
royalsocietypublishing.org/journal/rstb
Review
Cite this article: Kleczkowski A, Hoyle A,

McMenemy P. 2019 One model to rule them

all? Modelling approaches across OneHealth for

human, animal and plant epidemics. Phil.

Trans. R. Soc. B 374: 20180255.

http://dx.doi.org/10.1098/rstb.2018.0255

Accepted: 11 February 2019

One contribution of 15 to a theme issue

‘Modelling infectious disease outbreaks in

humans, animals and plants: approaches and

important themes’.

Subject Areas:
health and disease and epidemiology,

computational biology, theoretical biology,

plant science

Keywords:
infectious disease, OneHealth, compartmental

models, bio-economic models, plant

pathogens, epidemiological data

Author for correspondence:
Adam Kleczkowski

e-mail: a.kleczkowski@strath.ac.uk
& 2019 The Author(s) Published by the Royal Society. All rights reserved.
One model to rule them all? Modelling
approaches across OneHealth for human,
animal and plant epidemics

Adam Kleczkowski1, Andy Hoyle2 and Paul McMenemy2

1Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK
2Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, UK

AK, 0000-0003-1384-4352; AH, 0000-0002-9117-7041; PM, 0000-0002-5280-425X

One hundred years after the 1918 influenza outbreak, are we ready for the

next pandemic? This paper addresses the need to identify and develop col-

laborative, interdisciplinary and cross-sectoral approaches to modelling of

infectious diseases including the fields of not only human and veterinary

medicine, but also plant epidemiology. Firstly, the paper explains the con-

cepts on which the most common epidemiological modelling approaches

are based, namely the division of a host population into susceptible, infected

and removed (SIR) classes and the proportionality of the infection rate to the

size of the susceptible and infected populations. It then demonstrates how

these simple concepts have been developed into a vast and successful mod-

elling framework that has been used in predicting and controlling disease

outbreaks for over 100 years. Secondly, it considers the compartmental

models based on the SIR paradigm within the broader concept of a ‘disease

tetrahedron’ (comprising host, pathogen, environment and man) and uses it

to review the similarities and differences among the fields comprising the

‘OneHealth’ approach. Finally, the paper advocates interactions between

all fields and explores the future challenges facing modellers.

This article is part of the theme issue ‘Modelling infectious disease out-

breaks in humans, animals and plants: approaches and important themes’.

This issue is linked with the subsequent theme issue ‘Modelling infectious

disease outbreaks in humans, animals and plants: epidemic forecasting

and control’.
1. Introduction
Infectious diseases of humans, animals and plants have adversely affected

humanity throughout recorded history. This was recognized over 3000 years

ago in the Bible, which identified threats to human, animal and plant health:

‘Cursed shall be the fruit of thy body [human], and the fruit of thy land

[plant], the increase of thy kine [cows] [animals], and the flocks of thy sheep

[animals]’ (Deuteronomy 28:18, King James Version).

In the wake of World War I, the 1918 influenza epidemic caused approxi-

mately 50 million deaths and was one of the biggest pandemics in the history

of humankind [1]. Twenty-five years later, while another World War was

raging, a ‘perfect storm’ [2] of environmental and political disasters led to a

series of disease outbreaks in India. In October 1942, a fungal infection, Cochlio-
bolus miyabeanus (brown spot), spread through rice fields in Bengal. The impact

of the disease was intensified by tropical storms which caused the fungal spores

to be widely distributed, leading to estimated yield losses of up to 91% of the

key staple crop, rice [3]. The local population faced severe food shortages

which were further magnified by the concurrent political situation, leading to

massive starvation and a decrease in resistance to diseases. Meanwhile, the

weather also created conditions conducive to mosquito breeding, leading to

an outbreak of malaria, causing twice as many cases in 1943 as reported in

the preceding years [4]. In combination with other human diseases like cholera

and smallpox, which also thrived in an already affected population, an
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estimated 2–3 million people died as a result. More suffering

and displacement followed in what became known as the

Bengal Famine.

