in a unidirectional manner, whereas they

can form cycles in the latter. The main consequence of the

architectural difference in terms of functionality is that feed-

forward ANNs cannot remember past inputs, whereas recur-

rent ANNs have the capability to do so by storing an

encoding of them in the form of the so-called ‘internal

states’ in the hidden layers. For this reason, the input in a

feed-forward ANN is fixed, whereas the input in a recurrent

ANN can vary over time. Likewise, the output of a feed-for-

ward ANN is a fixed pattern, whereas recurrent ANNs can

output dynamic patterns. In this sense, recurrent ANNs not

only tend to be better models of the brain but also find

better engineering applications [94].

ANNs can be trained to perform specific tasks through a

process called ‘learning’ that typically involves adjustment of

the connection ‘weights’ (modelled after synaptic weights). A

common method of learning in ANNs is known as ‘back-

propagation’ where the adjustments to the weights are

calculated based on the relationship between the current

weights and the output error: if increasing the weight

increases the error, then it is decreased by a small amount;

otherwise it is increased. A trained ANN that has learned

to perform a certain task can be thought of as having a

‘static memory’ in the form of the configuration of connection

weights. In comparison, the memory of input sequences in
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the internal states, as described above, can be thought of as a

form of ‘dynamic memory’. Backpropagation is a form of

‘static learning’ where the ANN is trained offline before put-

ting to test, and once trained the weights do not change.

Another form of learning is known as ‘dynamic learning’,

where the weights could change over time as the ANN is

functioning. A classic biological analogue of dynamic learn-

ing is Hebbian learning, the principle that neurons that fire

together wire together. An example of this type of ANN is

presented in §3f.
(b) Information-theoretic approaches
Information theory (IT) offers a set of tools that can help ana-

lyse how the constituent parts of a system store, process and

exchange information via processes like information acqui-

sition, memory and recall [95]. Claude Shannon formulated

mathematical theorems that describe how messages can be

passed along noisy channels [95,96]. Measuring the channel

capacity of neurons has been the object of active research

[95], and it has been reported that the brain operates at an

optimal capacity [97]. Remarkably, not just brains, but a

plethora of biological systems ranging from GRNs to flocks

of brains operate with near-optimal information transmission

[97]. We next describe a few basic information-theoretic

measures that biologists may find useful.

Entropy is defined as the amount of information gained,

or the uncertainty reduced, by learning the answer to a
question. For example, if a question can have four equally

likely answers but only one of them is correct, then it takes

a minimum of two questions to learn the correct answer,

and the associated entropy is equal to 2 ‘bits’. If the answers

have differing probabilities, then the entropy would be less

than 2 bits; it takes fewer than two questions on average to

determine the correct answer. Finally, if only one of the

answers is possible, then entropy is 0 bits, since there is no

uncertainty to begin with [39]. Mutual information (MI)

between two variables X and Y is defined as the amount of

uncertainty reduced in guessing the value of one by knowing

the value of the other. For example, if X represents the state

(ON/OFF) of a switch and Y the state (ON/OFF) of a light

bulb, and if Y is ON if and only if X is ON, then there is maxi-

mum MI between them, since the state of one can be inferred

from the state of the other with complete certainty.

The MI measure, as defined above, contains no reference

to time, but time is an important feature of communication,

since there is an inevitable time delay in the communication

between the parts of a system. The transfer entropy (TE)

between a source variable X and a target Y partly resolves

this issue: it is defined as the reduction of uncertainty in

the future state of Y provided by learning the current state

of X beyond the uncertainty reduction offered by the past

states of Y [98]. Thus, it measures how much ‘pure’ influence

X has over Y, beyond what Y’s past has. Active information of

X is defined as the amount of uncertainty reduced in the

future state of X by learning the past states of X. Various
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other dynamic extensions of MI have been proposed [99],

some of which can quantify interdependencies at multiple

spatial scales. One such measure, known as effective infor-
mation, can be used to quantify the average uncertainty

reduced by the global state of the system on the future

global states, thus quantifying causality [100]. Other related

measures are defined in the ‘integrated information theory’

framework [98,100].

