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Epidemics are often triggered by specific weather patterns favouring the

pathogen on susceptible hosts. For plant diseases, models predicting epi-

demics have therefore often emphasized the identification of early season

weather patterns that are correlated with a disease outcome at some later

point. Toward that end, window-pane analysis is an exhaustive search algor-

ithm traditionally used in plant pathology for mining correlations in a

weather series with respect to a disease endpoint. Here we show, with refer-

ence to Fusarium head blight (FHB) of wheat, that a functional approach is a

more principled analytical method for understanding the relationship

between disease epidemics and environmental conditions over an extended

time series. We used scalar-on-function regression to model a binary out-

come (FHB epidemic or non-epidemic) relative to weather time series

spanning 140 days relative to flowering (when FHB infection primarily

occurs). The functional models overall fit the data better than previously

described standard logistic regression (lr) models. Periods much earlier

than heretofore realized were associated with FHB epidemics. The findings

were used to create novel weather summary variables which, when incor-

porated into lr models, yielded a new set of models that performed as

well as existing lr models for real-time predictions of disease risk.

This article is part of the theme issue ‘Modelling infectious disease out-

breaks in humans, animals and plants: approaches and important themes’.

This issue is linked with the subsequent theme issue ‘Modelling infectious

disease outbreaks in humans, animals and plants: epidemic forecasting

and control’.
1. Introduction
One defining feature of epidemiology is the pursuit of successfully predicting epi-

demic outbreaks or disease occurrences before they are realized. Weather impacts

diseases; many animal, plant and human diseases are driven by weather, and

epidemiologists are often interested in understanding how disease outbreaks

are correlated with weather patterns, especially in a changing climate [1,2]. Epide-

miologists may be interested in a static endpoint (disease has occurred or not

by a given time, or disease intensity has exceeded a threshold defined in terms

of impact), or they may be interested in following the progression of disease

occurrences over time in relation to weather, in which case the endpoint is now

dynamic. These issues and different objectives have spawned several analytical

methodologies, ranging from the use of time-series analysis [3] to distributed

lag models [4]. The underlying goal is the same: does weather at some time s influ-

ence disease at another time t? In this article, we focus on plant diseases, but the

concepts and methodology can be applied to many other disease systems.

All crops are susceptible to diseases caused by pathogens. Whether a plant

disease epidemic is realized or not depends on a favourable combination of sus-

ceptible host (plant), the presence and abundance of disease-inducing pathogen

propagules (inoculum) and environmental conditions that promote inoculum

production, its dispersal, infection of the host, colonization and disease devel-

opment [5]. A low level of disease is common in most crops, but sporadic
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epidemics can unacceptably reduce crop quality or yield. In

some cases, plant disease epidemics can be prevented by gen-

etic resistance in the host plant. In the absence of genetic

resistance (an all too common situation), farmers must often

depend on the judicious use of crop protection chemicals, pre-

venting diseases from becoming severe enough to

economically impact quality or yield. Such interventions are

costly and should ideally coincide with an actual risk of disease

outbreak (or the subsequent losses). For many crops, these

management decisions are supported by predictive models

that help farmers evaluate (forecast) disease risk and the

need for intervention [5–7].

Human disease risk (operationally defined in different

ways) may be connected to weather-related variables at differ-

ent times [3,4,8]. Identifying suitable weather-based predictors

of disease is a significant challenge within any modelling para-

digm, for humans, animals or plants. Many plant disease

forecast models or decision support systems are driven by

weather variables reflecting conditions favouring the plant

pathogen at critical crop developmental stages (e.g. [9,10]). In

most cases, predictors are based on previous research linking

weather conditions to different stages of plant disease develop-

ment. When using empirical modelling, it is common for plant

disease epidemiologists to mine a time series of weather vari-

ables with the objective of identifying time periods and

variables correlated with a disease outcome [11]. One popular

(logical) formalization of this approach in the field of plant

pathology is a so-called window-pane analysis [12]. The algor-

ithm divides a continuous time series (such as daily

temperature) into discrete fixed-length ‘window-panes’ and

then exhaustively searches for associations (e.g. statistical cor-

relation) between summaries of conditions within a window

(e.g. mean or sum) and a disease outcome (such as disease

severity on a continuous scale or a binary categorization of

disease into low and high levels). The starting and ending

times over which windows are defined, as well as window

length, can be set by the user, with typically many different

window lengths and starting times considered. Many overlap-

ping windows are created by sliding the start (end) points

along the time series. Results from a window-pane analysis

then inform the construction of fixed-time/fixed-window-length

variables to be used in models.

