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The history of modelling vector-borne infections essentially begins with the

papers by Ross on malaria. His models assume that the dynamics of malaria

can most simply be characterized by two equations that describe the preva-

lence of malaria in the human and mosquito hosts. This structure has

formed the central core of models for malaria and most other vector-borne

diseases for the past century, with additions acknowledging important aetio-

logical details. We partially add to this tradition by describing a malaria model

that provides for vital dynamics in the vector and the possibility of super-

infection in the human host: reinfection of asymptomatic hosts before they

have cleared a prior infection. These key features of malaria aetiology create

the potential for break points in the prevalence of infected hosts, sudden

transitions that seem to characterize malaria’s response to control in different

locations. We show that this potential for critical transitions is a general and

underappreciated feature of any model for vector-borne diseases with incom-

plete immunity, including the canonical Ross–McDonald model. Ignoring

these details of the host’s immune response to infection can potentially lead

to serious misunderstanding in the interpretation of malaria distribution

patterns and the design of control schemes for other vector-borne diseases.

This article is part of the theme issue ‘Modelling infectious disease out-

breaks in humans, animals and plants: approaches and important themes’.

This issue is linked with the subsequent theme issue ‘Modelling infectious

disease outbreaks in humans, animals and plants: epidemic forecasting

and control’.
1. Introduction
Critical transitions occur when natural systems drastically shift from one state

to another. They are currently receiving considerable attention in ecology,

geophysics, hydrology and economics [1]. In epidemiology, critical transitions

are of relevance to the emergence of new pathogens and the re-emergence of

old ones. They may also be central to the within-host dynamics particularly

when pathogens evolve or mutate in ways that allow them to escape control

by the immune system. Critical transitions often underlie and potentially

enhance (or undermine) attempts to control and eliminate infectious patho-

gens. Following an intervention, the trajectory of the host–pathogen

systems may cross a critical transition where pathogen prevalence drops to

apparent eradication, the robustness of which is strongly determined by the

structure of the transition. Tipping points associated with the coexistence of

alternative equilibria are of particular interest, as small changes in a driving

parameter can lead to large shifts from low to high levels of prevalence (or

vice versa). Continuous external pressure on critical transmission parameters,

or seasonal variation in vector abundance, can also lead to hysteresis, whereby

a delayed response of the system would effectively keep it trapped longer in

either the endemic or disease-free state.
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Figure 1. The human – mosquito SECIR – LXVW coupled model. The human stages of infection ‘SECIR’ are depicted in the central part of the figure progressing from S to
E to I from left to right. The different stages of the mosquito population, from larva (L) to infectious adult mosquito (W), are drawn in the upper and bottom of the figure
progressing from uninfected L, larvae and adults (blue) to incubating (pink) and infected adults (red), from right to left (LXVW). Per capita death rates (respectively,
dH and dM, and dL in the equations) affect all mosquito and human classes, and for simplicity are not included in the diagram. (Online version in colour.)
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Evidence for the existence of alternative steady states in

infectious disease dynamics remains limited [2–4], although

they have been proposed as a possible explanation for the

observation that malaria often fails to re-invade local

regions that have achieved elimination. One potentially

important pre-condition for the existence of alternative

steady states in malaria is superinfection: the infection of a

single host by concurrent multiple strains of the pathogen.

Malaria infections are not fully immunizing, and multi-

plicity of infection (MOI) is common in endemic regions as

a consequence of additional infectious bites by the vector

before the host has cleared a prior infection. In endemic

regions, a large fraction of the human population carries

the malaria parasite asymptomatically in non-apparent

infections that can contribute to transmission [5,6]. Under

these conditions, significant levels of superinfection can

create a positive feedback within the intensity of trans-

mission that has the potential to generate multiple

alternative equilibria and associated tipping points.