One example of these techniques was the analysis of an

artificial ‘agent’, driven by a continuous-time recurrent

neural network, that solves a relational categorization pro-

blem [101]. A ball of some size falls vertically in a virtual

space, followed by a ball that is either larger or smaller

than the first. The agent is free to move horizontally, and it

has sensors through which it can collect information about

the features of the ball. The goal of the agent is to ‘catch’

the smaller ball and avoid the larger one. An ‘information

flow’ analysis (capturing how information is transferred

between the components) of the agent using the above infor-

mation-theoretic measures, along with certain multivariate

generalizations of the same, revealed various interesting fea-

tures. For example, it was found that the agent performed

‘information offloading’, wherein the position of the agent

partially encoded the size of the first ball. Furthermore, the

agent was also found to perform ‘information self-structur-

ing’, wherein the agent shapes its own interaction with the

environment (in terms of movement) such that its position

also encodes the relative size of the two balls [101]. For this

analysis, the authors devised novel dynamic extensions of

MI that measured the information content between variables

at different times or how information was transferred

between them [101]. These ideas of offloading and self-struc-

turing, quantified by information-theoretic measures, are

philosophically well-founded in the frameworks of

embedded cognition [102,103] and embodied cognition

[104], which argue for the central roles of the environment

and the body of the cognitive agent aside from the brain.

A similar form of information flow analysis has also been

performed on a realistic model of klinotaxis behaviour

(attraction to salt) observed in Caenorhabditis elegans, reveal-

ing several interesting features [105,106]. Some of the

findings include left/right information asymmetry between

interneurons of the same type, gap junctions playing a critical

role in giving rise to the above asymmetry and an ‘infor-

mation gating’ mechanism where the state of the system

determines how information is transferred [106]. Moreover,

the above analysis was performed on an ensemble of

models all of which reproduced observed klinotaxis with

equal performance. The crucial finding was that even

though the model parameters widely varied, thus resulting

in different models, the emergent information flow architec-

ture was unique [106]. This kind of analysis,

complementing recent efforts to understand the signalling

perception space of cells in vivo [107,108] will be indispensa-

ble to understand the decision-making of cells during

development, regeneration and immune system function.

A recent analysis of the GRN controlling the yeast cell

cycle [98] found that the TE between pairs of genes in the net-

work was significantly larger compared with the TE

measured in the associated null models (models of null

hypotheses). This result suggests two key ideas: the operation

of the network was selected for by natural selection, and the

TE is likely optimized for the cell cycle function. Furthermore,
it was found that the TE from global to local scales was much

more that of the TE from the local to global scale, thus point-

ing to an inherent top-down control mechanism [98]. Other

applications of IT involve the analysis of the effects of

single-gene knockouts on the communication within the

system [109], identification of optimal pathways in cell signal-

ling [110] and identification of the mechanisms by which

information translates into function [111]. It is clear that

numerous opportunities await the application of these ideas

to signalling across molecular, cellular and tissue-level

agents in pattern regulation contexts.

There are strong parallels between DS and IT that are

gradually being revealed [101]. Intuitively, a connection

between them would be expected since ‘information is

necessarily dynamical’ and ‘dynamics is necessarily informa-

tional’ [101, p. 29]. In general, the way in which information-

theoretic quantities vary over time in a DS seems to coincide

with the geometry of the phase space (see Glossary).

For example, in a DS trained to differentiate between objects

of different sizes, it was found that the entropy of environ-

mental information (object size) and the MI between

environmental and neuronal states coincide with the spread

and shapes of the trajectory bundles in the dynamical

phase space [101]. In the example described in §3f, we charac-

terize a system in terms of both dynamical systems and

simple information-theoretic measures.
(c) Least-action principles-based approaches
One of the hallmarks of biological systems is their obvious

goal-directedness. While teleology is a hotly debated subject

[6], cybernetics has shown how mechanisms can instantiate

goal-seeking processes. In cognitive science, the pursuit of

goals by animals is the focus of an active mainstream research

programme, and ideas like active inference are only now

beginning to be used to understand and manipulate non-

neural systems, like organs and appendages which regenerate

to a specific shape and then stop [2,112]. Interestingly, phys-

ics offers a set of powerful ideas with which to understand

systems that attempt to reach a specific end state.