From the statistical perspective, window-pane analysis

can be criticized for being ‘data dredging’. It leads to the pro-

blem of selecting variables from a set of highly correlated

predictors [13,14], the possibility of spurious large corre-

lations with the outcome [15], and extreme multiplicity in

testing correlations [16]. Multiplicity issues and p-value-

based testing [17] of correlations are further compounded

by trying several window lengths and many starting/

ending times. Plant pathologists typically do not consider the

multiplicity problem, with some exceptions [16]. Functional

data analysis (FDA) is a refinement over the traditional

window-pane approach [18]. In the functional paradigm, a con-

tinuous weather time series is represented by a mathematical

curve, which is analysed in its entirety relative to an outcome.

There is no discretization of the series into arbitrary window

panes, and therefore no splitting of a potential signal across

several windows. FDA is a rapidly growing field [19] that

was only recently introduced to plant pathologists [20].

In this article, we investigate one form of FDA, namely

scalar-on-function regression [21], as a means of identifying

weather variables and time periods associated with
epidemics of Fusarium head blight (FHB), arguably the

most economically important wheat disease in many parts

of the world [22,23]; and of great concern because of patho-

gen-produced mammalian toxins in affected grain. There

are several different empirical models for FHB risk prediction

[24], including the National FHB risk model (http://www.

wheatscab.psu.edu/) that is routinely used in the USA. We

show that FDA, by making full use of a weather-related

time series, is effective for modelling the temporal relation-

ship between weather and FHB epidemics. In so doing,

FDA can lead to novel predictors which, when incorporated

into existing model structures, can lead to similar or

improved prediction accuracy relative to that of models

currently used for FHB prediction.
2. Results
Altogether 26 different models for predicting FHB epidemics

were fit (see electronic supplemental material, figure S1).

Twelve models were built upon previously reported logistic

regression (lr) models with variables summarizing weather

in fixed-length windows near wheat anthesis (flowering)

[14]. Six of these 12 lr models (1, 2, 3, 5, 15, 17) were focused

on pre-anthesis conditions, whereas the other six models

(7, 8, 9, 11, 12, 13) targeted post-anthesis conditions. Six pena-

lized scalar-on-function regression (s-o-f ) models (4, 6, 10, 14,

16, 18) were fit with inputs being weather times series from

120 days pre-anthesis to 20 days post-anthesis, a much

longer time frame than the 30-day anthesis-centred period

underlying the 12 lr models.

Figure 1 illustrates an s-o-f model fit to the data, in this

case model 16. There were three weather series (120 days

pre- to 20 days post-anthesis) in this model: daily mean rela-

tive humidity (RH; %), daily mean temperature (T;8C), and

the cumulative number of hours in which T , 98C. The b(t)

curve for daily mean RH indicated a positive and consistent

association between this condition and FHB epidemics from

about 30 days pre-anthesis continuing into the post-anthesis

period. Daily mean T exhibited its strongest positive associ-

ation with FHB epidemics at about 15 days pre-anthesis,

with the association turning negative in the 10-day post-

anthesis window. The relatively flat b(t) curve for the cumu-

lative number of hours in which T , 98C indicated this

variable was weakly associated with FHB epidemics (after

adjusting for the other variables in the model). Model fitting

returned the probability that an observation was an FHB epi-

demic. Distributions of fitted model probabilities showed

much overlap between the two disease classes (epidemic

and non-epidemic), though the non-epidemic class tended

to have lower probabilities. The incomplete separation of

the two classes by model-fitted probabilities highlights the

difficulty in accurately predicting FHB epidemics from local

environmental data. Nevertheless, the ROC plot in the

lower right panel of figure 1 shows there is predictive value

in relatively simple models (in the sense that model 16 uses

only three weather series.).

After examining the results from all six s-o-f models,

another eight lr models (19–26) were formulated from

newly derived predictor variables summarizing windows

not considered previously [14]. Predictor inputs to four of

the new lr models (21–24) covered pre-anthesis conditions.

Two models (19, 20) were focused on post-anthesis
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Figure 1. Scalar-on-function regression results for model 16. The left column of panels shows the fitted b(t) regression coefficient (see the code in the electronic
supplementary material) for each of three weather series across 140 days (with 95% confidence intervals calculated from the estimated coefficient standard errors).
Sections of the b(t) curves away from 0 indicate windows in the weather series positively (or negatively) associated with FHB epidemics. The upper two panels in
the right column show the model-fitted probabilities for FHB epidemic and non-epidemic observations. The lowest panel in the right column shows the Receiver
Operating Characteristic (ROC) curve; different cut-points are indicated along the curve. Sensitivity ¼ proportion of FHB epidemics correctly classified. Specificity ¼
proportion of FHB non-epidemics correctly classified; hence 1 – Specificity is the proportion of FHB non-epidemics incorrectly classified as FHB epidemics.
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conditions, and the last two (25, 26) covered conditions in

windows spanning anthesis (see the electronic supplementary

material).

