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Abstract

The temporal coding of action potential activity is fundamental to nervous system function. Here
we consider how gene expression in neurons is regulated by specific patterns of action potential
firing, with an emphasis on new information on epigenetic regulation of gene expression.
Patterned action potential activity activates intracellular signaling networks selectively in
accordance with the kinetics of activation and inactivation of second messengers, phosphorylation
and dephosphorylation of protein kinases, and cytoplasmic and nuclear calcium dynamics, which
differentially activate specific transcription factors. Increasing evidence also implicates activity-
dependent regulation of epigenetic mechanisms to alter chromatin architecture. Changes in three-
dimensional chromatin structure, including chromatin compaction, looping, double-stranded DNA
breaks, histone and DNA modification, are altered by action potential activity to selectively inhibit
or promote transcription of specific genes. These mechanisms of activity-dependent regulation of
gene expression are important in neural development, plasticity, and in neurological and
psychological disorders.
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Environmental information is encoded by neurons through the firing of action potentials
with specific spiking patterns (temporal coding) (Kayser and others 2009); therefore, gene
expression in the nervous system must be regulated by the temporal features of action
potential firing to produce adaptive responses. In addition to temporal coding, neural activity
across populations of neurons can summate to create local field potentials that fluctuate in
intensity at specific frequencies, transiently coupling activity in networks of neurons to
coordinate information processing by the degree of coherence and synchrony of brainwaves
and neuronal oscillations (Buzséki and Draghun 2004; Bonnefond and others 2017). Neural
oscillation patterns have correlates with specific behaviors and are associated with aspects of
cognitive function such as memory, attention, and skill learning (Corlier and others 2016; Di

Corresponding Author: R. Douglas Fields, Nervous System Development and Plasticity Section, The Eunice Kennedy Shriver
National Institute of Child Health and Human Development (NICHD), Building 9, Room 1E126, Bethesda, MD 20892, USA.
fieldsd@mail.nih.gov.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Belgrad and Fields

Page 2

Nota and others 2017; Friese and others 2013), suggesting the possibility of changes in gene
expression associated with specific frequencies of neuronal oscillation are essential
components of frequency-specific behaviors.

Neuronal activity-dependent changes in gene expression are classically attributed to
intracellular calcium kinetics activating calcium-dependent protein kinase cascades,
ultimately recruiting activated transcription factors in the nucleus. However, this is only one
aspect of how context-specific action potential patterns can regulate expression of an
appropriate gene network. Along with calcium-dependent and calcium-independent
cytosolic signaling from neuronal firing, intranuclear events that may be regulated by the
temporal features of neuronal firing have been much less studied, but increasing evidence
suggests the importance of activity-dependent modification of chromatin structure in
regulating gene expression.

Expression of genes requires a network of interactions between DNA, which is wrapped into
a dynamic three-dimensional chromatin structure, along with heterogenous transcription
machinery composed of protein factors, and non-coding RNA. Furthermore, a diverse array
of epigenetic modifications come together to create biochemical marks on proteins or DNA
nucleotide bases to allow for the specialized gene expression in individual cells adapted to
unique and stimulating environments. In this review, we summarize the current
understanding of neural information transduction into the nucleus with temporal specificity,
with an emphasis on the connection between unique neuronal activity patterns and
interactions within the epigenome to produce and maintain a stimulus-specific
transcriptome.

Evidence of Action Potential Pattern-Specific Gene Expression

Rhythmic Magnetic and Optogenetic Stimulation

Transcranial magnetic stimulation (TMS) provides compelling evidence that gene
expression is regulated by specific patterns of neuronal firing and neural oscillations in vivo.
For example, repetitive TMS using an intermittent pattern of theta-burst frequency for 2
weeks following a stroke injury in rat upregulates 52 genes involved in angiogenesis,
inflammation, neuroprotection and neuronal plasticity, while repetitive TMS at a constant 1
Hz or 5 Hz frequency had no effect on gene expression (Ljubisavljevic and others 2015). In
another study, the immediate early genes (IEGs) ¢-fosand zif268, both of which are
implicated in synaptic plasticity, were found to be differentially expressed in response to
distinct patterns of TMS (Aydin-Abidin and others 2008).