A large number of model formulations have been pro-

posed to capture the complexity of malaria epidemiology

[7,8]. The consequences of repeated infectious bites have

been represented in models of re-infection by a formu-

lation that only allows a host to re-acquire infection after

it has cleared a previous exposure. Two such recent

models suggest that this might cause malaria dynamics

to exhibit alternative steady states [9,10]. Here, we develop

a complementary, but more general, analysis that provides

a formulation for superinfection that explicitly allows

infections to occur concurrently without interfering

with each other. We initially present a semi-analytical

approach to identify alternative equilibria in models for

vector-transmitted diseases. We then apply these methods

to a vector-borne disease model that was used to under-

stand the origins of environmentally driven fluctuations

of malaria in epidemic regions [11]. We then broadly con-

sider superinfection in a series of hierarchical formulations

of increasing complexity (commencing with the original

Ross–MacDonald equations [12–15]). We demonstrate

that irrespective of the details, superinfection consistently

creates tipping points that can generate hysteresis in

responses to control efforts (as well as seasonal variation
in vector abundance). We argue that because models for

re-infection and superinfection effectively bracket a conti-

nuum of different assumptions about within-host

dynamics with multiple concomitant infections, then

models that include these vital details of malaria biology

should consistently exhibit tipping points in their response

to control regardless of model formulation. Models that

fail to include these effects may be misleading, or of lim-

ited utility when used to examine transitions towards

low rates of transmission in response to control of vectors

or of the pathogen. Although the model is framed in the

context of malaria in humans, the results should be more

generally relevant to the dynamics of the disease in

other, non-human, hosts and to other vector-borne dis-

eases, when immunity is partial and parasite antigenic

diversity allows repeated infection.
2. The model
The model is formulated as a system of ordinary differential

equations that describe the transmission of the disease

between the mosquito vector and the human host. It differs

from the standard Ross–McDonald model by explicitly con-

sidering the vital dynamics of the two populations.

Figure 1 presents the flow diagram of the initial model

whose equations are described in detail in the electronic sup-

plementary material, §1. (Simplifications of this model are

considered later in the paper.) The mosquito population is

subdivided into larval and adult stages, and adult individ-

uals can be susceptible, infected or infectious. The human

population has a constant size and deaths are assumed to

exactly balance the birth rate; infected hosts are subdivided

into two classes to differentiate individuals whose clinical

infection leads to treatment from those whose natural recov-

ery leads to the acquisition of immunity. These two classes

map, respectively, to symptomatic individuals who are

detected by the health system and to symptomatic or asymp-

tomatic individuals who are not. The latter are crucially

important as clinical infections typically represent only a

small fraction of the total incidence in endemic regions

[16–18]. Dietz et al. [19] and Aron & May [20] scale the



Table 1. Derived parameters are those expressed as a function of basic parameters and variables of the SECIR – LXVW model (figure 1). Their definition is
summarized here, together with their appearance in the electronic supplementary material or main text. The full list of basic model parameters with their
definitions and symbols is given in table S1 (electronic supplementary material, §1.1).

mosquito parameters

rate of infectious bites per human L ¼ a W
N EIR, when expressed as infectious bites per person per year

force of infection l ¼ c a IþC
N equation (2.2)

human parameters

fraction of infectious humans y ¼ IþC
N

loss of immunity rate s ¼ L
exp (L=s0 )�1 equation (S7), electronic supplementary material (section 1.1)

recovery rate r ¼ L
exp (L=r0 )�1 equation (S8), electronic supplementary material (section 1.1)

force of infection b ¼ bL þ be equation (2.2) and equation (S10), electronic supplementary material (section 1.3)

human – mosquito parameters

basic reproduction ratio R0 equation (S43), electronic supplementary material (section 2.2)

dominant period T0 equation (S67), electronic supplementary material (section 4)
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effective recovery rates, r by transmission intensity (the rate

of infectious bites per human). Under the assumptions that

(i) infectious bites arrive at a constant rate, (ii) the individual

infections within a host proceed independently, and (iii) a

constant period, 1/r0, Dietz et al. [19] derived the following

expression for the effective per capita recovery rate:

r(L) ¼ L

exp (L=r0)� 1
, (2:1)

where L denotes the rate of infectious bites per human, and r0

is the basal recovery rate when disease transmission is very

low (more precisely, in the limit of the infectious mosquito

population tending to zero). Thus, the higher the rate of infec-

tious bites per human host, L, the slower the disease

clearance rate. When this rate L is measured per year, it is

usually called the entomological inoculation rate (EIR).