These events, as well as other similar epidemics, such as

Asian flu [5], black death [6], foot-and-mouth [7] and the

Irish potato famine [8], clearly demonstrate the interconnect-

edness between the health of humans, animals, plants

and ecosystems: the underlying principle of the OneHealth

concept [9].

If we are to avoid future outbreaks such as the 1918 influ-

enza pandemic or the 1942–1943 Bengal Famine, we need to

create an approach that is collaborative, interdisciplinary and

cross-sectoral, which includes human and veterinary medi-

cine, and plant epidemiology, as well as mathematical

modelling. Mathematical models have extensively been

used to understand, predict and control disease outbreaks

with many successes [10,11]. However, a continuing need

exists to facilitate the collaboration between the modellers

working across these different fields, enabling knowledge

exchange and the development of approaches that take into

account more than one system.

This paper attempts to facilitate this dialogue by review-

ing the ways in which different research communities apply

the compartmental models based on the susceptible–

infected–removed (SIR) paradigm. Our approach then

embeds the SIR framework in the even broader concept of

a ‘disease tetrahedron’, originating in plant epidemiology.

By doing so, we show how the SIR model family can be

adapted to address particular modelling needs which are

both specific to the individual areas and generic across all

fields of epidemiology. Finally, we look at some future

directions of further model development.

This review is necessarily brief, and further detail is avail-

able from many books and papers that illustrate these

developments, from a historical point of view and from math-

ematical and epidemiological angles. For medical

epidemiology, the textbook of Anderson & May [10] is still

one of the best options, with Keeling & Rohani [12] providing

a more recent overview. Anderson & May [13,14] and Kao

[15] contain additional references for animal diseases, and

Madden et al. [11] and Gilligan [16] for compartmental

models of plant pests. The three volumes of the 1993

programme at the Isaac Newton Institute, Cambridge, UK

[17–19], and the follow-up in Epidemics a decade later [20],

also provide a valuable overview of past, current and

future challenges.
2. Key components of an epidemic
For both an outbreak to be initiated and the pathogen to

spread, a number of conditions need to be fulfilled. Van

der Plank [21] and Zadoks & Schein [22] summarized these

conditions in the form of a disease tetrahedron, with corners

comprising host, pathogen, environment and man (figure 1).

Firstly, the host and the pathogen need to be in a state that is

conducive to the disease and able to interact at the same time

and in the same location (figure 1; thick arrows). The host

and pathogen states are, in turn, affected by the environ-

mental drivers (figure 1; thin arrows). All three elements

are influenced by human actions, including prevention,

interference and control (figure 1; broken arrows).
3. The model
Compartmental models provide a widely used framework

for describing the interaction between the host and the patho-

gen. The key feature of the generic SIR model is that the

population of N individuals is split into three classes: suscep-

tible (S), infected and infectious (I ), and recovered or

removed (R) (figure 2). This reflects the assumption that

there are no internal dynamics in the status of an infected

individual and in its capacity to pass on the infection

(a microparasite infection as defined in [10]). The models

based on this paradigm may have different mathematical

structures and we review some here, starting with a

continuous-time and deterministic model,
dS
dt
¼ b(S,I,R)� fp(S,V)� fs(S,I)I � dSS,

dI
dt
¼ fp(S,V)þ fs(S,I)I � gI � dII

and
dR
dt
¼ gI � dRR:

9>>>>>>>=
>>>>>>>;

ð3:1Þ
Above, b(S,I,R) represents the influx into the susceptible

class, either from births or from a transition back from the

removed class, minus potential vaccination. The rates, dx

(with x ¼ S, I, R), quantify removal from either natural or dis-

ease-induced causes; g represents the removal of infected

individuals into the R class which can be interpreted as

removed or recovered and immune. The term b(S,I,R) is

often constant, linear or logistic in its dependence on the

population variables; the death and removal terms are typi-

cally linear, corresponding to exponentially distributed

lifespan and infectious periods [23]. However, gamma-

distributed infectious periods have been found to characterize

the epidemiology of a number of diseases more accurately

[24,25]. The two functions describing the primary or vector-

based infection, fp(S,V ), and the secondary or direct infection,

fs(S,I ), are discussed below.