An in vitro study used 5 different patterns of repetitive magnetic stimulation in a study of
gene expression and intracellular calcium transients. Coils positioned outside culture dishes
were used to drive magnetic fields through the preparation to excite neuronal firing in
primary cell cultures isolated from mouse cerebral cortex (Grehl and others 2015). All
patterns of stimulation elevated intracellular calcium to a similar extent, but the pattern of
gene expression was highly dependent on the stimulation pattern. Thus, regulation of gene
expression by neuronal firing is not simply explained by the amplitude of intracellular
calcium concentration generated by different stimulus patterns. These different patterns of
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stimulation had functional consequences, as shown by phenotypic effects on neuronal
morphology and survival, which were consistent with the expression changes in genes
implicated in neuron morphology and survival (Grehl and others 2015).

Other studies using electrical stimulation of awake adult rats (Ryan and others 2012) or rat
hippocampal slices (Bukalo and others 2016; Lee and others 2005), in patterns that induce
long-term potentiation (LTP) or longterm depression (LTD), show that the temporal pattern
of gene expression in hippocampal neurons is altered differently by the different stimulus
patterns (Bukalo and others 2016; Lee and others 2005; Ryan and others 2012). LTP-
associated gene expression profiles also differ when stimulation is applied via synaptic input
or action potential firing (Dudek and Fields 2002). Taken together, these findings illustrate
the importance of both the temporal pattern and spatial component of neuronal activity in the
subsequent activity-induced gene expression.

More recently, studies using optogenetic stimulation of Drosophilato activate different
patterns of firing in the fly’s nervous system, have been used to investigate this question.
RNA-sequence data from Drosophila neurons activated by two stimulation paradigms
indicate that each stimulation paradigm produces unique expression of activity-regulated
genes (Chen and others 2016) (Fig. 1). To explain mechanisms driving activity-dependent
expression of genes, Chen and others determined the kinetics of activity-regulated gene
enrichment at different time-points. The majority of the transcripts sampled did not reach
maximal expression until 60 minutes after robust, non-patterned LED-light induced
depolarization. Analysis of chromatin compaction, by using transposase-accessible
sequencing (ATAC-seq) indicates that the transcription start sites of activity-related genes
were more open prior to stimulation (Chen and others 2016). Interestingly, this group also
reports that different neuron populations each generate different sets of activity-regulated
transcripts after undergoing the same stimulus paradigm.

However, using these various approaches of stimulating neural networks in vivo and in vitro,
it is difficult to control the precise pattern of action potential firing, because the neurons are
interconnected by excitatory and inhibitory synapses, and they typically exhibit spontaneous
firing in complex patterns and bursts, making these methods an insufficient test of the
hypothesis that gene expression is regulated by the temporal pattern of action potential
firing. With these experimental approaches, the frequency-dependent effects of stimulation
on gene expression are most likely related to changes in overall network excitability that is
influenced by the different patterns of applied stimulation. In general, low-frequency TMS
(1 Hz) decreases cortical network excitability and higher frequency stimulation (5 Hz and
above, and theta-burst stimulation) increase network activity (Aydin-Abidin and others
2008).

