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a  b  s  t  r  a  c  t

Background:  The  differential  quantification  of brain  atrophy,  white  matter  hyperintensities  (WMH)  and
stroke  lesions  is  important  in studies  of  stroke  and  dementia.  However,  the  presence  of  stroke  lesions  is
usually  overlooked  by  automatic  neuroimage  processing  methods  and  the-state-of-the-art  deep  learning
schemes,  which  lack  sufficient  annotated  data.  We  explore  the use of  radiomics  in identifying  whether  a
brain magnetic  resonance  imaging  (MRI)  scan  belongs  to  an  individual  that  had  a stroke  or  not.
Materials  and methods:  We  used  1800 3D  sets  of MRI  data  from  three  prospective  studies:  one  of  stroke
mechanisms  and  two of  cognitive  ageing,  evaluated  114  textural  features  in  WMH,  cerebrospinal  fluid,
deep  grey  and  normal-appearing  white  matter,  and  attempted  to classify  the  scans  using  a  random  forest
and support  vector  machine  classifiers  with  and  without  feature  selection.  We  evaluated  the  discrimi-
natory  power  of each  feature  independently  in  each  population  and  corrected  the  result  against  Type  1
errors.  We  also  evaluated  the  influence  of  clinical  parameters  in  the  classification  results.
Results:  Subtypes  of  ischaemic  strokes  (i.e.  lacunar  vs. cortical)  cannot  be  discerned  using radiomics,  but
the  presence  of  a stroke-type  lesion  can  be ascertained  with  accuracies  ranging  from  0.7  < AUC  <  0.83.
Feature  selection,  tissue  type,  stroke  subtype  and  MRI  sequence  did  not  seem  to determine  the  classifica-

tion  results.  From  all clinical  variables  evaluated,  age  correlated  with  the  proportion  of  images  classified
correctly  using  either  different  or the same  descriptors  (Pearson  r  = 0.31  and  0.39  respectively,  p  <  0.001).
Conclusions:  Texture  features  in  conventionally  automatically  segmented  tissues  may  help  in  the  identi-
fication  of  the  presence  of previous  stroke  lesions  on  an  MRI  scan,  and  should  be taken  into  account  in
transfer  learning  strategies  of the-state-of-the-art  deep  learning  schemes.

©  2019  The  Authors.  Published  by Elsevier  Ltd. This  is an open  access  article  under  the  CC BY  license
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1. Introduction

1.1. Importance of automatically detecting the presence/absence
of a previous stroke

The differential quantification of brain atrophy, white matter
hyperintensities (WMH)  and stroke lesions (i.e. either acute or old,
symptomatic or asymptomatic) is important in studies of stroke

and dementia. However, stroke lesions, in magnetic resonance
images (MRI), can have similar signal intensities as WMH  and cere-
brospinal fluid (CSF) (i.e. a proxy for brain atrophy), and may  be
accidentally considered WMH  or CSF by image processing meth-

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ds. Disentangling the effect that each of them has in cognitive and
ealth indicators is crucial for individual prognosis of stroke out-
omes and for understanding the pathophysiology of stroke and
geing. For example, although the most serious consequence of a
troke is neuronal death, indicators of neurofibrillary degeneration
ave been associated with 1-year post-stroke brain atrophy (Ihle-
ansen et al., 2017), assessed from MRI. Brain tissue atrophy and

troke lesion volume, but not WMH  volume have been cited as neu-
oimaging determinants of post-stroke cognitive performance (Puy
t al., 2018). On the other hand, there is evidence that WMH  and not
ld stroke lesion volume is associated with brain atrophy and cogni-
ive decline in normal ageing (Habes et al., 2016; Valdés-Hernández
t al., 2013).

The differential assessment of these imaging markers (i.e. WMH,
troke lesion and brain atrophy) is also necessary in the design of
linical trials that use these parameters as outcome measurements,
or estimating the sample size. The latter is driven by a measure of
uncertainty” in the estimation of the outcome measurements, as
ell as the absolute difference between these measurements in the

roups of individuals involved in the trials. A study showed that fail-
re to exclude stroke lesion volume in the volume reported as WMH
dded an uncertainty of 20%, which could cause an increase in the
ample size calculation and consequently impact in the trial dura-
ion and cost (Wang et al., 2012). Adjudicating treatment response
o an increase/decrease in WMH  instead of stroke lesion due to

iscalculating their true volumes potentially could miss effective
reatments or make ineffective treatments look as if they were ben-
ficial. The same study found that for individual patients, failing to
onsider the tissue loss due to stroke when measuring brain atro-
hy could increase the apparent brain volume loss by up to 21.25 ml
ore, representing up to 4 times more atrophy than the true value.

.2. The-state-of-the-art neuroimaging methods for recognising a
troke

Neuroimaging studies of stroke benefit from the use of diffusion
eighted images, which are part of routine clinical stroke neu-

oimaging protocols as they facilitate the identification of stroke
esions. However, it has been reported that these images do not
dentify the presence of stroke on approximately a third of patients
een in clinics with a non-disabling stroke (Makin et al., 2015). Also,
hey are not always part of the neuroimaging protocol for studies
f ageing and dementia. In the last few decades, the increase in
omputational power of affordable computer platforms has given

 boost in the application of machine-learning methods to medi-
al image analysis. A recent review on machine learning methods
pplied only to the study of dementia using MRI  (Pellegrini et al.,
018), found 5747 studies, excluding reviews and animal studies,
ublished up to January 2016. From 2016 onwards, deep learning
ethods, principally convolutional neural networks (CNN), have

ominated advances in this field (Litjens et al., 2017; Shen et al.,
017). However, the requirements of still expensive hardware and

 large amount of annotated data have limited their applicability,
avouring the application of the more conventional ones (Giger,
018). Moreover, CNN, the deep learning method by excellence

n Computer Vision, suffer a considerable loss in performance in
he following scenarios: 1) in the presence of pathologies that dif-
er from those in the training set, 2) with datasets acquired with
ifferent imaging protocols, or using different sequences (i.e. the
ask domain changes), 3) when performing tasks that are related to
ut not the same as that on which they were trained (e.g. lesion
egmentation vs. lesion assessment) (Rachmadi et al., 2018). To

vercome these limitations, there are several ways to enhance the
erformance of CNN architectures without modifying the archi-
ecture itself. These are known as “enhanced learning techniques”
nd comprise: 1) modifying the input data by adding information
Imaging and Graphics 74 (2019) 12–24 13

derived from internal and external sources (i.e. data augmentation),
and/or 2) re-purposing a model trained for one task to perform a
second related task (i.e. transfer learning). For these techniques to
be successful, it is important to understand which imaging features
are relevant for the machine and integrate this “domain” knowl-
edge in (re)training the CNN (Liu et al., 2018).