Finally, we assume that once individuals recover naturally

from malaria (including the superinfection state with mul-

tiple concurrent infections), they enter a refractory period

during which they are transiently immune and cannot re-

acquire infection until they return to the susceptible class.

Those who receive treatment as a result of detected sympto-

matic infection either clear infection and move back to the

susceptible class, or fail to clear the parasite and flow into

the I class. All derived parameters such as the recovery rate

and EIR whose expression is a function of basic parameters

(and variables) of the model are summarized in table 1.

The couplings between human and mosquito dynamics are

given by the force of infection b, the per capita rate at which a

susceptible human contracts the disease from infectious bites,

and by the per capita rate l at which adult mosquitoes acquire

the pathogen from infectious humans. Under reasonable

assumptions [21], these two rates can be written as

b ¼ b
W
N

aþ be l ¼ c a y, (2:2)

where b and c are the respective probabilities that humans

develop infection once bitten and that mosquitoes acquire

the parasite from biting an infectious human host. Moreover,

(W/N )a is the number of infectious bites per human host

(see definition of L above), be is an external force of infection

and y is the fraction of infectious humans (see electronic

supplementary material, §§1.2 and 1.3, for details).
Our model can be seen as an extension of the classical for-

mulation introduced by Ross [22] and MacDonald [23] (RM)

(see also [7,21,24] for reviews). Although the original RM

model has given rise to a multiplicity of malaria models [8]

spanning different degrees of complexity that range from

delayed ordinary differential equations (delayed ODEs) to

SIR (Susceptible–Infected–Recovered)-like structures, we

show that these models are all related to the RM formulation

through a set of sequentially simplifying assumptions. In par-

ticular, all converge to the RM model, which is based on two

strong simplifications: (1) constant mosquito (M) and human

populations (N), and (2) only two classes (susceptible and

infectious) representing vectors and humans (see electronic

supplementary material §7 and appendix A1, for details).

We start with the analysis of alternative steady states in the

full model of figure 1, and end with the consideration of

their more general existence in a suite of models of decreasing

complexity. Model parameter space has been explored

between maximum and minimum values (around two differ-

ent parameter combinations—A and B; see electronic

supplementary material, table S1 in §1) that provided a good

fit to data in a previous study from an epidemic region [11].
3. Results
To identify the stationary points of the coupled system, we pre-

sent a semi-analytical method that consists of first finding the

equilibria of the two submodels, namely the expression for

infectious mosquitoes as a function of infectious humans and

vice versa. The fixed points are then obtained by calculating

the intersection of these two curves (figure 2). The generality

and feasibility of this method rest on the linearity of the

human and mosquito submodels when considered separately.

This means that, for a given number of infectious mosquitoes

(Ww), the human submodel becomes a linear ODE system.

And, likewise, for a given fraction of infectious humans (y),

the mosquito submodel becomes a linear ODE system as well.

We summarize the main steps of the approach below (full

details are given in electronic supplementary material, §3).

Once the stationary points have been fully characterized, we

can map several quantities of interest onto the parameter

space, including the model reproductive number R0, the
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expected number of secondary cases produced by an initial

single infection in a completely susceptible population,

and the dominant period, T0, associated with the damped

oscillations in the transients towards stationarity.