Patterned Electrical Stimulation of Axons

To test directly the hypothesis that gene expression is regulated by the temporal pattering of
action potential firing, cell cultures of mouse dorsal root ganglion (DRG) neurons have been
stimulated by electrodes in combination with calcium imaging and analysis of gene
expression. DRG neurons do not have dendrites nor do they form synapses on other DRG
neurons. These neurons are not spontaneously active in cell culture and in response to brief
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pulses of electrical stimulation, they fire a single action potential, rather than a train of
action potentials (Fields and others 1992). With the ability to precisely control the pattern of
action potential firing, DRG neuron cultures are therefore an ideal method to test whether
temporal patterns of action potentials affect gene expression. Using four stimulation
paradigms, Fields and others (1997) demonstrate that specific action potential patterns cause
differential gene expression in neurons. The experimenters determined that expression of ¢-
fos correlates inversely with the length of interval between consecutive stimuli presented at
different frequencies and does not correlate with the net concentration of cytosolic calcium
(Fields and others 1997). To explain this phenomenon, the authors analyzed the calcium-
dependent intracellular signaling cascades and activation of the transcription factor cyclic-
AMP response element binding protein (CREB), in response to the four firing patterns that
differentially regulate expression of ¢-fos. The results indicate that changes in gene
expression induced by the temporal features of action potential firing are in part a
consequence of differences in the Kinetics of activation and inactivation of calcium-
dependent protein kinases and transcription factors controlling gene transcription in
response to membrane depolarization. This and additional mechanisms for regulating gene
expression by temporal coding of action potential firing will be considered in the next
section.

Encoding Transients of Neuronal Activity in the Cytosol and Nucleus

Intracellular

Signaling from Membrane Depolarization to Transcription Factors

Stimulus-specific changes in gene expression require the transduction of synaptic activity
patterns into the nucleus with accurate temporal integrity. Calcium signaling activated by
membrane depolarization is highly implicated in expression of genes, in part through
activation of protein kinase C and ERK/MAPK signaling pathways to modulate many
downstream transcription factors (Cohen and Greenberg 2008; Flavell and Greenberg 2008;
Adams and others 2000). Transcriptome analysis following pharmacological depolarization
of neurons has been valuable in identifying and characterizing many “activity-dependent
genes” (Coba and others 2008; Hunsberger and others 2005; Pham and others 1999). In
various cell types, IEGs, such as ¢-fosand c-jun, increase expression rapidly following
neuronal stimulation, without the need for de novo protein synthesis. This rapid transcription
occurs through activation of specific transcription factors (Bahrami and Drablgs 2016), the
most widely studied being phosphorylation of the calcium-responsive transcription factor
CREB (Pham and others 2000). Synaptic activity mediated through the excitatory neuronal
receptor NMDA (N-methyl-p-aspartate) can activate the ERK signaling pathway and result
in downstream activation of calcium-calmodulin kinase IV (CaMKIV) (Bito and others
1996). CaMKIV enters the nucleus to phosphorylate CREB allowing the CREB-binding
protein (CBP) to form a complex and mediate transcription (Bito and others 1996; Impey
and others 2002). This mechanism was thought to dominate activity dependent gene
expression as it provided a clear connection between calcium Kinetics and nuclear
transcription factor activation (Impey and others 2002). However, while phosphorylation of
CREB and the CBP complex mediate plasticity-related gene expression (Barco and others
2002; Impey and others 2002), electrical stimulation of DRG neurons by different
frequencies and patterns of action potentials readily induces prolonged phosphorylation of
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CREB, but with kinetics that would be unable to maintain temporal-specific integrity of
many stimulation patterns (Fields and others 1997).

Stimulating action potentials in mouse DRG axons at 10 Hz in 1.8-second bursts, (18 action
potentials, with a 1-minute interburst interval, referred to as 18/1) or for 9 seconds (90 action
potentials, with a 5 minute interburst interval, referred to as 90/5), both deliver the same total
number of action potentials at the same 10 Hz frequency during the experimental time
course, but expression of many genes was found to be differentially regulated by these two
action potential firing patterns. Gene expression analysis by genome-wide microarray
performed after 2 and 5 hours of stimulation at these two patterns detected 2901 mRNA
transcripts that were differentially expressed between the two stimulus patterns.
Interestingly, genes that were upregulated by one stimulus pattern were typically
downregulated by the second pattern (Fig. 2). Classically, gene expression that is regulated
by neuronal firing has been considered a special property of IEGs, but this study shows that
thousands of genes coding a wide range of proteins are regulated by the temporal features of
action potential firing. Given this evidence that thousands of neuronal genes are not only
activity-regulated but firing pattern-regulated suggests that many other signaling pathways,
in conjunction with calcium signaling resulting in phosphorylation of CREB, must be
involved. In support of this, after categorizing the differentially regulated genes based on
their known functions, the authors conclude that 18 canonical signaling pathways were
activated depending on the stimulus pattern. Similar to intracellular signaling pathways in
the cytoplasm, intranuclear events are also sensitive to the pattern of action potential firing.