The basic SIR model has been modified to suit many

different systems. Other compartments, such as a latent

class (infectious but asymptomatic) or a detected class

[10,26,27], have been proposed to provide more fine-grained

division. Age-structured models have also been introduced,

either by utilizing sub-classes for the susceptible and infected

individuals [28] and using a Who-Acquired-Infection-From-

Whom matrix [10], or by adapting equation (3.1) into

integro-differential equations by separating time and age

variables [29].

Other extensions include difference, rather than differen-

tial, equations which use discrete time steps, rather than

continuous time, with time interval often equal to the infec-

tious period [30]. Discrete time is often assumed for

stochastic and network models, and for the purpose of

parameter estimation [31].

Different stochastic approaches have existed since the

early days of mathematical epidemiology [32,33], and their

correspondence to the deterministic case was put on firm

footing by Kurtz and co-workers [34,35]. Variation in the

infection rate can also be used to account for environmental

and demographic stochasticity [36,37].
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Figure 1. Disease tetrahedron; modified after Zadoks & Schein [22]. Nodes
correspond to the main determinants of a disease outbreak: host, pathogen,
environment and man. The thick double arrow represents the host – pathogen
axis. Thin solid arrows indicate the influence of environment on the host –
pathogen combination. Broken arrows represent the human factor affecting
all components.
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4. Hosts and pathogens
Before the model can be used to describe a real-life system, its

key elements must be populated. The three host groups

(humans, animals and plants) have different requirements

and hence require different approaches while preserving the

basic structure of the SIR family of models.

(a) Hosts
In medical epidemiology, there is only one primary host: the

human being. This assumption, however, hides a possibility

of alternative hosts and living stages of a pathogen, as it is

now recognized that many human diseases are of zoonotic

origin [38]. Veterinary epidemiology deals with two types

of hosts: domestic (livestock and companion animals) and

wild animals, with only a few species classed as important

from a societal standpoint. The situation is very different

for plants, where there exist a large number of domesticated

and wild plant genera (both often in proximity to each other).

Despite this, most models consider only a single host species.

The basic modelling unit is typically a single individual

(human, animal or plant), although in the continuous

approach summarized in equation (3.1), S and I are often

densities per unit area. For animal diseases [15], and even

more often for plant diseases [11], S and I can represent

groups of individuals such as flocks or fields [15].

(b) Pathogens
The SIR paradigm describes the dynamics of microparasites,

as defined by Anderson & May [10]. An alternative frame-

work describing macroparasitic infection, where an

individual load of infection is important, has attracted signifi-

cant attention in medical and veterinary epidemiology

[10,39], but less so for plant diseases [40]; these are not

covered in this review.

Many human diseases (e.g. Ebola [41]) and animal dis-

eases (e.g. bovine tuberculosis [42]) involve alternative hosts

whose dynamics could be incorporated into the models.

Malaria and dengue are examples of vector-borne diseases

of humans [10,43], whereas bluetongue is an example of a
vector-borne disease of animals [44]. Others, such as a

measles virus [45], are confined to one host and directly

transmitted. Few human and animal fungal disease out-

breaks have been described by the SIR paradigm [46,47]; by

contrast, the UK Plant Health Risk Register [48] currently

lists 180 fungal pathogens and related species, but only 57

bacteria and 116 viruses. It is the sheer number of plant

pathogens, many of which have a broad range of hosts, e.g.

Xylella spp. [49], which makes their impact difficult to

model. Despite this, compartmental models have been suc-

cessfully used to describe the spread and control of plant

and forest pathogens [11,50,51].
5. Host – pathogen axis
The functions fp(S,V ) and fs(S,I ) capture different aspects of

host–pathogen interactions. The term fp(S,V ) describes an

external source of infection, with V representing the external

force of infection coming from the wider environment (e.g. pri-

mary inoculum for soil- or water-borne plant diseases [40]),

from alternative hosts (e.g. bats [38]) or an indirect trans-

mission mediated by vectors (e.g. mosquitoes [30]). There

will often be a separate equation describing the dynamics of

V and its link to the infectious population, I [13,14].

