Table 5.
Results of the classification analysis for “old stroke” and “no-stroke” individuals. The AUC values computed by averaging the results of the validation data (mean ± SD) are shown for the two models (SVM with linear kernel and RF) and for all the MRI sequences and brain tissues/structures when using the texture features extracted from the 5 texture analysis methods. The presented values are obtained for the best tuning parameter in each case.
AUC: Mean (SD) | GLRLM |
GLCM |
LBP |
WCF |
WSF |
|||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NAWM | SS | WMH | NAWM | SS | WMH | NAWM | SS | WMH | NAWM | SS | WMH | NAWM | SS | WMH | ||
FLAIR | RF | <0.6 | 0.691 (0.109) | 0.674 (0.108) | <0.6 | 0.612 (0.099) | 0.608 (0.111) | <0.5 | 0.742 (0.100) | <0.6 | 0.761 (0.097) | 0.647 (0.099) | 0.702 (0.108) | 0.669 (0.114) | 0.635 (0.094) | <0.6 |
SVM | <0.6 | 0.676 (0.097) | 0.770 (0.089) | <0.5 | 0.666 (0.090) | 0.614 (0.124) | <0.5 | 0.751 (0.103) | 0.682 (0.136) | 0.637 (0.121) | <0.6 | <0.6 | 0.637 (0.137) | <0.6 | <0.6 | |
T2W | RF | <0.5 | 0.643 (0.099) | <0.6 | <0.5 | 0.641 (0.107) | 0.617 (0.102) | <0.5 | 0.680 (0.112) | 0.608 (0.116) | <0.5 | 0.680 (0.097) | 0.752 (0.097) | <0.5 | 0.705 (0.116) | 0.665 (0.103) |
SVM | 0.665 (0.084) | 0.738 (0.121) | 0.646 (0.128) | 0.601 (0.138) | 0.644 (0.111) | <0.5 | <0.6 | 0.763 (0.116) | 0.671 (0.122) | <0.5 | 0.608 (0.157) | <0.5 | <0.6 | 0.737 (0.103) | 0.677 (0.123) | |
T1W | RF | 0.609 (0.104) | 0.654 (0.112) | <0.6 | <0.6 | 0.662 (0.091) | 0.659 (0.113) | 0.667 (0.125) | 0.649 (0.120) | 0.611 (0.140) | 0.624 (0.105) | 0.682 (0.109) | 0.664 (0.115) | <0.6 | <0.5 | <0.6 |
SVM | <0.6 | 0.662 (0.104) | <0.5 | 0.642 (0.126) | <0.6 | <0.5 | <0.6 | 0.676 (0.122) | 0.630 (0.126) | 0.628 (0.143) | <0.6 | <0.6 | <0.6 | <0.5 | <0.6 |
*Values in bold indicate the best AUC results (AUC > 0.7).
AUC: area under the curve, RF: random forest classifier, SVM: support vector machine classifier, GLRM: grey–level run length matrix features, GLCM: grey-level co-occurrence matrix features, LBP: local binary patterns features, WCF: wavelet co-occurrence features, WSF: wavelet statistical features, NAWM: normal-appearing white matter, SS: subcortical structures, WMH: white matter hyperintensities.