Nuclear Calcium

In addition to cytosolic signaling, neuronal firing patterns are encoded into corresponding
nuclear calcium transients (Bengtson and others 2010; Hardingham and others 2001).
Repetitive high frequency or theta burst stimulation paradigms used to experimentally
induce LTP, produce waves of nuclear calcium (Bengtson and others 2010). Nuclear calcium
dynamics correlate to the temporal pattern of environmental stimulus (Bengtson and others
2010; Hardingham and others 2001). Therefore, changes in nuclear calcium concentration
might contribute to the processes by which environmental stimuli manifest in alternative
gene transcription (Bading and others 2000). For example, nuclear calcium has been shown
to bind nucleosomes and stabilize DNA-histone interactions (Yang and Hayes 2011).
(Activity-dependent chromatin remodeling will be considered in greater depth separately in
this review.) In particular, calcium ions modify nucleosome compaction, promoting
chromosome condensation (Phengchat and others 2016). Nuclear calcium dynamics can act
independently of cytosolic signaling to produce expression of CREB-dependent genes
(Hardingham and others 2001). It is important to note, however, that the role of nuclear
calcium transients as a medium for encoded synaptic information is debated, as some
findings indicate that nuclear calcium dynamics do not appear to be tightly influenced by
robust cytosolic calcium changes (Al-Mohanna and others 1994; Leite and others 2003),
unlike the studies identified above. Taken together, the literature suggests that environmental
stimuli may be converted into nuclear calcium dynamics, which have the ability to modulate
and induce gene expression.
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Transcription Factor Binding Sites

The study mentioned previously, Lee and others (2017), determined that activity-dependent
expression of genes in DRG neurons is regulated on a genome-wide scale according to
temporal features of action potential firing. By hypothesis, genes may be differentially
sensitive to distinct action potential firing patterns by virtue of having multiple transcription
factor binding sites in the regulatory elements throughout enhancer and promotor regions. If
transcription factor activation occurs in response to only a subset of action-potential patterns,
then pattern-dependent gene expression may arise when a transcription factor is
preferentially recruited based on the stimulus provided, and subsequently binds to its motif
inducing expression of only a certain set of downstream genes. To test this hypothesis, the
authors analyzed the regulatory regions of the genes that were differentially affected by the
two stimulus patterns applied. Using distant regulatory elements of co-regulated genes
(DIRE), the authors found enrichment of certain transcription factor binding sites in the two
sets of genes that were differentially regulated by the two patterns of stimulation. For
example, transcription factors associated with activation of ERK/MAPK pathways were
enriched in genes responding to the 18/1 stimulus pattern while canonical calcium signaling
transcription factors are overrepresented in genes responding to the 90/5 stimulation (Lee
and others 2017).

The authors conclude that differential transcription in response to distinct neuronal firing
patterns is the result of cytosolic signaling pathway activation and enrichment of
transcription factor bindings sites in different genes. Beyond these important considerations,
more questions remain. If the expression of a gene or a gene network is altered based on the
pattern of neuronal activity, and the expression of gene is dependent on the local and distal
epigenetic architecture, what is the role of dynamic epigenetic modifications in neural
pattern specific gene expression?