The fs(S,I ) term describes the direct transmission com-

ponent which depends on the number of currently infected

individuals. Different forms have been proposed which

attempt to capture various aspects of the interaction. The

most common approach [52,53] assumes that the rate at

which new infections are produced is proportional to (i) the

number of existing susceptible individuals, S; (ii) the pro-

portion of existing infectious individuals, I/N; (iii) a factor

capturing the rate of contacts between individuals, C(N ),

which is often dependent on the total population size, N;

and (iv) a per-contact probability of infection, b. This results

in

fs(S, I)I ¼ bC(N)
I
N

S, ð5:1Þ

with C(N ) ¼ N for density-dependent transmission and C(N )

independent of N for frequency-dependent transmission

[28,50,54].

The simplest SIR model removes the birth, death and pri-

mary infection terms from equation (3.1) and assumes a fixed

population size, N, and a linear secondary infection term,

equation (5.1). The resultant model describes the character-

istic rise-and-fall, bell-shaped curve for I(t) often seen in

medical and veterinary science [45,55]. When there is no dis-

cernable recovery or removal, the basic SIR model with

frequency-dependent transmission can be rewritten as an SI

model equivalent to a logistic growth model; this is often

used in plant epidemiology [56].
6. Effective and basic reproduction rates
Another way of applying an SIR model uses the idea of an

effective (or apparent) reproduction rate, Rt [21]. It is defined

as the number of newly infected individuals produced by a

single infected individual during its infectious period, at a

given time t during the epidemic [57]. The rate Rt typically

decreases as the susceptible individuals are removed from
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Figure 2. A basic SIR model with primary and secondary infections, births, deaths, culling and natural and disease-induced death, as represented in equation (3.1).
Solid arrows represent the flows of individuals between classes within the population (S, susceptible; I, infected; R, removed/recovered). Dashed lines represent the
dependence of the infection rate on external and internal factors. Vaccination at birth effectively removes a proportion of individuals before they enter the
population.
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the population; its maximum value is denoted by R0 and

forms one of the most important concepts in epidemiology

[10,52]. Surprisingly, for the 1918 influenza pandemic, the

R0 value estimate was only in the range of 2–3 [58], but it

can be much higher for other diseases, e.g. 10–18 for

measles [10].

The main advantage of characterizing an epidemic by the

basic reproduction rate lies in the simplicity and predictive

power of R0. The number of infected individuals will never

increase if R0 , 1, and so the outbreak can be prevented or

stopped by lowering the value of R0. This condition is the

foundation of many successful vaccination and control pro-

grammes [59]. The threshold dependence of the disease

dynamics is well known in demography and ecology, and

has been applied to vector-borne diseases [30], to directly

transmitted human diseases [55] and to plant–pathogen sys-

tems [21,60]. The pathogen’s evolutionary history has also

been linked to the value of the reproduction rate [61].
7. Parameter estimation
Although qualitative results, like the threshold behaviour,

can be obtained from studying the mathematical structure

of the SIR equations, any potential to predict the size of the

new epidemic, or impact of control measures, requires esti-

mation of parameters [62]. In practice, it is often necessary

to attempt to construct a predictive model based on insuffi-

cient and noisy data, which limits the capacity of models to

capture all details of the real-world processes [15]. Among

the parameters, the infection functions, fp(S,V ) and fs(S,I ),

are most difficult to identify as they attempt to capture

many complex processes [63]. Two broad approaches can

be distinguished, with estimation based directly on the out-

break data using different proxies [57], including observed

cases [64]; or through secondary data, e.g. serological studies

for estimating the proportion of individuals having a contact

with the disease in the past [65,66], or sociological studies

yielding the contact patterns between individuals [67].

The two methods often produce different results, as the

observation of cases can be biased by under-reporting [31].