The principle of least action (LA) states that the course

taken by a natural process is the one that globally minimizes

‘action’, mathematically defined as the integral of the

‘Lagrangian’ of the system (e.g. the difference between kinetic

and potential energies). From this body of mathematical

work various special natural laws, like Newton’s Laws of

motion, can be derived. For example, the path taken by a

ball rolling down a frictionless ramp can be calculated

using Newton’s Laws of motion (a ‘bottom-up’ approach),

or using Lagrangian mechanics (Hamilton’s principle)

simply by requiring that the ball reach the bottom by spend-

ing the least total amount of energy (a ‘top-down’ approach)

[113]. These principles have begun to be applied to under-

standing biological complexity, collective behaviour,

evolution and brain function [114–118].

Cognitive systems tend to be goal-directed [41], as an

important component of cognition is choosing among mul-

tiple available options and constructing an efficient path to

the goal. Information processing would especially be

required to compute the most appropriate path from a set

of multiple sub-optimal and perfectly optimal paths. In this

sense, LA offers a suitable approach to characterize cognition

where the Lagrangian would comprise the combination of
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how fast the system is and how far it is from the goal. In other

words, cognition can be characterized as the set of LA steps

taken by the system to attain the goal. On the other hand,

we note that goal-directedness and LA are necessary but

not sufficient for cognition, since non-living systems exhibit

such properties as well (the example of the ball rolling

down a plane described above). We next describe specific

applications of LA in characterizing the mechanisms of

certain cognitive systems.

Learning and inference in neural networks can be viewed

as applications of the LA principle [119–122]. If the edge

weights of an ANN represent an imaginary particle’s coordi-

nates, then the loss function (defined as the error between the

observed output and the target) would represent the poten-

tial energy of the system of particles and the derivatives of

the error with respect to the weights would represent the kin-

etic energies of the particles [120,121]. Thus, learning in the

neural network involves transforming the potential energy

(error) into kinetic energies (weight alteration), together con-

stituting the ‘cognitive energy’. The principle of LA simply

helps compute the ‘cognitive action’ (the learning trajectory),

from the constraint that the least amount of cognitive energy

is spent. Such a process is also at play in the case of a neuron

becoming a target for a neurotrophic factor, or when a new

synapse is generated [122]. Moreover, this view extends to

aneural processes as well, like when bacteria display chemo-

taxis or when humans acquire more resources over time, both

targeted at consuming energy in the least time [122].

The ‘free energy principle’ which states that biological

systems strive to minimize surprise in their sensory states

has foundations in LA. Models of ‘active inference’, based

on the free energy principle, have been proposed as under-

lying embodied perception in neuroscience [123]. In these

models, systems strive to infer the causes of their inputs

and act to reduce the uncertainty (also referred to as free

energy minimization) about those causes [112]. The

‘inference’ part of the model can be viewed as the perception

of the system, while the ‘active’ part is its action. Being a

model of perception and action, active inference is a model

of cognition that helps generate perception–action loops in

the most efficient way possible. The unique feature of the

active inference framework is that it is very general, as it

makes no assumptions about the actual mechanisms

involved, thus leading to the hypothesis that free energy

minimization is a fundamental property of biological systems

[123]. According to this framework, neurons encode a genera-

tive model of the world in terms of the sensory signals they

should expect at a given instance. The predictions are then

compared with the actual sensory signals from which an

error is computed. The prediction error is then used to

align predictions to the actual signals, whereas the action

strives to align the actual signals received to the predictions

[124]. A specific mechanism of neural cognition based on

active inference, known as ‘predictive coding’, has been pro-

posed [19,125]. In this model, the brain is organized as a

hierarchy where predictions are generated in a top-down

fashion, whereas prediction errors are propagated bottom-

up, thus constituting a form of ‘message passing’ [19].