(i) Mosquito submodel: stationary points
To obtain the expression for infectious mosquitoes at equili-

brium, one first needs to calculate the fixed point for total

mosquito abundance. It is easy to show that the mosquito

population model has only one globally stable point

(electronic supplementary material, §3):

M� ¼ K0
dL

dM

f � dM(1þ dL=dL)

f
and

L� ¼ dM

dL
Mw ¼ K0

f � dM(1þ dL=dL)

f
: (3:1)

A single condition controls when this point is a feasible

stable point for the dynamics:

f
dM
� 1þ dL

dL
: (3:2)

Biologically, this condition means that the mosquito

population will be locally maintained in a given area when

the number of larvae recruited per female during their

adult average life time compensates for the larval losses

during their development stage. This threshold condition

arises naturally in the full expression for R0 (see electronic

supplementary material, equations S28 and S43), whose

value is positive only when M* is also positive.
(ii) Human – mosquito model: stationary points
The equilibrium number of infectious mosquitoes Ww is

derived by solving the mosquito ODE subsystem at equili-

brium when the fraction of infectious humans y (table 1) is

considered as a fixed parameter. We obtain the curve

Ww ¼ acyw

dM þ acyw

nPgP

nPgP þ dM

� �nP

Mw: (3:3)

A second curve is then calculated by solving the human

submodel at equilibrium for a given level of infectious

mosquito population; this makes b a constant parameter

(table 1). This curve for the stationary fraction of infectious

humans is given by

y ;
I þ C

N

¼ b
nþ (1� x)(rþ dH)þ hbþ x(rþ dH)

q(1þ z)
[uH]nH , (3:4)

where the total force of infection, b, depends on the number

of infectious mosquitoes per human, with q and z standing for

composite parameters. Full expressions for these parameters

and fixed points are given in electronic supplementary

material §3, equations (S61)–(S62).
(a) Coexistence of alternative stable states
Figure 2 shows that the intersection of the curves represented

by equations (3.3) and (3.4) can produce more that one fixed

point. When intersections are present, the corresponding

stable points can be computationally calculated with a
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cobweb procedure (see electronic supplementary material,

figure S2). Although this procedure cannot converge to the

intermediate unstable equilibrium, this point can be calcu-

lated with a standard bisection method [25]. The pair

(Ww, yw) defines the stationary state and the full solution

can then be unfolded from it (see electronic supplementary

material §3 for details). Figure 2 also shows that as the

biting rate a increases, the system undergoes several bifur-

cations. Each of these represents the emergence of a new

stationary point.

The first bifurcation is transcritical [26] and gives rise

to a transition from a free-disease situation (R0 , 1) to an

endemic stable equilibrium (R0 . 0). This kind of bifurcation

is typical of infectious disease models and is found in

Susceptible-Infectious-Susceptible (SIS), SIR and Susceptible-

Exposed-Infectious-Recovered (SEIR) systems [27]. The

second transition corresponds to a saddle node bifurcation

(also called a tangential or fold bifurcation). The tangential

intersection of the two curves defines a critical biting rate

(aC ¼ 0.19089) at which a pair of resting points suddenly

appears, consisting of a saddle node and a second stable

point with higher disease incidence. The previous stable

point remains for the lower incidence endemic equilibrium.

As a result, two basins of attraction coexist, each consisting

of initial conditions that lead to one of the two alternative

stable states. These basins are separated by the intermediate

unstable state. Thus, for the same parameter values and

depending on initial conditions, the system can end up in

one of two possible stable equilibria for high and low disease

incidence, respectively.

The emergence of the first transition (from disease-free to

endemic equilibrium) can be characterized by calculating the

reproductive number R0. The transcritical bifurcation corre-

sponds to R0 ¼ 1 (see vertical broken line in the upper

panel of figure 2, and thick broken line in figure 3a). We

calculated this quantity as the dominant eigenvalue of the
next-generation matrix [28] (see electronic supplementary

material §2.2).

In addition, we mapped R0 onto the sub-parameter space

defined by the carrying capacity of the vector K0 and its

biting rate a (figure 3a). These two parameters determine

the intensity of transmission. The expression underlying R0

is the same for the model with and without superinfection

since this quantity depends only on the basal rates r0 and

s0 (see electronic supplementary material §2, equation S43).