1.3. Suitability of radiomics for identifying the presence/absence
of a previous stroke

Radiomics is a promising field that aims to improve precision
in diagnosis, assess prognosis or predict treatment response by
extracting a large number of quantitative descriptors from medical
imaging data. Radiomics practice is based on the hypothesis that
medical images contain valuable information at the tissue/organ
level (macroscopic level) that reflects the underlying pathophysi-
ology of the tissue (microscopic level) and that these relationships
can be revealed by means of quantitative imaging features (Gillies
et al., 2016; Lambin et al., 2012, 2017). Texture features are the
imaging features most widely used in radiomics since they have
proved to be efficient in describing the voxel interrelationships
and the grey level distributions within images, allowing quantifi-
cation of the intrinsic heterogeneity (vs. homogeneity) that may
not be visually perceived, thus facilitating the characterisation and
classification of different tissues (Castellano et al., 2004). These
parameters can be correlated or combined with other medical
information such as demographic, clinical, histologic or genomic
data in order to improve decision-making tasks (Avanzo et al.,
2017; Kumar et al., 2012; Larue et al., 2017). Texture analysis can
be applied to different/multiple imaging modalities, and the selec-
tion of the appropriate technique to investigate each disease or
lesion depends on several factors. Recently, MRI  has increased in
popularity in radiomics studies due to its growing incorporation
into routine clinical practice and its ability to produce high-quality
images (Larroza et al., 2016). Specifically for the study of SVD
and stroke lesions, several studies that used MRI  have successfully
applied texture analysis to different tasks (González-Castro et al.,
2017; Kassner et al., 2009; Leite et al., 2015; Valdés-Hernández
et al., 2017; Viksne et al., 2015). One of them found that texture in
normal-appearing tissues showed promise for stratifying patients
according to their SVD and WMH  burden (Valdés-Hernández et al.,
2017).

1.4. Study rationale, hypotheses and research questions

As normal-appearing tissue can be assessed using well-
established automatic image processing tools (e.g. SPM (https://
www.fil.ion.ucl.ac.uk/spm/), FSL (https://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/), FreeSurfer (https://surfer.nmr.mgh.harvard.edu/), Brain-
Visa (http://brainvisa.info/web/index.html) to mention just a few)
with a high level of accuracy, and given the effect that a stroke
is known to have not only in the affected region, but also in
unaffected tissue, we  investigated the feasibility of using texture
analysis in the tissues conventionally identified in structural
MR images to identify the presence/absence of a previous stroke.
Moreover, as WMH  (i.e., a confound for the automatic identification
of ischaemic stroke lesions) have been defined as having a mainly
vascular origin (Wardlaw et al., 2013), we  also analysed whether
texture in WMH  can help increase the likelihood of accurately
identifying the presence of a major ischaemic stroke lesion. We
therefore hypothesised that a conventional classifier that uses
textural features in WMH  and tissues commonly segmented by

current automatic image processing techniques, can discriminate
the brain MRI  of individuals that had a stroke from those who  had
not, so as a post-processing step of removing the stroke effect could
be done, although the type of stroke (i.e. cortical vs. lacunar) might

https://www.fil.ion.ucl.ac.uk/spm/
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e difficult to be ascertained. Specifically, our research questions
re: 1) Can a texture-based automatic classifier discriminate a
outine clinical structural brain MRI  scan of a patient with a recent
acunar stroke from a brain MRI  scan from a patient with a recent

ild cortical stroke? 2) Can a texture-based automatic classifier
iscriminate between the MRI  data of an individual who had a
revious stroke from an individual of similar age who  never had a
troke? We  also investigated the effect of age in the classification.

. Materials and methods

.1. Subjects

To answer our two research questions we used MRI  data from
ndividuals enrolled in two different prospective studies: one study
f stroke mechanisms (Wardlaw et al., 2017) and one study of cog-
itive ageing (Taylor et al., 2018). The sample from the first study

ncluded MRI  data from 100 patients (54 women and 46 men, mean
ge 65.3 years old, SD 11 years) which had a lacunar (n = 50) or mild
i.e. mRS  <3) cortical (n = 50) ischaemic stroke less than 2 weeks
rior to the MRI  scan (i.e. post-acute stage). The sample from the
econd study included MRI  data from 100 individuals from a year-
f-birth cohort (53 women and 47 men, mean age 73.2 years old,
D 0.6 years) who were either stroke free (n = 50) or had a prior
schaemic stroke in the non-acute (i.e. chronic) phase identifiable
n imaging (n = 50). The data selection was performed randomly
nd fully automatically, only taking account that the four subgroups
i.e. 1) recent lacunar stroke, 2) recent cortical stroke, 3) no stroke,
) old stroke) were equal-sized. To evaluate the influence of age in
he classification of scans having a stroke or not, we used brain MRI
ata from 36 individuals from another year-of-birth cohort. They
ere also enrolled in a study of cognitive ageing (Taylor et al., 2018)

20 women and 16 men, mean age 91 SD 0.5 years). From this sam-
le, 22/36 individuals never had a stroke (i.e. at least identifiable in

maging).
All studies that provided data and involved human participants

ere conducted in accordance with the 1964 Helsinki declaration
nd its later amendments, with protocols and ethical standards
pproved by the following Scottish Research Ethics Committees:
othian Research Ethics Committee (09/S1101/54, LREC/2003/2/29,
EC 09/81101/54), the NHS Lothian R + D Office (2009/W/NEU/14),
nd the Multi-Centre Research Ethics Committee for Scotland
MREC/01/0/56) (Valdés-Hernández et al., 2015a,b; Wardlaw et al.,
017).

