Skip to main content
. 2019 Jun;74:12–24. doi: 10.1016/j.compmedimag.2019.02.006

Table 3.

Results of the classification analysis for cortical and lacunar stroke patients. The AUC values computed by averaging the results of the validation data (mean ± standard deviation) are shown for the two models (SVM with linear kernel and RF) and for all the MRI sequences and brain tissues/structures when using the texture features extracted from the 5 texture analysis methods. The presented values are obtained for the best tuning parameter in each case.

AUC: Mean (SD) GLRLM
GLCM
LBP
WCF
WSF
NAWM SS WMH NAWM SS WMH NAWM SS WMH NAWM SS WMH NAWM SS WMH
FLAIR RF <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.5 <0.6 <0.6 <0.5 0.600 (0.118) <0.5 <0.5 <0.5 <0.5
SVM <0.6 <0.6 <0.5 <0.5 <0.6 <0.5 <0.6 0.604 (0.121) <0.6 <0.6 <0.5 <0.5 <0.6 <0.5 <0.5
T2W RF <0.6 <0.6 <0.6 <0.6 0.611 (0.121) <0.5 <0.5 <0.5 0.616 (0.107) <0.5 <0.6 <0.6 <0.4 0.605 (0.117) <0.4
SVM <0.5 0.622 (0.125) <0.6 0.667 (0.117) <0.5 <0.5 <0.6 <0.5 <0.6 <0.6 0.604 (0.129) <0.6 0.621 (0.140) <0.6 0.661 (0.132)
T1W RF <0.5 <0.5 <0.5 <0.6 <0.6 <0.6 <0.6 <0.6 <0.5 <0.6 <0.6 <0.5 0.649 (0.114) <0.6 <0.5
SVM <0.5 <0.5 <0.6 <0.6 0.637 (0.140) <0.6 <0.6 <0.6 0.616 (0.092) <0.6 <0.5 <0.5 0.618 (0.128) <0.5 <0.6

AUC: area under the curve, RF: random forest classifier, SVM: support vector machine classifier, GLRM: grey–level run length matrix features, GLCM: grey-level co-occurrence matrix features, LBP: local binary patterns features, WCF: wavelet co-occurrence features, WSF: wavelet statistical features, NAWM: normal-appearing white matter, SS: subcortical structures, WMH: white matter hyperintensities.