Models with two scalar predictors, accounting for cultivar

genetic resistance (resist) as well as for combinations of wheat

type with maize residue presence/absence, overall fit the

data better (mean AIC ¼ 992) than models with resist as the

only scalar (mean AIC ¼ 1030). Twenty of the 26 models

had three weather-based predictors. Generally, increasing

the number of weather-based predictors in the model from

one (mean AIC ¼ 1058) to three (mean AIC ¼ 1005) led to

better model fit. The s-o-f models fit the data better on aver-

age (mean AIC ¼ 932) than either the 12 original lr models

(mean AIC ¼ 1044) or the eight new lr models (mean

AIC ¼ 1035). However, this was not true for all pairwise

comparisons of the models (e.g. s-o-f model 4 (AIC ¼ 1043)

compared with lr model 15 (AIC ¼ 1024)). On average, the

new pre-anthesis lr models (mean AIC ¼ 1052) were as com-

petitive as the original pre-anthesis lr models (mean AIC ¼

1057) in terms of model fit. However, the new post-anthesis

lr models (19, 20) were no better (mean AIC ¼ 1038) than

the original post-anthesis lr models (mean AIC ¼ 1032). The

greatest improvement in model fit, from the lr perspective,

came from the two new lr models (25, 26) in which the

weather-based predictors summarized pre- and post-anthesis

conditions in windows spanning anthesis (mean AIC ¼ 999).

We were ultimately interested in how well the models pre-

dicted the occurrence of FHB epidemics. In terms of sensitivity

and specificity, the new pre-anthesis lr models were as
competitive as the original lr models (figure 2a) but could not

match the performance of two s-o-f model versions (models

16 and 18; located in the light blue area of figure 2a). Similarly,

none of the post-anthesis lr models were as good as the

s-o-f versions (models 10 and 14; light blue area of figure 2b),

bearing in mind that all the s-o-f functional predictors covered

a period from 120 days pre- to 20 days post-anthesis. Model 26,

with predictors summarizing conditions in windows begin-

ning pre-anthesis and ending post-anthesis (thus including

and spanning anthesis), offered one of the better overall

balances between sensitivity and specificity from the lr pers-

pective (figure 2c). Four s-o-f models (10, 14, 16, 18), all with

three weather series, had the lowest misclassification rates

(MR) overall (mean MR ¼ 0.237), compared with the entire

set of lr models (mean MR ¼ 0.310).
3. Discussion
Scalar-on-function regression is applicable to any situation

where interest lies in modelling a static outcome (binary or

continuous) in relation to explanatory variables observed

over time. Recent examples have included the modelling of

myocardial infarction occurrences in relation to electrocardio-

graphic traces [25], of lupus flares from daily stress levels [26]

and of influenza rates from weather in the previous weeks [8].

We illustrated, via application to a pernicious disease of

wheat [27], the utility of scalar-on-function regression in pre-

dicting a binary plant disease outcome. FHB epidemics have
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proved difficult to predict with high accuracy from local

weather [28,29]. Part of the difficulty has to do with defining

and identifying predictor variables that are correlated with

FHB epidemics [30], and this is where window-pane-type

analyses have in the past played a key role [16]. Practically,

all FHB models to date have focused on relatively short win-

dows around anthesis (not illogical, as infection occurs

primarily during this growth stage), and our s-o-f results

do support that notion. In an earlier analysis, we showed

how function-on-scalar (f-o-s) regression (i.e. modelling of

how a functionally represented weather series depends on a

scalar representing FHB epidemic class) could be used to

explore the relationship between FHB epidemics and

weather. That analysis relied primarily on graphical assess-

ments of associations and did not involve prediction of

epidemic outcome (as epidemic class was not the response

variable in the f-o-s models). Confirming those earlier

findings [20], s-o-f modelling in the present article identified

other longer windows that were associated with FHB within

weather series (presumably accounting for pre-anthesis

pathogen reproduction and dispersal, and post-anthesis colo-

nization). However, functional modelling is not the panacea

for FHB prediction; for instance, s-o-f model 4 with mean

daily RH as the sole weather series predictor (see the elec-

tronic supplementary material) was no better than some of

the lr models, which demonstrated that reliance on a single

weather time series is not enough.

Functional models with up to three weather series fit the

FHB data much better than lr models. Nevertheless, lr

models are at this time more amenable for large-scale deploy-

ment and rapid real-time updating of predictions, as done

for the publicly available forecaster of FHB in US wheat.

For these reasons, our approach was to use FDA as a method-

ology for identifying which temporal regions of various

weather series were most associated with FHB epidemics.
Summaries of those latter windows were used to formulate

new lr models that were competitive with existing models.