.2. Imaging protocol

All brain MRI  data were acquired on a 1.5 T GE Signa LX
linical scanner (General Electric, Milwaukee, WI), equipped
ith a self-shielding gradient set and manufacturer supplied

ight-channel-phased array heal coil. The MRI  acquisition pro-
ocols of the studies that provided data for these analyses
iffered. The MRI  sequences considered in this work were 3D
1-weighted (T1W) inversion recovery-prepared spoiled gradi-
nt echo (SPGR), axial 2D T2-weighted (T2W) and axial 2D
uid-attenuated inversion recovery (FLAIR) brain images. For the
troke study, the T1W had TR/TE/TI = 7.3/2.9/500 ms,  8◦ flip angle,
3 × 21.5 cm2 field of view (FoV), 256 × 146 acquisition matrix,
00 × 1.8 mm slices, the T2W sequence had a propeller acquisition
ith TR/TE = 6000/90 ms,  24 × 24 cm FoV, 384 × 384 acquisition
atrix, 28 × 5 mm slices, 1 mm slice gap, and the FLAIR had
R/TE/TI = 9000/153/2200 ms,  24 × 24 cm FoV, 384 × 224 acquisi-
ion matrix, 28 × 5 mm slices, 1 mm slice gap. Both year-of-birth
ohort (normal ageing) studies had the same MRI  acquisition
rotocol: T1W had TR/TE/TI = 9.7/3.984/500 ms,  25.6 × 25.6 cm2
Imaging and Graphics 74 (2019) 12–24

FoV, 192 × 192 acquisition matrix, voxel size 1 × 1 × 1.3 mm3,
T2W had TR/TE = 11320/102 ms,  25.6 × 25.6 FoV, 256 × 256 acqui-
sition matrix, 80 × 2 mm slices, no inter-slice gap; and FLAIR had
TR/TE/TI = 9000/140/2200 ms,  256 × 192 acquisition matrix, and
40 × 4 mm slices. All acquisitions were zero-filled and resampled
to either 256 × 256 or 512 × 512 in-plane resolution matrices.

2.3. Image processing

The segmentation of the brain tissues and structures was  per-
formed following the protocol described in (Valdés-Hernández
et al., 2015a,b). Briefly, binary masks of normal appearing white
matter (NAWM)  and WMH  were obtained using a multispec-
tral segmentation method (Valdés-Hernández et al., 2010) (www.
sourceforge.com/projects/bric1936) followed by manual editing to
correct for possible errors. The structures of the basal ganglia and
thalami were fully automatically extracted using a combination of
three tools from the FMRIB software library (FSL) (https://fsl.fmrib.
ox.ac.uk/fsl/fslwiki) (Jenkinson et al., 2012): Smallest Univalue
Segment Assimilating Nucleus (SUSAN), FMRIB’s Linear Image Reg-
istration Tool (FLIRT) and a model-based segmentation/registration
tool (FIRST), combined on an automatic pipeline developed in-
house, and also manually corrected if necessary. Binary masks of
NAWM,  WMH  and subcortical structures were mapped into the
T1W, T2W and FLAIR sequences as illustrated in Fig. 1

2.4. 3D texture analysis

Textural features were extracted from a total of 1800 3D sets
of images (2 prospective studies × 100 individual data × 3 MRI
sequences × 3 brain tissues/structures). A simple approach to
capture the volumetric information of each 3D image was imple-
mented: we  first extracted the 2D texture features from each slice
of each 3D image, and then the 3D texture features of the image
were obtained by computing the median of the values of all the
slices. This process is illustrated in Fig. 2. Using this approach,
the grey-level distributions in the third dimension are not con-
sidered; however, it has been shown that features computed with
this 2D averaging method are more discriminative than features
extracted from a single slice (Larroza et al., 2016). Additionally,
all features were standardized to zero mean and unit variance to
improve numerical stability in the model training process. Also,
zero-variance and near-zero-variance predictors were removed for
the same reason (Kuhn and Johnson, 2013b). Finally, some features
failed to give a valid numeric value for some patients (e.g. while
attempting to be calculated on small WMH  clusters), so these fea-
tures were also removed to avoid computational problems in the
training process.

The feature extraction process was performed in MATLAB
(R2015b; The MathWorks Inc., Natick, MA,  USA) taking as a ref-
erence the code implemented in (Alegre et al., 2012).

2.5. Texture descriptors

A total of 114 features were extracted from each of the 1800
3D images and grouped into five different sets of textural features
according to the texture analysis method employed: Grey-level
Co-occurrence Matrix features (GLCM: 13 parameters), Grey-Level
Run-Length Matrix features (GLRLM: 11 parameters), Local Binary

Patterns features (LBP: 40 parameters), Wavelet Statistical features
(WSF: 26 parameters) and Wavelet Co-occurrence features (WCF:
24 parameters). Table 1 shows all textural features extracted from
each method.
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Fig. 1. Set of images obtained in each patient. In this representative case, T1-weighted (T1W), T2-weighted (T2W) and fluid-attenuated inversion recovery (FLAIR) brain
images  of normal appearing white matter (NAWM), white matter hyperintensities (WMH)  and subcortical structures (SS) of a lacunar stroke patient are presented.

F he sam
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2
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ig. 2. Process followed to extract the 3D features of a FLAIR image of the NAWM.  T
nd  of each tissue/structure (NAWM,  WMH  and SS).

.5.1. Grey-level co-occurrence matrix features
The Grey-level Co-occurrence Matrix (GLCM) is a second-order
tatistical matrix-based texture analysis method that was first pro-
osed by (Haralick et al., 1973) to describe local heterogeneity

nformation in images. This method quantifies the relationship
etween grey levels in an image by counting the pairs of pix-
e process is applied to all the images of each MRI modality (FLAIR, T1W and T2W)

els separated by a predefined distance (d) and direction (�) that
have the same distribution of grey-level values. Each pixel of the

resulting matrix represents the number of times that the grey level
of a reference pixel and the grey level of the neighbour pixel in
the predefined distance d and direction � are seen in the image.
Consequently, the size of the GLCM will be Ng × Ng, being Ng the
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Table 1
Texture features extracted.