Moreover, for the regions where damped oscillations occur,

the dominant period of those oscillations can be also calcu-

lated (see electronic supplementary material §4). In the

region of the parameter space we studied (see electronic sup-

plementary material, table S1, §1), we found dominant

periods between about 2.5 and 11 years (figure 3b).

Identifying the different regimes of the system requires us

to determine the local stability of the different fixed points.

The Jacobian matrix J* is evaluated at the corresponding

fixed points and its eigenvalues are obtained as the roots l

of the characteristic polynomial:

pJ(l) ¼ det (J� � l 1) ¼ 0, (3:5)

where 1 is the identity matrix. Because this polynomial can

have as many roots as the dimension of the dynamical

system, a fixed point is asymptotically locally stable if and

only if its associated eigenvalues li have all strictly negative

real parts. In that case, if the imaginary part of the dominant

eigenvalue is not null, damped oscillations are observed in

the approach to the fixed point. We determined different

properties of the stationary state, such as the possibility of

coexisting fixed points, parameter-induced bifurcations and

the presence of endogenous (damped) oscillations. The

resulting possible dynamical regimes are mapped onto

different subregions of the parameter space in figure 4.

Comparison of the upper and lower panels shows that the
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coexistence of alternative steady states critically depends on

including superinfection in the model.

Our procedure to calculate fixed points is completely gen-

eral and can be applied to any coupled vector–human model.

It is independent of specific assumptions about the force of

infection, including the existence of an external source of

infection, as well as other possible ways in which both the

mosquito and human submodels might be defined, as long

as both of these are linear ODE systems when considered sep-

arately. In the electronic supplementary material (see §§1 and

7), we add further realism and apply the approach to a

system where the exponential distribution of disease incu-

bation times in both human and mosquito submodels has

been replaced by the more general (gamma) distribution,

which effectively reduces the variance of the incubation

period without changing its average value [29]. The gamma

distribution has lower variance than the exponential distri-

bution. Here, these distributions are implemented for

humans and vectors, respectively, with a chain of nH and

nV compartments. The higher their number, the lower the

variance of the resulting distribution. The stationary solution
reduces to the case illustrated in figure 4 when nH ¼ nV ¼ 1

(see also, electronic supplementary material, table S1).
(i) Hysteresis
Coexistence of stable equilibria can underlie sharp transitions

between levels of disease prevalence if a sufficient pertur-

bation is applied to the system to move it from one basin of

attraction to the other. The responses to more gradual

changes in parameters can instead lead however to hysteresis

[1], which is of key interest to malaria control, since the

dynamic memory of the system can delay responses and

allow the persistence of endemicity beyond the bifurcation

point at which we would expect elimination to occur. A

related further possible effect is an asymmetry in the tem-

poral trajectories from endemicity to elimination, and from

elimination to re-emergence. These hysteresis effects are illus-

trated in figure 5 for slow changes in the biting rate a; these

might occur during the transition between dry and rainy sea-

sons. We consider first changes from an initial biting rate a ¼
0.1 at t0, to a value of 0.5 at the intermediate time ti, and then
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back to its initial value at time t1. The response of the system

is illustrated for the fraction of infectious humans (y ¼ (C þ
I )/N), a measure of disease incidence, where N is total

human population (figure 5b,c). The response of the system

to a linear increase of the biting rate is a nonlinear increase

in disease incidence (figure 5c). This can be represented as

a hysteresis cycle on the corresponding bifurcation diagrams

(panel c). In fact, extensive initial increases in a leave disease

levels almost unchanged up to a certain threshold. In

addition, there is clear asymmetry in the two opposite control

trajectories: the identical linear trajectory back to the initial

low levels of the biting rate does not return the system to

the same initial levels of disease incidence (figure 5).

Beyond the threshold, the system has been pushed towards

a higher incidence state from which it is hard to return.