We have suggested that this kind of process is applicable

to biological systems at many levels; cells, tissues and whole

organs need to refine internal models of their environments

to better anticipate stressors and to properly react to develop-

mental signals. One interpretation of somatic regeneration is
that bodies strive to minimize the difference between the cur-

rent anatomy and the target morphology; it remains to be

seen whether the bioelectric and biochemical processes by

which cells measure local and global properties to carry out

regenerative repair fit the predictions of surprise minimiz-

ation models. Being a generic model of cognition, active

inference approaches have also motivated a variety of aneural

contexts, including self-organization in a primordial soup

[19], and morphogenesis in a biological model of the flat-

worm [112]. Moreover, hierarchical forms of active inference

have been proposed as models of specific forms of cognition

such as associative learning, homeostasis and allostasis

[125,126].

Language—arguably the epitome of cognition—has a

unique statistical signature captured by ‘Zipf’s Law’, which

is a power-law distribution, which expresses the empirical

fact that the frequency of a word is inversely proportional

to its rank (the position of the word in a list ordered by fre-

quency) [127]. For example, the most frequent word occurs

about twice as frequently as the second most frequent

word. Clearly, a language has many other features, and yet

Zipf’s Law is almost universal, since many languages have

this property [127]. Of the various possible mechanisms

that could generate a power-law [128], those based on the

principle of LA constitute some. In one study, a combination

of least effort principles and information theory was used to

formulate a generative mechanism. In particular, an assump-

tion that a language-generating mechanism minimized

communication inefficiency and cost of producing symbols

(formulated in terms of information-theoretic quantities) is

sufficient to generate a power-law distribution of the symbols

[129]. Though there was no rigorous formulation of ‘action’

(the integral of the Lagrangian) in that model, one can ima-

gine it being implicit in the process of communication, as it

requires effort. Power-laws, and in general long-tailed distri-

butions, that are characteristic of underlying complexity have

been observed in a variety of biological processes [130–133].

It is an open question as to whether LA-based mechanisms

are at play in these processes.
(d) Algorithmic approaches
Algorithmic approaches are motivated by the view that all

processes are deterministic in nature [134]. They are specifi-

cally distinct from the dynamical and informational

approaches described above, in that they rely on Turing

machines. A Turing machine, originally conceived by Alan

Turing, is an abstract description of a general-purpose com-

puter [135]. Modern digital computing devices are just

customized physical instantiations of a Turing machine.

Since a Turing machine is deterministic, all processes instan-

tiated on it, known as ‘algorithms’, are also deterministic.

Thus, the common goal of algorithmic approaches is to

infer the simplest algorithm that can reproduce a given set

of observations or data, and explain differences between

different datasets (e.g. experimental versus control) using

differences between the associated algorithms.

A well-established measure in this area is ‘algorithmic

complexity’ (AC)—a measure of the length of the smallest

Turing machine program that reproduces a set of obser-

vations. The measure of AC has helped throw some light

on how humans memorize and recall information. Humans

tend to use a process known as ‘chunking’ to memorize
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large sets of information. Essentially, they split the infor-

mation into chunks of some size, memorize those chunks

and attempt to find some way of organizing and relating

the chunks to facilitate recall. It has been reported that

humans tend to minimize the AC of chunks, which is also

directly related to the idea of maximally compressed code

[136,137]. AC has also been found to be useful in explaining

how humans generate and perceive randomness [138]. The

measure of AC has helped characterize certain emergent

properties of dynamical systems, hence the link to cognition.