One of the more significant findings was that summaries

over windows which crossed anthesis were better input pre-

dictors than summaries that were restricted to either side of

anthesis; our earlier modelling efforts generally focused on

pre-anthesis weather with the objective of providing FHB

predictions before anthesis so that fungicides could be

applied [27]. However, post-anthesis fungicide applications

against FHB may also be effective [31]. Functional modelling,

as we have shown, can be useful in the process of developing

simple (lr) models that are at least as good as existing models,

that make use of novel predictors, and which add to the pool

of existing models to choose from. Having a suite of simple,

practical models opens the possibility of model averaging

approaches to disease prediction [32].

For examining weather series in relation to epidemic out-

comes, FDA [18] is a more principled methodology than

window-pane analysis, a standard approach in plant disease

epidemiology for decades [33]. The functional approach

avoids the multiplicity issues in statistical testing that

plague the window-pane technique [34]. We postulate that

functional approaches to analysing other disease occurrences

in relation to weather time series is a promising endeavour

that may lead to more refined predictive models and novel

insights into disease–weather relationships.
4. Methods
Field observations (999 total) of FHB epidemics (N ¼ 273)

and non-epidemics (N ¼ 726) were linked to field-specific temp-

erature (T ), RH or combinations of T and RH conditions (TRH),

and to cultivar resistance level (resist), wheat type (spring or

winter wheat market class) and the presence or the absence of

maize residue (a source of the pathogen inoculum) [20]. The
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FHB observations (Yi, i ¼ 1, . . . ,999) were binary; that is Yi ¼ 0

for FHB non-epidemics, and Yi ¼ 1 for FHB epidemics. The

expected value of Yi, E(Yi), was modelled via standard lr:

g[E(Yi)] ¼ mþ b1X1i þ . . .þ bhXhi, ð4:1Þ

where m was the overall intercept, and the bj were regression

coefficients for each of the h predictors (which could be categori-

cal, continuous or a mixture of both). The logit link function g(.)

makes equation (4.1) linear with respect to the h predictors. The

bj are constants to be estimated by the model. Twelve lr models

for predicting FHB epidemics were fit to the data (models 1, 2, 3,

5, 7, 8, 9, 11, 12, 13, 15, 17; fully described in the electronic sup-

plementary material). They were versions of previously reported

lr models [14]. Weather-based predictors (derived from T, RH

and TRH) in these models summarized conditions in narrow

windows (5–15 days before or after flowering), as previous ana-

lyses found correlations between FHB epidemics and weather in

these short-length periods [16]. Flowering (anthesis) is the critical

time for infection: inoculum production and dispersal take place

in the pre-anthesis period, with spike colonization and toxin

production occurring post-anthesis.

Penalized scalar-on-function (s-o-f ) FDA regression models

[21] were fit to the Yi with scalar predictors for resist, wheat

type and maize residue, and weather series for T, RH and TRH

(from 120 days pre-anthesis to 20 days post-anthesis) as

functional predictors. The s-o-f regression model was

g[E(Yi)] ¼ mþ a1Z1i þ . . .þ anZni

þ
ð
b1(t)X1i(t) dtþ . . .þ

ð
bp(t)X pi(t) dt, ð4:2Þ

where E(Yi) was modelled with respect to an intercept m, n scalar

covariates (Z ) whose coefficients (a) did not vary with time (t),
and p functional predictors (X ) with time-varying functional

coefficients b(t). The term ‘functional’ here means that the X(t)
(as well as the b(t)) are smooth continuous curves (approximated

by mathematical functions). Penalization finds a balance between

b(t) that are too smooth (interesting features having been

smoothed away) and b(t) curves that are too wiggly (risk of
noise being modelled and hence leading to a lack of interpretabil-

ity). Functional regression versions of model groups (1, 2, 3),

(7, 8, 9) and (11, 12, 13) were the s-o-f models 4, 10 and 14,

respectively. The functional versions of the lr models 5, 15 and

17 were the s-o-f models 6, 16 and 18, respectively. Functional

regression models were fit with the pfr function in the refund

package (v. 0.1-16) in R (v. 3.4.4).

After fitting s-o-f models, periods associated with FHB epi-

demics were identified from the magnitude of the estimated

b(t) regression parameters. Twelve new variables (built from

T, RH and TRH) were created as summaries over periods associ-

ated with FHB epidemics. These 12 variables formed the basis of

eight new lr models (19–26), each with three weather-based pre-

dictors and scalar predictors representing resist, wheat type and

maize residue.

Models were compared by way of the Akaike information

criterion (AIC), area under the receiver operating characteristic

curve (AUC), sensitivity (the proportion of FHB epidemics cor-

rectly classified as such), specificity (the proportion of FHB

non-epidemics correctly classified as such) and misclassification

rate (proportion of all observations that were incorrectly classi-

fied). The latter three statistics were derived after estimating the

Youden Index (the classification cut-point which maximizes

sensitivity þ specificity 2 1) from the fitted probabilities given

by each model [35]. Detailed results for each model fit are

given in the electronic supplementary material.
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