Although decreasing a back to its initial low values would

eventually lead the system to settle down at the initial low

incidence equilibrium determined by imported infections

(for be ¼ 0), the transient trajectory to this final state can be

very long. Provided everything else remains constant, the

amplitude of hysteresis cycles depends on how fast the driv-

ing parameter changes. The same behaviours can be

illustrated by measuring system response in terms of the

EIR (electronic supplementary material, figure S2 in §5).
(ii) Model robustness
In order to quantify how the presence of bi-stability in

malaria models depends on their degree of complexity, we

evaluated the relative size of the region of parameter space

where this behaviour arises for different formulations

(figure 6). We specified 16 different human–mosquito

coupled ODE models of increasing realism. The models are

labelled according to the number of classes considered for

the human and mosquito populations: four possibilities for

the former (SEnCIR, SEnIR, SEnI and SI), and four for the

latter (LXVnW, XKVnW, XVnW and XW). Without exhausting

possible variations, this scheme results in a total of 16
different combinations, which are labelled as SEnCIR–

LXVnW, SEnCIR–XKVnW (see electronic supplementary

material, §7, for a detailed description of each model).

When a model increases in complexity by the addition of

new model parameters (encoding particular processes), the

fraction of parameter space leading to a given dynamical

regime can increase, remain unchanged or decrease. The frac-

tion of parameter space where a given regime is found is

calculated by randomly drawing parameter sets within

minimum and maximum values (as given in electronic sup-

plementary material, table S1) and evaluating the fraction

of those draws leading to a given dynamic regime. Figure 6

compares models from the perspective of the relative size

of regions with endemic equilibria or bi-stability. The exercise

suggests that the coexistence of alternative stable states is

robust to model simplification. This is shown here by

representing the probability of bi-stability as model com-

plexity decreases, from the SECIR – LXVnW, a model with

21 parameters, to the SI–LXVnW, a model with only 13 par-

ameters (figure 6b). Even the simplest mosquito–human

coupled model (SI–XW), with only eight parameters, corre-

sponding to the RM formulation, exhibits this feature as long

as the positive feedback introduced by the slowing down of

the human recovery rate under repeated infectious bites is

maintained (see electronic supplementary material, §6 and

figure S4). For each of these model combinations, the removal

of the slowing-down effect in the recovery rate that is pro-

duced by superinfection eliminates bi-stability (as shown in

figure 4c,d). We also show the effect of one added parametric

dimension, the introduction of an external force of infection,

in models that combine the mosquito subcomponent LXVnW

with human submodels of decreasing model complexity

(figure 6b). These ‘open models (be ¼ 0)’ show a relative

decrease in the fraction of the parameter space showing

bi-stability, mainly owing to the linearizing effect of

external infections.

In summary, superinfection introduces a slowing-down

effect on recovery rates as infectious bites increase, which is
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a necessary condition for the presence of bi-stability. Bi-

stability only arises, however, in certain regions of

parameter space. Under superinfection, further refined

necessary conditions for a given parameter can be derived.

The presence of bi-stability can be studied in any vector–

human coupled model by comparing the slopes of the

curves represented in figure 2 at the origin for W ¼ 0. By

using this strategy, for instance for the model SI–XW, we

derived a necessary condition for the onset of bi-stability

in terms of b, the probability of infection of a susceptible

human upon receiving an infectious bite. This condition

bc , b , 0.5 indicates that b has to be lower than 50% but

higher than a certain critical threshold bc determined by

the other model parameters (see derivation and threshold

value in electronic supplementary material §6.1).
4. Discussion
The results described here demonstrate that superinfection