For example, it helps predict that as a cell shifts from an

undifferentiated to a differentiated state, the epigenetic land-

scape (in Waddington’s terms [139, p. 36]) has fewer and

deeper attractors, indicating that the latter states are more

stable than the former [134]. Also, it helps characterize the

emergence of persistent patterns in Conway’s ‘Game of

Life’, a type of cellular automaton (Glossary) [140].
Figure 5. A GRN model of associative learning. A GRN model adapted from
[141]. The dynamics of w1, w2 and p follow the ‘Hill’ function, which is tradition-
ally used to model gene activation and repression behaviour through a binding
process. An application of conditioned stimulus (CS) alone initially does not evoke
a response (concentration of p is close to zero). However, an application of CS
following a joint application of US – CS stimuli manages to evoke a response.
This is because CS is ‘associated’ with US (unconditioned stimulus) during the
joint application, in the sense that the GRN learns to ‘think’ that CS is equivalent
to US during subsequent applications of CS alone. (Online version in colour.)

.Soc.B
374:20180369
(e) An example of cognitive perspective on a molecular
developmental mechanism: associative learning in
gene-regulatory networks

In this section, we consider the phenomenon of learning—a

hallmark of cognition—to illustrate the utility of our toolkit

and explore the deep consilience among diverse compu-

tational perspectives. Specifically, we show, using the tools

of DS and IT, that: (1) two different models of learning

show the same dynamical behaviour, and thereby that cogni-

tion is substrate-independent; (2) a simple higher-level

learning rule emerges from the lower-level rules specified

by the models, and (3) learning can be quantified by an

increase in the information-level association between the

components involved. Specifically, we present a simple

GRN that displays associative learning (figure 5), then expli-

cate the learning mechanism from a dynamical systems

perspective using some of the tools described above

(figure 6). Then, we present an ANN that performs the same

function as the GRN, thus demonstrating similar learning

capabilities of systems with different mechanisms (figure 7).

The goal of associative learning, in general, is to pair a

neutral stimulus that does not naturally evoke a response to

a native stimulus that does, such that the neutral stimulus

is sufficient to evoke a response following the association.

The neutral stimulus is often referred to as the conditioned

stimulus (CS), and the native stimulus as the unconditioned

stimulus (US). The GRN presented in figure 5 was adapted

from [141], with the only differences existing in the parameter

values (electronic supplementary material, Supplement 1).

This model consists of input molecules (enhancers, shown

in yellow) that bind to certain repressor molecules (red)

allowing transcription of memory proteins (brown) that in

turn activate the transcription of the response protein

(green). The ability of the US to naturally evoke a response

(result in a high level of concentration of p) is attributed to

the assumption that there is a small constant rate of gener-

ation of w1 but not w2. Associative learning in this model

is initiated by the joint application of US and CS, which

through the positive feedback of p (which is initially

increased by the effect of US) and activation by r2, helps

increase the level of w2 (figure 6d ). Following that, both

stimuli are removed, resulting in the lowering of p to zero

(figure 6e). Finally, when CS alone is applied, the level of
w2, which was raised during the association step, is sufficient

to raise the level of p, thus evoking a response (figure 6f ). The

overall time-varying levels of p in response to the various

stimulus are depicted in electronic supplementary material,

Supplement 1, figure S1.

A dynamical-systems view of associative learning in this

GRN model is shown in figure 6. First, we depict the flow of

the GRN under both learning and no-learning conditions.

We next observe that when only CS is applied, the system is

bistable—two attractors exist (one corresponding to a low

level of p and another corresponding to a high level of p),

but when US and CS are jointly applied only one attractor

exists (high p). When no stimulus is applied, naturally only

one attractor exists (low p). Importantly, the separation

between the two basins of attraction in the CS-only case is

almost entirely determined by the value of w2 (a value of

about 600—figure 6a,c,f ). What the associative learning step

(figure 6d ) accomplishes is to guide the state of w2 from the

lower basin into the upper basin associated with high p in

which case the application of CS alone results in absorption

into the upper attractor associated with a high p (thus evoking

a response). In other words, associative learning is about pla-

cing the system’s state in an appropriate context (basin)

associated with a desired output. From a complementary

point of view, DS analysis has revealed a separation between

the learning and non-learning behaviours—the ‘learning

threshold’—which must be crossed by w2 to evoke a high

response. Specifically, w2 must be greater than about 600

(figure 6a,c,f ) to reach the high-response attractor. This

higher-level rule is an emergent outcome of the lower-level

rules specified by the model, revealed only by DS analysis.