Neuronal Activity and Epigenetic Interactions

Experience-Dependent Epigenetic Modification

The new field of “neuroepigenetics” characterizes how the epigenetic landscape allows
neurons to respond to unique environmental stimuli (reviewed further by Cholewa-Waclaw
and others 2016; Grigorenko and others 2016; Riccio 2010). The most well-characterized
epigenetic marks include histone methylation (Allfrey and others 1964), acetylation (Allfrey
and others 1964), phosphorylation (Gutierrez and Hnilica 1967; Stevely and Stocken 1966),
sumoylation (Kang and others 2001), and DNA methylation (Gold and others 1963). Each of
these marks are a molecular addition to the protein or DNA to alter its biophysical
interactions, such as introducing steric hindrance or by altering the strength of ionic
interactions between charged histone tails and the negatively charged DNA sugar phosphate-
backbone (recently reviewed by Yao and others 2016). While many features of the
epigenome have been studied, continued research into known modifications as well as
identification of novel and biologically elusive modifications is an active, ongoing field of
research. In Table 1, we briefly summarize the most characterized histone tail and DNA
modifications in neuroscience literature (Cao and Yan 2012; Cubenas-Potts and Matunis
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2013; Huang and Dixit 2016; McConnell and Wadzinski 2009; Rossetto and others 2012;
Roth and Sweatt 2009).

Epigenetic regulation can occur in response to environmental factors such as stress
(Fuchikami and others 2010) and visual experience (Ruan and others 2016). Learning and
memory are associated with histone modifications (Bredy and others 2007; Gupta and others
2010; Stefanko and others 2009; Blank and others 2014) and altered chromatin structure due
to DNA double stranded breaks at the promoters of immediate early genes (Madabhushi and
others 2015; Watson and Tsai 2017). Trans-generational effects of environmental enrichment
on memory are associated with DNA methylation and histone modification (Arai and Feig
2011). Long-term memory is regulated by histone acetylation, and disruption of histone
acetyltransferase (HAT) activity impairs long-term memory (Halder and others 2016;
Pandey and others 2015; Rossetto and others 2012; Roth and Sweatt 2009). Augmenting
acetylation by histone deacetylase (HDAC) inhibitors can enhance memory formation
(Bieszczad and others 2015; Roth and Sweatt 2009). Conversely, eliminating the metabolic
enzyme that synthesizes acetyl-CoA (acetyl-CoA synthetase 2), thus reducing acetyl group
availability, reduces transcription of canonical memory-related neuronal genes and impairs
long-term spatial memory (Mews and others 2017). Fear conditioning is hallmarked by rapid
methylation of memory-repressive genes and demethylation of memory-associated genes
(Roth and Sweatt 2009).

A wide range of cognitive disorders are associated with epigenetic regulation, including
alcohol and drug addiction (Basavarajappa and Subbanna 2016; Kim and others 2017),
psychatic disorders including schizophrenia (Costa and others 2003; Ruzicka 2015), and
Alzheimer’s disease (Cuadrado-Tejedor and others 2015). Epigenetic remodeling is
similarly reported with developmental and physiological changes such as pain (Géranton and
Tochiki 2015), nervous system development (Yoo and Crabtree 2009), aging (Pina and
others 1988; Sen 2015; Singh and Thakur 2017), and synaptic plasticity (Maze and others
2015; Zhu and others 2016).

While features of the epigenetic architecture are widely associated with both neurological
behaviors and pathology, the molecular interplay between neuronal activity and the
epigenome in neuronal populations remains largely unexplored. As a note, the limitation of
the following studies, similar to activity-dependent findings discussed above, is that many
have yet to examine the temporal kinetics of action potentials that allow neuronal responses
to be biologically relevant to the experiences and behaviors encoded by said action
potentials. A summary of notable publications providing evidence of epigenetic interactions
regulating stimulation pattern specific neuronal activity-dependent gene expression are
featured in Table 2 and synthesized in Figure 3.