Different statistical and modelling techniques [63] can be

employed to estimate parameters in the presence of considerable
within- and between-sample variation and to augment data,

and can reveal different aspects of the disease dynamics (see

[56] for least-squares method, [33] for a maximum-likelihood

method and [68] for a full Bayesian treatment of the same

dataset).
8. Environment: temporal heterogeneity
The functions fp(S,V ) and fs(S,I ) can depend on temperature,

humidity and hence on time [36], thus making R0 temporally

variable [66,69]. This variation can be short-term (e.g.

weather-driven) or long-term (e.g. climate-driven). Models

have successfully been used to study the effect of environ-

ment on cholera outbreaks in humans [70,71]. The

periodicity of school holidays has been shown to lead to com-

plex dynamics in, for example, measles epidemics [72]. Less

attention has been given to short-term weather effects on

animal diseases [66]. Plant pathogens often have complex

life cycles driven by environmental conditions (e.g. tempera-

ture and rainfall); this can be captured in compartmental

models by varying rates in space and time [73,74].

The effects of climate change can be captured by vari-

ations in compartmental model parameters on a time-scale

longer than the epidemic itself [70,75]. Vector-borne diseases

have received particular attention owing to their dependence

on insect populations which are characterized by narrower

ranges of environmental factors that are conducive to their

survival and spread [76].
9. Environment: spatial heterogeneity
Basic compartmental models effectively assume that each

susceptible individual can be equally affected by any infected

individual in the population, a property often called ‘homo-

geneous mixing’ [52]. This is often not true as some

individuals can be separated by great distance. While

humans and animals can travel large distances, their move-

ments are often geographically and socially stratified,

concentrated around schools, work and transportation

routes. This is even more important for plants, which gener-

ally do not move (if we ignore trade), although the pathogens
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and their spores can travel large distances, owing to either

wind or vectors. Mathematical epidemiologists have

approached this problem in different ways, with some

approaches more common in different areas.

Some plant epidemiologists [11,21] concentrate on inde-

pendent pathogen movement (e.g. spores transported by

wind or water) and thus convert the SIR differential

equations into integro-differential ones [11], allowing

transmission rates to be dependent on spatial distance [77].

Alternatively, by assuming that susceptible and/or

infected individuals move randomly, the SIR model turns

into reaction–diffusion equations, such as those describing

spread of rabies [78] or plant pathogens [79]. Again, stochas-

tic versions of the model have been developed, dealing with

some artefacts of the continuous model [80].

Another solution, a metapopulation model, splits a

geographical space into sub-compartments, then assumes that

individuals fully mix within each compartment. The additional

force of infection comes from other compartments, either from

the nearest neighbours or with some distance-dependence

[74,81].

In the early 1980s, a new paradigm was proposed, first by

physicists [82,83] and later by epidemiologists [84]. Individ-

uals are represented by vertices of a graph (network), and

transmission is only possible if two vertices are connected

by an edge. These network SIR models are currently at the

forefront of epidemiological modelling for human diseases

[12], animal diseases [85] and plant pathogens [86–88].

In the late 1990s, an approximation to network models

was developed that captured some of the contact structure

by measuring not only the average values of epidemiological

variables (first moments), but also correlations between them

(higher moments) [89]. This leads to modified SIR equations

which may be easier to analyse than the spatially structured

models.

10. Adding a human factor
The simple model shown above, equations (3.1) and (5.1),

effectively ignores various ways in which our actions affect

the infection dynamics and, conversely, the impact of disease

on our behaviour. However, these feedbacks are an essential

factor determining our ability to predict and control out-

breaks [7,90,91]. Accordingly, models are continually being

adapted to include the impact of human influence on disease

transmission. Firstly, different groups of individuals can

behave in different ways and hence experience different

forces of infection. Thus, the division into SIR compartments

can be expanded to capture different behaviours, such as hos-

pitalization or avoidance of contacts (possibly due to fear or

spread of rumours) [92]. The SIR compartments can also be

subdivided into components representing location, social

status or different risk groups (e.g. for sexually transmitted

diseases). The infection term, here fs(S,I ), can be modified

accordingly through the inclusion of, for example, a simple

spatial structure [93], a city–satellite model [31] or various

household models [94].