We also illustrate the parallelism between connectionist

cognitive models and transcriptional regulatory networks

by illustrating a neural network (NN) that performs the

same task as the GRN above (figure 7a), and whose



800

600

800

600 600

1000

1200

neutral stimulus only no stimulus neutral (not conditioned)
stimulus only

w
2

w
2

response

without learning

with learning
learning phase after learning

400

200

0
0 50 100

both stimuli

4000

3000

1000

2000

0

2000 1200

1000

800

600

400

200

0

1500

500

1000

0

no stimulus neutral (now conditioned)
stimulus only

150 200 0 50 100 150 200 0 50 100 150 200

1000

1200

400

200

0

800

1000

1200

400

200

0

response response

0 50 100 150 200
responseresponse

0 100 200 300 4000 100 200 300 400
response

start and end states of each piece of the red and green trajectories 

the overall initial state is the same in both conditions 

stable equilibrium point 

saddle point

-

-

-

-

continuation of trajectory

learning threshold

(e) ( f )

(b)(a) (c)

(d )

Figure 6. A cognitive view of associative learning as offered by the tools of dynamical systems. Each panel illustrates the flow together with the phase portrait of
the GRN in the space of p and w2 (the w1 axis is ignored for conciseness, since it is not informative). Here, ‘response’ represents the concentration levels of p. The
red and green curves in the top and bottom panels, respectively, depict representative trajectories. The red and green trajectories are each split over time across
the horizontal panels in their respective rows, as depicted by grey dashed lines connecting the consecutive pieces whose endpoints are marked by colour filled circles.
Note that the endpoint of one piece and the starting point of the following piece are of the same colour since they represent the same states. The overall initial state of
the two trajectories (green filled circle) are the same. Also shown in each panel are the stable equilibrium and saddle points. The top panels show CS alone cannot evoke a
response (red trajectory eventually reaches a low-response state in panel (c)). The bottom panels show that following an association of CS with US, CS alone can evoke a
response (the green trajectory eventually reaches a high-response state in panel ( f )). Notice that there are two attractors (hence two basins of attraction) when CS alone is
applied (right panels). In the dynamical systems view, associative learning is about steering the internal state associated with CS (w2) into the basin of attraction associ-
ated with high value of p with the help of application of US. More specifically, a minimum value of w2 is necessary and sufficient to evoke a high response; this is termed
the ‘learning threshold’ (the black dashed line in panels (a,c,f )). Here, associative learning is accomplished by w1 ‘shepherding’ w2 above the learning threshold.

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180369

13
dynamical behaviour is akin to that of the GRN (figure 7b
and electronic supplementary material, Supplement 1,

figure S2). Furthermore, we quantify the increase in associ-

ation between the stimuli (learning) using information–

theoretic tools (figure 7b). Thus, DS analysis not only helps

show that the behaviours of apparently different systems

are equivalent at the dynamical level, but also reveals

higher-level rules the model implicitly makes use of that

are not themselves apparent in the model specification.
The Cognitive Lens perspective on workhorse concepts of