Method Textural Features Number of Features

GLCM Energy, Contrast, Correlation, Variance, Homogeneity, Sum average, Sum variance, Sum entropy,
Entropy, Difference variance, Difference entropy, First information measure of correlation (FIMC),
Second information measure of correlation (SIMC)

13

GLRLM Short Run Emphasis (SRE), Long Run Emphasis (LRE), Grey-level Non-uniformity (GLN),
Run-Length Non-uniformity (RLN), Run Percentage (RP), Low Grey-level Run Emphasis (LGRE),
High Grey-level Run Emphasis (HGRE), Short Run Low Grey-level Emphasis (SRLGE), Short Run
High  Grey-level Emphasis (SRHGE), Long Run Low Grey-level Emphasis (LRLGE), Long Run High
Grey-level Emphasis (LRHGE)

11

LBP
LBP histogram bins: LBP1, LBP2, LBP3, . . ., LBP36 40LBP  image statistics: LBP Median, LBP Variance, LBP Skewness, LBP Kurtosis

WSF
Mean OI, SD OI (OI: Original image)

26Mean LLi , Mean LHi , Mean HLi and Mean HHi , for i = 1, 2, 3
SD  LLi , SD LHi , SD HLi and SD HHi , for i = 1, 2, 3
Energy LL1, Contrast LL1, Correlation LL1, Homogeneity LL1, Entropy LL1, Variance LL1
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WCF
Energy LH1, Contrast LH1, Correlation LH1, Hom
Energy HL1, Contrast HL1, Correlation HL1, Hom
Energy HH1, Contrast HH1, Correlation HH1, H

umber of grey levels of the image. Several statistics representing
he homogeneity or heterogeneity of the image can be mathemat-
cally computed from the GLCM.

In our study, images were uniformly quantised to Ng = 32 grey
evels to reduce the computational cost of the feature extrac-
ion process and to improve the signal-to-noise ratio (Gibbs and
urnbull, 2003). A distance of d = 1 pixel was chosen to enhance
ainly the local properties when computing the GLCM. To achieve

otation invariance, the features extracted from the GLCMs in the
our directions of the 2D space (� = 0◦, 45◦, 90◦ and 135◦) were
veraged. Rotation invariance is important in the context of our
ork because some texture methods like GLCM are dependent on

he direction and different texture values could be obtained if the
mage is rotated, thus affecting the results when images from dif-
erent patients have different orientations (Larroza et al., 2016).
t the end, 13 texture features were extracted from the GLCM of
ach image, as shown in Table 1. The equations to compute these
eatures and more details can be found in (Haralick et al., 1973).

.5.2. Grey-Level Run-Length Matrix features
The Grey-Level Run-Length Matrix (GLRLM) is also a statisti-

al matrix-based texture analysis method of a higher-order than
he GLCM that describes regional heterogeneity information. This

ethod, first proposed by (Galloway, 1975) and extended by (Chu
t al., 1990) and (Dasarathy and Holder, 1991), examines the times
hat each grey level value is seen consecutively in an image in a
redefined direction. The GLRLM is constructed by detecting and
ounting the runs (sequences of consecutive pixels with the same
rey level) of different grey levels and lengths in the image. Each
ow of the GLRLM represents a grey level and each column rep-
esents a specific length, so each pixel of the matrix indicates the
umber of runs of a specific grey level and length in the image. The

eatures extracted from the GLRLM can be used to define fine tex-
ures (dominated by short runs) or coarse textures (dominated by
onger runs) (Nailon, 2010).

To compute the GLRLMs, images were previously quantised to
g = 32 grey levels as in the case of GLCMs. The GLRLM features are
lso affected by the orientation of the image, so features extracted
rom the GLCMs in the four directions of the 2D space (� = 0◦, 45◦,
0◦ and 135◦) were averaged to achieve rotation invariance. A total
f 11 GLRLM features were computed, as shown in Table 1, and
urther details can be found in (Chu et al., 1990; Dasarathy and
older, 1991; Galloway, 1975).
.5.3. Local Binary Patterns features
Local Binary Patterns (LBP) were introduced in (Ojala et al., 2002)

nd soon became very popular due to their high discrimination
24
eity LH1, Entropy LH1, Variance LH1

eity HL1, Entropy HL1, Variance HL1

neity HH1, Entropy HH1, Variance HH1

efficiency and computational simplicity. The LBP labels each pixel
of the image under analysis by comparing its grey level with the
grey levels of the surrounding pixels and then assigning a specific
binary number. This binary number for each pixel is obtained by
allocating a value of 1 to those surrounding pixels with a greater
grey level value and a 0 to those surrounding pixels with a lower
grey level value. Originally, LBP was  defined for patches of 3 × 3
pixels, but it was later extended for blocks of P surrounding pixels
separated by a distance R. Taking this generalization into account
and given a pixel c with coordinates (xc ,yc), the LBP binary number
assigned to each pixel of the image is calculated using Eq. (1):

LBPR,P =
P−1∑
p=0

s
(

gp − gc

)
× 2p (1)

where gc and gp are the grey level values of the central pixel c and
its neighbour pixel p, and the function s(gp – gc) is defined as:

s
(

gp − gc

)
=

{
1 if gp − gc ≥ 0

0 if gp − gc < 0
(2)

Once the Eq. (1) is applied to all the pixels in the image, a LBP
image is obtained and all the bins of the histogram of this image
are used as texture features. Other statistics can be extracted from
the LBP image and used as texture features like the mean or the
variance.

In this work, the original LBP operator (patches of 3 × 3 pixels:
P = 8, R = 1) was  employed to preserve the texture analysis as local
as possible because regions like WMH  are not very large. Rotation
invariance was achieved by performing a circular bit-wise right
shift operation (rotating the neighbour pixel set clockwise) and
assigning the smallest LBP binary number (Ojala et al., 2002). Using
this approach, 36 unique rotation invariant histogram-based LBP
features were obtained, as only 36 LBP binary numbers can occur for
P = 8. Additionally, 4 statistics derived directly from the LBP image
(median, variance, skewness and kurtosis) were added to the LBP
features set. The MR  images were not quantised to compute the LBP
texture feature since the rotation invariant LBP approach is robust
to intensity variations (Unay et al., 2007).