Chromatin Structure and Dynamics

Three-dimensional chromatin structure is defined on a small scale by spacing of
nucleosomes, which wrap ~200 DNA nucleotides, and on a larger scale by topographically
associated domains (TADs) which span hundreds to thousands of kilobases (Dixon and
others 2012). TADs can be defined at their boundaries by the insulating DNA binding
protein CCCTC-binding factor (CTCF) (Narendra and others 2015). Hi-C, a chromatin
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conformation capture method used to illustrate DNA-DNA interactions, reveals DNA-DNA
interactions are most enriched between sequences within the same TAD (Rao and others
2014). The boundaries of TADs as defined by binding of CTCF at the CTCF binding motif
largely influence interactions such as those occurring between enhancers and promoters
(Dixon and others 2016). The interactions between DNA, RNA, and protein used to first
identify, then transcribe the appropriate sequence necessary for cell function requires
epigenetic marks on histones and DNA to shape the physical architecture and accessibility
of regions within the genome. The theory of a universal histone code, such that each mark is
associated with a consistent biological function like “activating” or “inhibiting,” has been
frequently debated (Rando 2012). Despite this, each mark is highly informational to the
appropriate architecture of chromatin allowing sequences of nucleotides, whether they may
act as enhancer or promoter elements, or are transcribed into non-coding RNA or protein
coding regions, to become accessible or hidden depending on tissue and developmental stage
context. One important context is the ability to respond and “remember” incoming
environmental stimuli (Ravi and Kannan 2013).

Neuronal Activity and Chromatin Remodeling

Analysis of genome-wide chromatin compaction generated from ATAC-seq data using
dentate granule neurons before and after acute electroconvulsive stimulation reveals ~50,000
new open chromatin regions primarily occurring in introns and intergenic regions (Su and
others 2017). To associate the alternative chromatin accessibility regions with TADs
previously characterized from cortical neurons, the ATAC-seq data was compared to
previously compiled CTCF chromatin immunoprecipitation (ChlP) and histone modification
ChIP data to reveal colocalization of newly opened sites with the known activating marks:
methylated lysine 4 in histone 3 (referred to as H3K4me1l) and acetylated lysine 27 of
histone 3 (H3K27Ac) (Su and others 2017). RNA-seq of stimulated neurons reveals overlap
of upregulated mRNA expression and regions with gained chromatin opening (Su and others
2017). ChromHMM analysis, used to characterize chromatin states, demonstrated active
enhancer regions experience the most robust effects of chromatin remodeling following
neural stimulation (Su and others 2017). It is important to note that this article does not
explore how neuronal activity translates from cytosolic calcium signaling Kinetics, into a
change in nuclear protein interactions. While this study demonstrates crucial advancements
in our understanding of neuronal activity and constant chromatin remodeling, the
experimenters do not account for temporal specificity of neural activity that is essential to
encode environment and behavior-specific information. It is therefore essential to first
update the CTCF ChIP databases to include stimulated neurons, because it has not yet been
shown that stimulation alters CTCF-DNA binding, and secondly apply physiologically
relevant patterned stimuli to understand how these genome-wide features maintain temporal
integrity.

At specific genomic regions, neuronal activity can induce relocation of gene loci and
specific enhancer-promoter looping contacts for transcriptional regulation (Madabhushi and
others 2015; Watson and Tsai 2017). Neuronal activity-dependent DNA double-stranded
break formation in the promoter of immediate early genes can overcome repressive
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topological constraints to allow for rapid activity-induced transcription (Madabhushi and
others 2015; Watson and Tsai 2017).

Neuronal Activity and Histone Modifications

Genome wide changes in histone modifications have also been associated with neuronal
activity. Robust depolarization with KCI resulted in increased H3K27ac and H3K4m3 marks
and decreased H3K9m3 and H3K27m3 marks at the tyrosine hydroxylase promoter of
neural precursor cell prior to KCl-induced differentiation into dopaminergic neurons (He and
others 2011). Studies thus suggest neuronal activity can drive differentiation of cells through
regulation of histone modifications. Interestingly, in vitro experiments in rat liver cells
demonstrate that histone H1 responds to elevated calcium with a conformational change
(Tarkka and others 1997). Taken together with the nuclear calcium signaling dynamics that
may regulate transcription (Bengtson and others 2010), binding between temporally
regulated nuclear calcium concentration in response to action potential activity and H1
histone binding present an intriguing and plausible mechanism for activity-induced,
potentially pattern-specific, changes in chromatin structure.