introduces the possibility of alternative steady states of low

and high prevalence, with important implications for malaria

control programmes. These findings resonate with insights

gained from studies of other pathogens whose population

dynamics exhibit nonlinear regime shifts, for example in

[30] for the hepatitis B virus (HBV). Mathematical models

for vector-borne diseases have tended to adopt represen-

tations of immunity from classical SIR formulations and to

assume that coinfection with different strains of the same

pathogen is a rare or unusual event. Yet immunity to malaria

clearly differs from that in standard epidemiological models

assuming full protection upon recovery (classical SIR

models), and MOI is common in endemic regions where anti-

genic diversity is extremely large. Naturally acquired

immunity involves diverse immunity responses to the differ-

ent phases of the parasite within humans [31], and the major

antigen of the blood stage of infection (PfEMP) is encoded

by a multicopy gene family exhibiting extreme variation

[32–34]. The antigenic complexity of the parasite in high

transmission regions underlies superinfection and goes

hand-in-hand with the existence of a vast reservoir of

asymptomatic infections in individuals of all ages [5,6,35,36].
Similar epidemiological patterns of high prevalence and

widespread population immunity characterize other vector-

borne infections of non-human hosts in tropical regions

[37]. Here too, a high degree of antigenic variation underlies

superinfection, as shown for Anaplasma marginale, the most

globally prevalent vector-borne pathogen of livestock infect-

ing both wild and domestic ruminants [37]. Thus, our

results might apply to other complex pathogens transmitted

by vectors in human and non-human hosts whose immune

responses must contend with large repertoires of antigenic

variants.

In falciparum malaria, the additional nonlinearities cre-

ated by important details of acquired immunity mean that

bi-stability may not be uncommon in its empirical

dynamics. Its presence would most likely express itself

when control pushes the prevalence of the disease to

lower levels, or more disconcertingly when malaria is

expanding its range and establishing or re-establishing in

new areas. It may have been ignored in linear statistical

analyses focused on the impact of climate change on

vector dynamics, or the quality of data available may

have been gathered at insufficient temporal resolution or

extent to detect sudden transitions in levels of prevalence.

A recent study of highland malaria using long-term data

from Kericho in Kenya presents evidence for the critical

slowing down in malaria dynamics in response to different

control strategies (M Harris, S Hay S, J Drake 2019,

personal communication).

Dynamical consequences of bi-stability are numerous for

outcomes of intervention and emergence/re-emergence.

Small changes in parameters (for instance, biting rate a or

mosquitoes’ carrying capacity K) could give rise to large

changes in incidence. Progressive control efforts may see no

clear decrease of incidence until a sudden effect finally

occurs. To achieve elimination, these efforts would require

pushing transmission intensity to lower levels than under

more standard transcritical transitions because of hysteresis.

Drastic intervention may thus be required to move the

system into the basin of attraction of the low prevalence equi-

librium, and in so doing, avoid the transient effects of

hysteresis with a protracted persistence of high prevalence.

In the opposite direction, elimination states may be more
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robust than in the case of standard transcritical transitions.

Empirical evidence for the plausible robustness of the elimin-

ation state has been discussed in [38,39]. Also, the progressive

relaxation of control efforts in endemic regions could

generate sudden transitions from low to high incidence.

Similarly, the range expansion and invasion of disease-free

regions will tend to achieve low or high prevalence in a dis-

continuous fashion depending on the local conditions

determining transmission intensity. Only beyond the upper

threshold for which a single equilibrium exists (for R0� 1)

will invasion establish high prevalence. For lower trans-

mission intensity and R0 . 1, the importation of cases

would be trapped into the low prevalence equilibrium,

even in areas where conditions previously allowed high

prevalence. Finally, concerning variability, sudden shifts

from low to large fluctuations in incidence may follow in epi-

demic regions from environmental conditions such as

temperature warming driving the system across a critical

threshold [11].

A positive feedback is the key ingredient for the strong

nonlinearities that underlie regime shifts and associated

alternative equilibria, as also illustrated by a number of eco-

logical systems [1]. In our model, a positive feedback is

introduced by the slowing-down effect of transmission inten-

sity (rate of arrival of infectious bites) on the recovery rate (r)

and therefore, the lengthening of the duration of infection.