2.5.4. Features based on the Wavelet transform
The discrete Wavelet transform (DWT) is a technique that
examines the spatial frequency patterns of an image within dif-
ferent scales and frequency directions, considering that frequency
is directly proportional to grey level variations in an image. The
DWT  applied to an image produces four matrices of coefficients
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Fig. 3. First DWT  level of decomposition of a FLAIR image of 

sub-images) that represent the approximations or low frequen-
ies (LL: low-low) and the details or high frequencies in the vertical
LH: low-high), horizontal (HL: high-low) and diagonal (HH: high-
igh) directions. An example of this matrices is shown in Fig. 3.
he DWT  can be repeated consecutively to achieve a major image
ecomposition: the first level of decomposition (LL1, LH1, HL1 and
H1) is applied to the original image as mentioned before and the

ubsequent levels are applied to the matrix of approximations of
he previous level (LLi, LHi, HLi and HHi, where i is the level of
ecomposition). The DWT  can be used as a transform texture anal-
sis method by processing these sub-images to obtain parameters
hat describe the spatial frequency information of the image. These
arameters have been previously used in some studies with suc-
essful results (Alegre et al., 2012; Arivazhagan and Ganesan, 2003;
onzález-Castro et al., 2017).

In this work we examined two groups of texture features derived
rom the DWT. The first group was the Wavelet statistical features
WSF), consisting of 26 descriptors that are the mean and SD of
he histograms of the original image and the sub-images yielded
fter three levels of decomposition. The second group was the
avelet co-occurrence features (WCF), consisting of 24 descriptors

hat are obtained by extracting six of the GLCM features (energy,
ontrast, correlation, homogeneity, entropy and variance) from the
ub-images yielded after the first DWT  decomposition. The Haar
amily of wavelets was used to perform the DWT  decomposition.

.6. Statistical analysis and classification approach

.6.1. Evaluation of the suitability of the textural features
A preliminary statistical analysis was conducted to evaluate the

iscriminative power of each feature independently between pop-
lations. Its final purpose was to assess the feasibility of these
eatures individually as biomarkers of stroke. To compare the dis-
ributions of each textural feature for each of the classes, the

ann-Whitney U test was applied. This non-parametric test is
quivalent to the independent samples t-test but without the
equirement of the normality assumption and is recommended
or relatively small sample sizes (McDonald, 2014). As the number
f statistical tests performed increases, the contrast test becomes
ore permissive, thus rejecting the null hypothesis more easily

nd increasing the number of false positives (McDonald, 2014).

o counter this effect, usually known as the multiple compar-
sons problem, we decided to apply the Holm-Bonferroni correction
efore assuming the statistical significance of the features. This rel-
tively strong (conservative) method controls the family-wise error
hite matter tissue (NAWM and WMH)  of a single brain slice.

rate, thus compensating the Type I error (incorrectly rejecting the
null hypothesis) and attempting to limit the probability of even one
false discovery.

2.6.2. Classification models
After the statistical analysis, we  applied machine learning algo-

rithms to analyse the groups of texture features without removing
any feature initially, since features that may  be completely useless
by themselves can provide a significant performance improvement
when combined with others within a machine learning approach
(Guyon and Elisseeff, 2003). We evaluated the performance of
two well-known conventional classifiers: Support Vector Machine
(SVM) with linear kernel and Random Forest (RF). The SVM clas-
sifier (James et al., 2013; S. Wang and Summers, 2012; Wu et al.,
2008), in a binary classification task like ours, tries to maximize the
margin distance between the classification boundary (i.e. hyper-
plane) and the closest samples of both classes by adjusting internal
parameters in the training process. One of these parameters is the
cost C, which controls the trade-off between misclassification of
the training data and the size of the margins. Values of C = 2−3, 2-2,
2-1, 1, 2, 22 and 23 were tuned to obtain the optimal classification
results. We  used a linear kernel after an initial evaluation where
non-linear kernels did not produce notably better results even after
a lengthy training process. The RF classifier (Fernández-Delgado
et al., 2014), combines the results of a multitude of independent and
decorrelated decision trees in the training process, thus improv-
ing generalization of the model and robustness against overfitting
in small samples (i.e. our sample is small for machine-learning
algorithms). One of the advantages of the RF model is the little
parameter tuning required. The parameter mtry, which identifies
the number of random variables used in each tree, controls the
strength (how accurate the individual trees are) and the correlation
(the dependence between trees) of the RF model. Another tuning
parameter is the number of trees to be built. In this work, values of
mtry = 2, 4, 6, 8, 10 and 12 were evaluated and the number of trees
was set to 250, as higher values of this parameter did no produce
notably better results on a preliminary evaluation.

2.6.3. Evaluation of the classification models
For evaluating the efficiency of the classification models, we

employed a 5-fold cross-validation (CV) approach. This resampling

method randomly partitions each texture dataset into five equally
sized subsets of samples or folds, maintaining a balanced amount of
both classes in each fold. Then, five models were trained and tested
so that each of the five folds was  used once as the test set, while
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F  samples of each texture dataset were randomly separated R = 10 times in F = 5 folds to
e odels studied (SVM with linear kernel and RF) and for all the chosen tuning parameters.
T st results to examine the influence of the number of features used to train the model.
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Table 2
Number of significant features (p < 0.05) for discriminating cortical vs. lacunar stroke
patients before (numerator) and after (denominator) Holm-Bonferroni correction
for  multiple comparisons per MRI  sequence and brain tissue/structure.

MRI  Sequence
Tissue or Structure

Normal-
appearing white
matter

Subcortical
structures

White matter
hyperintensities

FLAIR 0 / 0 16 / 0 1 / 0
ig. 4. Cross-validation structure used to evaluate the 90 texture datasets. All the
valuate the model with the averaged AUC. This process was  repeated for the two  m
he  feature selection process was only applied to those sets which provided the be

he four remaining folds were used to train the model. This process
as repeated ten times to reduce the variance of the cross valida-

ion results and to avoid possible bias in the random separation of
he folds (Kuhn and Johnson, 2013c), so at the end 50 models (5 test
olds × 10 repetitions) were built using different sets of patients for
raining and testing each time. The classification performance was
valuated using the averaged area under the curve (AUC) of the
eceiver operating characteristic (ROC) that resulted from averag-
ng the AUC values obtained from the 50 iterations (mean ± SD).
ood estimates of the model performance can be obtained using

he validation data when the sample size is not large (Kuhn and
ohnson, 2013c). Other metrics like sensitivity, specificity and accu-
acy were also obtained to validate the results.