Emerging evidence demonstrates enzymatic activity of histone modifying proteins are
regulated by RNAs (Bose and Berger 2017). As whole genome sequencing improves, the
existence and function of non-coding RNAs (ncRNAS) is becoming a major consideration.
ncRNA transcribed from enhancer regions (eRNAS) is found to act as a scaffold between
enhancers and promoters, and assists in chromatin looping and transcription factor binding
ultimately affecting the abundance of transcripts (Bose and Berger 2017; Rajarajan and
others 2016). eRNAs have widespread influence on the genome evidenced by RNA-seq data
from E14.5 whole mouse tissue analysis that reveals about 70% of enhancers identified in
DNA isolated from brain tissue transcribe eRNAs (Cheng and others 2015).

Important new experiments pairing photoactivatable ribonucleoside-enhanced crosslinking
and immunoprecipitation (PAR-CLIP) to analyze RNA-protein interactions with in vitro
enzyme activity assays reveal ncRNAs, including eRNAs, bind CREB-binding protein
(CBP) and enhance its histone acetyltransferase (HAT) activity in the CBP active site (Bose
and others 2017). HAT activity and H3K27ac marks are often associated with increased
transcription (Bose and Berger 2017). Ultimately, the involvement of eRNAs in epigenetic
modification regulation presents an intriguing layer of regional or target gene specificity in
response to neuronal activity. With many recent advancements to understand eRNA
function, temporal or localized characteristics of eRNA transcription and binding is hot topic
in molecular biology and may have important implications for intricacies within pattern
specific activity-dependent neuronal gene expression.

Neuronal Activity and DNA Modifications

Neuronal activity applied in vitro produces de novo methylation and rapid demethylation in
a reported 1.4% of CpG dinucleotides in neurons isolated from dentate gyrus neurons (Guo
and others 2011). Alterations in methylation due to activity lasted weeks after stimulation
(Guo and others 2011). Interestingly, de novo DNA methylation can negatively regulate
CTCF binding on DNA (Bell and Felsenfeld 2000). In addition to effects on CTCF binding,
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gene-ontology analysis by Guo and others (2011) suggest activity-modified CpGs were most
enriched at genes and motifs involved with splicing variants (Guo and others 2011). Altered
DNA methylation genome-wide may be explained by the activity of DNA
methyltransferases (DNMT) DNMT1 and DNMT3a (Day and others 2013; Sharma and
others 2008). DNMT3a ChIP assay results indicate neuronal activity induced with the
sodium channel agonist alters DNMT3a-DNA binding as well as subsequent IEG expression
(Day and others 2013). Depolarization of cultured cortical neurons with KCI and sodium
channel agonist veratridine results in decreased mMRNA of DNMT1 and DNMT3a (Sharma
and others 2008). Thus, differences in DNA methylation due to neuronal activity may occur
via an indirect process. Changes in methylation have also been reported in vivo. Induction of
LTP with high-frequency stimulation in rats produce differential methylation of LTP-
associated genes as measured with a methylated DNA immunoprecipitation assay (Maag
and others 2017). Levels of methylation were correlated with RNA-seq data at multiple
timepoints after stimulation and indicated both up and down regulation of LTP-associated
genes where alternative methylation occurred (Maag and others 2017). Importantly, the
experiments performed by Maag and others present compelling evidence connecting a
behaviorally relevant stimulus with pattern-dependent epigenetic alterations. While these
authors focus on a predetermined set of genes, eventually performing a genome-wide
analysis of sequences with altered epigenetic interactions will allow for a broader
understanding of the pattern-specific epigenetic changes associated with many behaviors.