Thus, higher transmission intensity sustains and exacerbates

higher transmission itself. Interestingly in HBV, higher preva-

lence of carriers leads through higher transmission rates to a

younger age of infection, which in turn results in higher prob-

ability of carriage [30]. These are both examples of the

reinforcement of transmission intensity through positive

feedback. A second effect we considered in our model is on

the lengthening of the duration of immunity (through s).

This effect is not sufficient for the occurrence of alternative

steady states. This observation finds a clear explanation in

the contrasting effects of the two assumptions: a lengthening

of infectious periods produces a positive feedback on infec-

tion duration and transmission rate. With longer infections,

a higher number of vectors acquire the parasite, increasing

the rate of infectious bites, and concomitantly further slowing

the recovery rate. By contrast, a deceleration of the loss of

immunity slows down the return of resistant hosts to the sus-

ceptible class, and the resulting higher number of immune

individuals decreases the number of infected vectors. In

brief, this implements a negative feedback on transmission

intensity.

Our derivation for the implications of superinfection for a

critical transition is robust to consideration of a wide range of

malaria models spanning different levels of complexity. Even

the simple RM model exhibits bi-stability when the recovery

rate slows down with increasing transmission intensity.

Previous malaria models showing bi-stability differ from

ours in that they assume re-infection, and therefore only

allow a host to re-acquire the parasite after complete clear-

ance of infection and its return to the susceptible state

[9,10]. When our findings are taken together with those of

these earlier models, they underscore the broad generality

of critical transitions in malaria models regardless of specific

biological details on multiple infections and within-host

dynamics. This generality follows from the observation that
re-infection and superinfection (in the sense implemented

here) effectively bracket a continuum of possible assumptions

on the outcome of repeated exposure to infectious bites. In

the former, repeated infections completely interfere with

each other; in the latter, they do not ‘see’ each other at all.

Neither complete interference (re-infection) nor a complete

lack of interference (superinfection) is likely. Reality is likely

to fall somewhere in between and closer to superinfection

given that in endemic regions MOI is the rule rather than

the exception, and that re-infection formulations cannot

capture it.

A different kind of mechanism independent from

repeated exposure has been proposed for alternative steady

states in malaria dynamics. This mechanism combines den-

sity-dependent biting rates and disease-induced mortality

[2]. This mechanism assumes that increasing disease levels

would decrease total human population through disease-

induced mortality, which then makes biting rates higher

since they depend on the density of infectious mosquitoes

per human, which, in turn, would raise infection levels in

the human population. We believe this positive feedback is

less important and considerably less general than the one

described here, although it could work in conjunction with

the main mechanism of repeated exposure described here,

either through re-infection or superinfection.

Multiplicity of infection and the large antigenic diversity

of the Plasmodium parasite in endemic regions complicate the

acquisition of immunity in ways that can only be captured

phenomenologically in standard transmission models.

Whereas our abstraction is more suitable for the question

addressed and the associated analytical approaches pre-

sented here, more complex representations could explore

the generality of bi-stability. These representations include

the explicit consideration of antigenic/strain variation and

MOI in compartmental and individual-based models (e.g.

[40–43]) and the age of hosts in age-structured (partial differ-

ential equations) models [44]. Stage-structured models could

also be used to represent increasing levels of immunity

acquired through repeated exposure, beyond the two-stage

models considered so far [9,44]. Multiscale models represent-

ing both between-host and within-host dynamics (e.g. [45])

could investigate the consequences for critical transitions of

relaxing our assumption of completely independent overlap-

ping infections. We expect bi-stability to also occur in these

more complex models depending on parameters.

An important next step is to confront these kinds of

dynamics with data from surveillance efforts across changing

control and environmental conditions (e.g. [44]). On-going

developments in ecology and epidemiology include early

warning systems related to critical transitions [46–49] and

the prediction of bifurcations based on the monitoring of

large perturbations [50]. These efforts should be brought

together with sustained surveillance efforts over time and

space, and with theoretical findings on the behaviour of

mathematical models for the population dynamics of malaria

and other vector-borne infections.
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