The 9000 texture combinations (18 × 100 sets of images × 5 tex-
ure analysis methods) were firstly examined with the classifiers
ithout excluding any texture feature, as previously mentioned.
owever, the texture combinations that provided the highest
UC values were analysed again using the same cross validation
tructure with a feature selection step included within the model-
uilding process to avoid overfitting (Ambroise and McLachlan,
002). This way, we could test if reducing the number of features

mproved the classification results. Two filter feature selection
ethods were applied to obtain rankings of features based on

he discriminative power of each feature independently without
nalysing the relation between features and without involving any
redictive model (Kuhn and Johnson, 2013a). The first method used
he p-value provided by the Mann-Whitney U test for independent
roups of samples. The second method used the Maximal Informa-
ion Coefficient (MIC), which measures the strength of the linear or
on-linear association between two variables.

The model evaluation process was implemented with the Caret
ackage (Kuhn, 2008) in R language, version 3.2.5 (R Development
ore Team, Vienna, Austria), and illustrated in Fig. 4.

.6.4. Influence of clinical indicators on the classifiers’
erformance
The patients for which the best models performed well 80% or
ore of the times were identified. From these best models, the

atients for which both classifiers (i.e. SVM and RF) performed well
0% or more of the times, were also identified. For each patient, we
T2W 3 / 0 9 / 0 1 / 0
T1W 11 / 0 19 / 2 1 / 0

extracted the following data: 1) proportion of times the images
were correctly (and wrongly) classified, 2) proportion of times
in which both classifiers correctly (and incorrectly) classified the
images using the same descriptors, 3) clinical stroke classification
into no stroke, large cortical, small cortical or lacunar, 4) age at the
time of scanning, 5) general WMH  factor considering visual scores
and computational measurements, as per (Aribisala et al., 2014), 6)
percentage of lesion and normal tissue volumes in intracranial vol-
ume, 7) percentage of brain tissue volume in intracranial volume,
9) perivascular spaces visual scores in the basal ganglia and in the
centrum semiovale. We calculated the bootstrapped bivariate Pear-
son’s correlations between the first two variables (i.e. results from
the classification processes) and the rest (i.e. clinically derived vari-
ables) to evaluate possible influence of the clinical biomarkers and
age in the outcome of the classification schemes.

3. Results

3.1. Textural features to discern between cortical and lacunar
stroke patients

Sixty-one texture features of a total of 1026 features (114
features × 3 MRI  sequences × 3 brain tissues/structures) were
statistically significantly different (p < 0.05) between post-acute

cortical and lacunar stroke patients, but only two features derived
from the GLCM (FIMC and SIMC (see Table 1), with p = 0.0218
and p = 0.0096 respectively) were significant after applying a Holm-
Bonferroni correction for multiple comparisons. Table 2 shows the
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R. Ortiz-Ramón et al. / Computerized Me

istribution of significant features according to the MRI  sequence
nd the brain tissue/structure. T1W sequences seem to be more
uitable for using texture information to discriminate between
ortical and lacunar stroke patients, especially when analysing
he brain subcortical structures. Nevertheless, the texture data
xtracted from these images and these brain tissues/structures did
ot seem to have enough discriminative power to differentiate cor-
ical and lacunar stroke patients in general.

Table 3 shows the averaged AUC (mean ± SD) computed from
he 50 iterations when examining all the texture datasets with the
wo models under analysis (SVM with linear kernel and RF), and for
ll the MRI  sequences and brain tissues/structures. A relevant AUC
alue could not be obtained (AUC < 0.7) in any case. The best result
as obtained using the GLCM parameters in the T2W images of the
AWM region using SVM with linear kernel (AUC = 0.667 ± 0.117),
ut this value was not accurate enough to determine that a good
lassification can be achieved using these data.

.2. Texture analysis to classify individuals with vs. without
revious stroke

Many texture features showed capability for discriminating
etween “no stroke” and “old stroke” individuals. In this case,
49/1026 texture features (114 features × 3 MRI  sequences × 3
rain tissues/structures) were statistically significant (p < 0.05)
hen applying a Mann-Whitney U test for independent groups

f samples, and 235 features remained significant after applying
 Holm-Bonferoni correction for multiple comparisons. Table 4
hows the distribution of significant features according to the MRI
equence and the brain tissue/structure. The information collected
n this table indicates that the texture features extracted from the
rain subcortical structures are more effective in discriminating
etween “no stroke” and “old stroke” individuals, regardless of the
RI  sequence is used.
As per the AUC values obtained, certain groups of textures

llowed “no stroke” and “old stroke” individuals to be classified
ith a good degree of precision. Table 5 shows the averaged AUC

mean ± SD) obtained from the 50 iterations when examining all
he texture datasets with the two models (SVM with linear kernel
nd RF), and for all the MRI  sequences and brain tissues/structures.
ood results (i.e. AUC > 0.7) were not achieved with all groups of

extures. Local binary patterns features extracted from T2W and
LAIR images of the subcortical structures delivered good results, as
xpected from the previous statistical analysis (see Table 4). How-
ver, other feature datasets like GLRLM features extracted from
LAIR images of the WMH  or WCF  features extracted from FLAIR
mages of the NAWM provided satisfactory results although the
revious statistical analysis was not very optimistic with features
xtracted from these groups of images (Table 4). It should be noted
hat parameters extracted from the T1W images as well as param-
ters derived from the GLCM did not provide AUC values higher
han 0.7 in any case. The predictive model employed for classifying
he patients influenced the results, but there was not a firm conclu-
ion on which model was better as SVM worked better with some
exture datasets and RF with others.

.2.1. Influence of the feature selection on the classification
esults

We applied two filter feature selection methods to the five tex-
ure datasets that yielded good results (i.e. AUC > 0.7) to see if
lassification results improve when reducing the number of fea-
ures. Rankings of features based on the Maximal Information

oefficient (MIC) and the p-value provided by the Mann-Whitney

 test were computed from the training folds in each of the 50
terations of the CV procedure. Table 6 shows the new AUC val-
es obtained when reducing the number of features according to Ta
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Table 5
Results of the classification analysis for “old stroke” and “no-stroke” individuals. The AUC values computed by averaging the results of the validation data (mean ± SD) are shown for the two models (SVM with linear kernel and
RF)  and for all the MRI  sequences and brain tissues/structures when using the texture features extracted from the 5 texture analysis methods. The presented values are obtained for the best tuning parameter in each case.