Future Questions and Conclusion

The majority of research in this field has demonstrated that generalized neuronal
depolarization affects both gene expression and the epigenetic landscape (reviewed by
Cortés-Mendoza and others 2013; Flavell and Greenberg 2008; West and Greenberg 2011).
Yet, environmental information is encoded in patterns of action potentials and further, recent
findings indicate that alternative gene expression occurs on a neuronal firing pattern—
dependent manner (Lee and others 2017). To understand how specific populations of
neurons maintain context dependent role, it is essential to look to the interactions between
the epigenetic architecture and the intracellular propagation of neuronal activity into the
nucleus. Specifically, addressing novel and essential questions surrounding how the temporal
integrity of distinct frequencies of stimulation is maintained in the interplay between activity
and epigenetic modifications to produce pattern specific alternative gene expression will
prove invaluable to the field. Which epigenetic modifications are altered with stimulus
pattern integrity? Do these malleable protein, DNA, and RNA constructs work alone or in
combination? How do protein activation cascades or calcium transients propagate from the
cytoplasm to the nucleus with temporal specificity? How are protein and nucleotide
structures modified by cytoplasmic and nuclear signaling cascades? Are there certain genes
or genomic regions that are more highly modified by activity? Are these regions conserved
across differentiated neuron populations? How do separate differentiated cells respond
differently to the same stimulus? What aspects of the genomic architecture maintain a
differentiated specialized neuron state versus what aspects are highly malleable based on
cellular activity? Furthermore, intricacies in the type of stimulus and the networks of genes
expressed suggests that the currently characterization of “activity-dependent genes” due to
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robust depolarization might miss genomic regions that are opened and expressed during
more specific or intermediate types of neuronal stimulation.

From the neuroscience perspective, activity dependent gene expression is an important and
fascinating phenomenon underlying the neuronal plasticity critical for learning and memory.
From the molecular biology perspective, epigenetic remodeling in response to constant and
persistent temporally unique stimuli presents an ideal system to discover stimuli-induced
modulation of interactions between three-dimensional chromatin structures, subsequent
DNA-DNA interactions, as well as DNA-protein interactions. Expanding the knowledge of
epigenetics mediating neuronal cell responses to activity presents exciting and major
interdisciplinary questions in cognitive neuroscience, cellular neuroscience and molecular
biology.
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Figurel.
Activity-dependent transcripts in Drosophila vary based on neuronal stimulation type. (A)

Schematic for optogenetic stimulation of channelrhodopsin-2-XXL (ChR2) expressing
neurons under Gal4 control with blue LED light. (B) Schematic for heat induced activation
with dTrpAl heat-sensitive cation channel. (C) Schematic for robust depolarization with
KCI treatment. (D) Overlapping expression of activity induced genes based on stimulation
paradigm. Data generated from high throughput deep sequencing of mRNA libraries isolated
from stimulated Drosophila. Figure adapted from Chen and others (2016).
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Figure 2.
Specific patterns of action potentials induce differential gene expression in mammalian

dorsal root ganglion neurons (DRGs). Heat map represents RNA-seq data from DRGs after
10 Hz stimulation for 1.8 seconds with a 1-minute interval (18/1) or for 9 seconds with a 5-
minute (90/5) interval for 2 or 5 hours (Lee and others 2017). Blue indicates downregulation
of mRNA and red indicates upregulation of mMRNA. Reprinted from Lee and others (2017).
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Figure 3.
Dynamic structures of the neuronal epigenome allow for encoded neural activity to produce

targeted and controlled pattern-dependent gene expression in response to temporally specific
neuronal activation. The unknown molecular mechanisms leading to pattern-specific gene

expression present exciting questions for molecular, cellular and cognitive neuroscience and
biology fields. Schematic illustrates DNA wrapped around histones (colored cylinders) each
marked with representative histone protein modifications (labeled circles attached to histone
tail). Straight line with perpendicular dashes beside arrows indicate action potential patterns.
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