Secondly, the assumption that the combined infection

term, fs(S,I )I, is linear in the number of susceptible and

infected individuals can be relaxed [28]. The power function

is often used in this context [95–97], for example, to account

for the heterogeneity of contacts between hosts, and was

found to capture the dynamics of measles [95] and Ebola [96].
11. Conclusion: from genes to the globe
So, are we prepared for the next pandemic [98]? Like the 1918

influenza, and many other outbreaks, any future epidemics

would most probably be associated with a ‘perfect storm’

of events. A combination of genetic (host and pathogen),

environmental, economic and socio-political factors must be

studied to understand how a pathogen can emerge and

spread globally [9].

The world is now faced with new challenges which can

combine again into a ‘perfect storm’ associated with issues

such as climate change, the rise of antimicrobial resistance

(AMR) and globalization which allows hosts and pathogens

to travel long distances quickly.

The call to epidemiology is to bridge all scales, from a

genetic to a global level. The catalyst for this interdisciplinary

approach is the application of mathematical modelling. Here,

we have argued that compartmental models can be, and

indeed have been, used successfully to capture the complex-

ities of the host–pathogen–environment interactions.

However, we still need to improve our ability to work

across different disciplines and fields comprising the

OneHealth approach.

Three major opportunities are identified here as immedi-

ate areas for development. Firstly, we are now equipped

with an unprecedented capacity to gather and analyse ‘big

data’. Advances in data collection and computing power

allow modellers to carry out simulations in which agents

are traced as they move and interact, as vectors fly, or

spores move with the wind. These individual-based

models have been used, for example, to predict the threat

posed by influenza in Southeast Asia [99], and the spread

of sudden oak death in the USA [74]. Much attention in

recent years has been given to social networks that expli-

citly incorporate the granularity of individual interactions

and the heterogeneity of their behaviour, including

animal and plant movements by trade [81,85]. We can

now include the detailed genetic information about hosts

and pathogens to augment modelling techniques to

improve traceability of the progress of epidemics [100].

Linking detailed weather and climate change models with

epidemic models allows us to predict any future outbreaks

in more detail [70].

Secondly, human, animal and plant pathogens are in a

constant race with their hosts, with evolution driving the

resistance to any treatments or immunological responses.

AMR is a rapidly rising problem that has the potential to

enable epidemics not experienced since the pre-antibiotic

era [101]. The environment is known to act as a ‘mixing

bowl’ for water (containing antimicrobials) from humans,

agriculture, plants and aquaculture [102]. However, it is still

not known to what extent AMR genes transfer between

species (e.g. livestock and humans) via the environment

[103]. An SIR framework has been used to model AMR

either at a host/patient level [104] or even at a cellular/

within-host level [102]. The novelty of the latter approach is

that S represents the antibiotic-sensitive bacterial cells, and I
represents the antibiotic-resistant bacterial cells (‘infected’

with a resistant gene). Resistance has also been a major prob-

lem in plant diseases, leading to significant advances in

modelling [105]; this is one area where cross-fertilization

between plant and human/animal epidemiology can be

very beneficial.
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Thirdly, epidemiological models increasingly need to be

merged with an economic and behavioural framework

[106]. Epi- or bio-economic models [107] capture the individ-

ual or the corporate decision to engage in particular actions,

such as changing the contact structure [108,109], engaging

with prevention (e.g. vaccination) [110] or control by culling

[26]. Recently, it has been argued that compartmental

models can be extended to explicitly include adaptive behav-

ioural responses to disease risk [111]. Thus, instead of a priori
specifying the infection term fs(S,I ) in terms of S and I, the

new approach uses explicit behavioural models describing

how individuals formulate predictions on the effects of

their decision whether to engage in a contact that might

lead to infection. This prediction then informs their

decision-making process, which often involves maximization

of their profit or utility [111]; the infection process

emerges from such considerations. Such models [109] can

be used to explain the multiple waves of the 1918 influenza

pandemic [112].
So, are we equipped to deal with the next pandemic?

According to Blackburn et al. [98], the answer currently is a

qualified ‘no’. However, the tools and processes may already

be available to allow a more emphatic ‘yes’ to be the answer.

Our future success in preventing and combating pandemics

requires close collaboration across disciplines and systems.

As demonstrated by their long and successful history, the

SIR paradigm and the disease tetrahedron concept are

essential tools facilitating such an approach.
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