AUC: Mean (SD)
GLRLM GLCM LBP WCF  WSF

NAWM SS WMH  NAWM SS WMH  NAWM SS WMH  NAWM SS WMH  NAWM SS WMH

FLAIR
RF <0.6 0.691

(0.109)
0.674
(0.108)

<0.6 0.612
(0.099)

0.608
(0.111)

<0.5 0.742
(0.100)

<0.6 0.761
(0.097)

0.647
(0.099)

0.702
(0.108)

0.669
(0.114)

0.635
(0.094)

<0.6

SVM  <0.6 0.676
(0.097)

0.770
(0.089)

<0.5 0.666
(0.090)

0.614
(0.124)

<0.5 0.751
(0.103)

0.682
(0.136)

0.637
(0.121)

<0.6 <0.6 0.637
(0.137)

<0.6 <0.6

T2W
RF  <0.5 0.643

(0.099)
<0.6 <0.5 0.641

(0.107)
0.617
(0.102)

<0.5 0.680
(0.112)

0.608
(0.116)

<0.5 0.680
(0.097)

0.752
(0.097)

<0.5 0.705
(0.116)

0.665
(0.103)

SVM  0.665
(0.084)

0.738
(0.121)

0.646
(0.128)

0.601
(0.138)

0.644
(0.111)

<0.5 <0.6 0.763
(0.116)

0.671
(0.122)

<0.5 0.608
(0.157)

<0.5 <0.6 0.737
(0.103)

0.677
(0.123)

T1W
RF  0.609

(0.104)
0.654
(0.112)

<0.6 <0.6 0.662
(0.091)

0.659
(0.113)

0.667
(0.125)

0.649
(0.120)

0.611
(0.140)

0.624
(0.105)

0.682
(0.109)

0.664
(0.115)

<0.6 <0.5 <0.6

SVM  <0.6 0.662
(0.104)

<0.5 0.642
(0.126)

<0.6 <0.5 <0.6 0.676
(0.122)

0.630
(0.126)

0.628
(0.143)

<0.6 <0.6 <0.6 <0.5 <0.6

*Values in bold indicate the best AUC results (AUC > 0.7).
AUC: area under the curve, RF: random forest classifier, SVM: support vector machine classifier, GLRM: grey–level run length matrix features, GLCM: grey-level co-occurrence matrix features, LBP: local binary patterns features,
WCF:  wavelet co-occurrence features, WSF: wavelet statistical features, NAWM:  normal-appearing white matter, SS: subcortical structures, WMH:  white matter hyperintensities.
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Table 6
Values of AUC obtained when analysing the best texture datasets with and without applying feature selection, i.e. using all the features of the dataset (All) and reducing the number of features based on two metrics: the p-value
(p-val)  and the maximal information coefficient (MIC).

AUC: Mean (SD)
GLRLM FLAIR – WMH LBP  FLAIR – SS LBP T2W – SS WCF FLAIR – NAWM WCF T2W – WMH

All p-val MIC All p-val MIC  All p-val MIC  All p-val MIC  All p-val MIC

RF 0.674
(0.108)

=* = 0.742
(0.100)

= 0.744
(0.104)

0.680
(0.112)

0.693
(0.101)

0.714
(0.113)

0.761
(0.097)

0.766
(0.099)

0.766
(0.086)

0.752
(0.097)

= =

SVM  0.770
(0.089)

0.773
(0.089)

0.773
(0.093)

0.751
(0.103)

= 0.759
(0.103)

0.763
(0.116)

0.774
(0.099)

0.828
(0.075)

0.637
(0.121)

0.713
(0.125)

0.712
(0.112)

<0.5 <0.6 =

AUC: area under the curve, RF: random forest classifier, SVM: support vector machine classifier, GLRM: grey–level run length matrix features, GLCM:  grey-level co-occurrence matrix features, LBP: local binary patterns features,
WCF:  wavelet co-occurrence features, WSF: wavelet statistical features, NAWM: normal-appearing white matter, SS: subcortical structures, WMH:  white matter hyperintensities, MIC: maximal information coefficient.

* The symbol “=” is used when no improvement is obtained by reducing the number of features.

Table 7
Values of AUC obtained when analysing the best texture datasets (without feature selection) with and without including the textures extracted from the additional older patients.

AUC: Mean (SD)
GLRLM FLAIR – WMH  LBP FLAIR – SS LBP T2W – SS WCF  FLAIR – NAWM WCF  T2W – WMH

Without
older
patients

With older
patients

Without
older
patients

With older
patients

Without
older
patients

With older
patients

Without
older
patients

With older
patients

Without
older
patients

With older
patients

RF 0.674
(0.108)

0.682
(0.089)a

0.742
(0.100)

0.655
(0.098)

0.680
(0.112)

0.623
(0.078)

0.761
(0.097)

0.645
(0.086)

0.752
(0.097)

0.678
(0.074)

SVM 0.770
(0.089)

0.736
(0.084)

0.751
(0.103)

0.644
(0.106)

0.763
(0.116)

0.670
(0.083)

0.637
(0.121)

0.580
(0.106)

<0.5 <0.5

AUC: area under the curve, RF: random forest classifier, SVM: support vector machine classifier, GLRM: grey–level run length matrix features, GLCM: grey-level co-occurrence matrix features, LBP: local binary patterns features,
WCF:  wavelet co-occurrence features, WSF: wavelet statistical features, NAWM: normal-appearing white matter, SS: subcortical structures, WMH: white matter hyperintensities.

a Exception where the AUC increased after adding older patients.
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.2.2. Influence of age in the classification results
Table 7 shows the results obtained with and without including

he image data from the older individuals (i.e. age 9̃1 years old) in
he texture datasets that performed better (i.e. AUC > 0.7) in the pre-
ious analysis. The results show that the classification performance
ot worse when introducing older patients in general, suggesting
hat age influences the classification results by increasing the mis-
lassification rate.

.3. Clinical evaluation of the outcome of the models

None of the clinical biomarkers analysed correlated with the
roportion of times the images were correctly (and wrongly) clas-
ified, and neither with the proportion of times in which both
lassifiers correctly (and incorrectly) classified the images using
he same descriptors. Only age was significantly correlated with
hese measurements (p ≤ 0.001). However, the strength of the sig-
ificance was only r = 0.31 and r = 0.39 respectively.