molecular developmental biology, such as GRNs, is useful

because it suggests novel approaches to the control of growth

and form. Most contemporary work is currently focused on

re-writing the circuits (topology) of the GRNs using transgenes

and genomic editing. However, a view of GRNs as learning

associations and classification tasks suggests the design of

closed-loop stimulation protocols to stably change the behav-

iour of the GRN via experiences. Our laboratory is currently
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the behaviour is very similar to the one for the GRN (electronic supplementary
material, Supplement 1, figure S2). Finally, we show an example of how infor-
mation theory can be used to quantify cognition. We show the normalized MI
between the behaviours of w1 and w2 (both change with time, as described
above), showing that it significantly increases during the learning step, and it
remains higher after learning compared with the MI before learning. (a) Sche-
matic of the NN. US, CS and p (response) represent the same as in the GRN
above. The difference is that (1) the dynamics of p follow the sigmoidal acti-
vation which is traditionally used to model the integrate-and-fire behaviour of
neurons and (2) the synaptic weights are influenced by the activities of the pre-
synaptic and post-synaptic neurons following the Hebbian principle. (b) The be-
haviour (response p) of the NN before, during and after the association step
(middle box). The normalized mutual information (MI) between the behaviours
of w1 and w2 is also shown during the three phases. Clearly, the MI increases
during and after learning, even though there is no direct connection between
w1 and w2, thus demonstrating the power of information theoretic tools.
(Online version in colour.)
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pursuing the strategy of altering the function of GRNs in disease

states and developmental contexts by training and behaviour-

shaping strategies taken from cognitive neuroscience.
4. Conclusion
Metazoan bodies harness individual cell activities toward

maintenance and repair of a specific anatomical pattern.

While the necessary molecular mechanisms of this remarkable

process are beginning to be identified, the computational pro-

cesses sufficient for the observed pattern memory and

decision-making represent a fertile area for future research.

Progress is stymied by thematic silos: cognitive-like processes

and patterning mechanisms are dealt with by very different

communities with limited overlap in conceptual approaches.

Here, we introduced a variety of concepts from DST, infor-

mation theory and physics, to help frame a cognitive

perspective from which to view patterning and other

decision-making mechanisms.

Molecular-genetic and behavioural analyses across taxa

show that cognitive abilities arose early in evolution, and

developed gradually, expanding from the control of unicellular

behaviour and physiology, to metazoan embryogenesis and

regeneration, to complex organisms’ purposeful behaviour.

Thus, we suggest a research programme to migrate tools here-

tofore used only for analysis of brain function (and machine

learning) to other areas of biology—especially pattern control.

Dynamic pattern remodelling includes both bottom-up, emer-

gent features (ideally handled by molecular biology and

complexity science) and top-down controls, for which new

formalisms are only now being established. It is crucial for

workers in bench biology to be aware of the deep synergy

and consilience between concepts in disciplines like computer

science, physics and cognitive science, as these represent extre-

mely fertile sources of inspiration for tackling the next

challenges of systems biology and biomedical control.

Fulfilling the promises of regenerative medicine and syn-

thetic bioengineering will require unprecedented advances in

manipulating systems-level outcomes (large-scale anatomy

and function of complex processes like the immune

system). We propose that the most efficient way is to under-

stand and exploit the hierarchical, information-centred

processes that organisms themselves use to implement

dynamic plasticity and multi-level integration. Optimal out-

comes in, for example, regeneration of whole human hands,

will be greatly facilitated by understanding how cell behav-

iour is harnessed toward regeneration and how to exploit

the ability of cells to build to a (re-writable) specification. Off-

loading the complexity onto the cells themselves (not

micromanaging), using training and other ways to modify

tissue self-models and goal-seeking behaviours will necessi-

tate appropriating successful ideas from other disciplines

about the flow of information and control.

Unifications of disparate-seeming concepts and discoveries

of fundamental physical dualities have been some of the most

powerful revelations in twentieth century science. The time is

right for a deep consilience of ideas across several fields, to

show that mechanism and meaning (molecular events and infor-

mation-processing computations/representations) are two

facets of the same biological processes. Advances in this

emerging field will benefit biology (evolvability, origin of multi-

cellularity), biomedicine (cancer, regenerative medicine) and

engineering (custom living machines). As befits the interdisci-

plinary origin of this research programme, broader impacts can

also be expected on artificial intelligence and philosophy

of mind, as the physical bases of active cognitive information

embodied in biological and synthetic substrates becomeclarified.
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