The pattern of the classification performance of the different
ypes of images (i.e. no stroke, large cortical stroke, small cortical
troke, lacunar stroke) was similar irrespective of the classifier used
i.e. SVM and RF) and when the analysis accounted for whether the
mages were correctly (or incorrectly) classified by both classifiers:
no stroke” images achieved the greatest proportion of well clas-
ified, followed by “lacunar”, “small cortical” and “large cortical”
Fig. 6).

. Discussion

In this paper, the performance of several texture features
xtracted from different brain tissues and structures (i.e. NAWM,
MH and subcortical structures) in different MRI  structural

equences (i.e. FLAIR, T2W and T1W) was analysed, in two con-
entional machine learning approaches, to identify the presence
f stroke in the images of post-acute stroke patients and normal
geing individuals. Differentiation of post-acute cortical vs. lacu-
ar stroke subtypes using texture analysis was examined as well as
lassification of images with vs. without chronic stroke lesions.

Only two textural features from the subcortical structures in
1W images resulted with high discriminatory power between
mages from post-acute lacunar vs. cortical stroke. These features

ere the first and second information measures of correlation
FIMC and SIMC) derived from the GLCM, which quantify the linear
ependency or correlation between intensities, thus representing

omogeneity but adding some desirable properties that are not rep-
esented by the original correlation descriptor extracted from the
LCM (Haralick et al., 1973). It can be questioned the reason behind
sing all Haralick features in our models, given that some of them
racy was above 80%) per stroke subtype (i.e. no stroke, large cortical, small cortical

maybe correlated, carrying repetitive information. A review on fea-
ture selection methods (Guyon and Elisseeff, 2003) agrees that
perfectly correlated variables are truly redundant in the sense that
no additional information is gained by adding them, so the removal
of perfect correlated variables will not negatively impact the learn-
ing performance. However, the authors also state that very high
variable correlation (or anti-correlation) does not mean absence
of variable complementarity: features that do not carry any dis-
criminatory or added value by themselves can provide a significant
improvement in performance when combined with others within
a machine learning approach.

A previous study that evaluated the use of texture analysis as
an alternative for characterising SVD and assessing possible blood
brain barrier leakage (Valdés-Hernández et al., 2017) reported dif-
ferences in the texture of the FLAIR deep grey matter between
post-acute lacunar and cortical stroke patients, but only with bor-
derline significance. That study reported the texture in the deep
grey matter was more ‘homogeneous’ in patients with recent lacu-
nar stroke compared to those who  had a cortical type. Statistically
significant differences between the FLAIR images from both groups
of patients were only found in the textural features measured in the
post-acute stroke lesions. Our motivation was to explore whether
the texture in the conventionally segmented tissues (i.e. normal
and abnormal) could have enough discriminatory power to be used
in machine learning schemes to identify the stroke subtype and
if there was  a stroke. Usually ischaemic stroke lesions and arte-
facts that mimic  WMH  are included within the burden of WMH
by automatic WMH  segmentation methods. A real-world scenario
would have been to evaluate the output of the-state-of-the-art CNN
WMH  segmentation methods. However, corruption of the abnor-
mal  WMH  signal with uneven burden of signal changes from other
causes would have introduced a bias in the results. Therefore, we
carefully excluded the stroke lesions from the burden of hyperin-
tense T2W-based signal and did not analyse the texture in them.
Our analysis found features with borderline statistical significance
to discriminate between cortical and lacunar stroke patients in
T1W MRI  data but failed to find a conventional machine learning
model to classify these patients accurately. The reason behind these
results may lie in the fact that both types of stroke can be seen
simultaneously in many cases, as reported by (Xu, 2014).

The images from “no stroke” patients were, in general, better
identified by the classifiers as opposed to the images that had “large
cortical” chronic stroke lesions, which resulted in them being less
well classified, and, instead, were classed as not having any stroke
lesion at all. It might seem contradictorily, given that the images of

individuals with chronic lacunar lesions (i.e. small lesions mainly
in the region crossed by the corticospinal tracts (Valdés-Hernández
et al., 2015a,b), which can be confounded by WMH,  were the sec-
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nd best classified. However, lacunar, and not large cortical, strokes
ave been associated with blood brain barrier impairment, mani-

ested in abnormal extracellular leakage (Wardlaw et al., 2017).
lso, textural features in normal and abnormal tissues have been
eported as being useful in detecting the subtle differences that this
echanism causes.
One limitation of this work is the impossibility of combin-

ng the stroke and ageing datasets to analyse if images showing
ecent cortical or lacunar strokes could be distinguished from
mages of patients without stroke and patients with an old stroke
esion. This is because variations in acquisition parameters may
esult in differences in the texture outcome that are not due to
he underlying biological characteristics of the tissues expressed
y the texture (Mayerhoefer et al., 2009; Schad, 2004). Image
ormalization techniques help to reduce differences in imaging
cquisition settings, but some residual effects may  not be totally
uppressed, thus obscuring the true texture differences due to
he tissue properties only. Therefore, combining texture features
xtracted from both databases in the machine learning pipeline
valuated may  lead to overoptimistic results caused by the dif-
erences in imaging acquisition protocols. Other limitation of the
resent work consists on the 3D texture analysis approach based
n the median of 2D texture features. Although pure 3D tex-
ure analysis is usually preferred because it allows capturing

ore heterogeneity information of the tissue under analysis, this
pproach is not always feasible, especially when the slice thickness
f the images is very large compared to the in-plane resolution
Depeursinge et al., 2014), as in our case. In these situations, 2D
exture approaches or approaches like the one carried out are rec-
mmended.

In this work we conducted a very detailed texture analysis study
or identifying and characterizing ischaemic stroke lesions in struc-
ural brain MRI  data by considering several regions or tissues and
y testing a large amount of quantitative texture descriptors. The
umber of patients per group was sufficiently large to draw reli-
ble conclusions and the machine learning pipeline was  designed
o avoid overoptimistic and overfitted results. We achieved promis-
ng results that suggested that texture features may  help in the
etection of previous stroke lesions, and identified the textural fea-
ures that look promising on this task, so as they can be evaluated
n transfer learning schemes with the-state-of-the-art deep CNNs.
dditionally, the correlation of our results with clinical parameters
as explored to find clinical patterns or characteristics that could

e reflected in the textural features that resulted promising to the
lassification tasks evaluated.
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