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Abstract

Geophysical models of climate change are becoming increasingly sophisticated, yet less

effort is devoted to modelling the human systems causing climate change and how the

two systems are coupled. Here, we develop a simple socio-climate model by coupling an

Earth system model to a social dynamics model. We treat social processes endogenously—

emerging from rules governing how individuals learn socially and how social norms develop

—as well as being influenced by climate change and mitigation costs. Our goal is to gain

qualitative insights into scenarios of potential socio-climate dynamics and to illustrate how

such models can generate new research questions. We find that the social learning rate is

strongly influential, to the point that variation of its value within empirically plausible ranges

changes the peak global temperature anomaly by more than 1˚C. Conversely, social norms

reinforce majority behaviour and therefore may not provide help when we most need it

because they suppress the early spread of mitigative behaviour. Finally, exploring the mod-

el’s parameter space for mitigation cost and social learning suggests optimal intervention

pathways for climate change mitigation. We find that prioritising an increase in social learn-

ing as a first step, followed by a reduction in mitigation costs provides the most efficient

route to a reduced peak temperature anomaly. We conclude that socio-climate models

should be included in the ensemble of models used to project climate change.

Author summary

The importance of anthropogenic CO2 emissions on climate change trajectories is widely

acknowledged. However, geophysical climate models rarely account for dynamic human

behaviour, which determines the emissions trajectory, and is itself affected by the climate

system. Here, using a coupled socio-climate model, we show how social processes can

strongly alter climate trajectories and we suggest optimal intervention pathways based on

the model projections. Steps to increase social learning surrounding climate change should

initially be prioritised for maximum impact, making a subsequent reduction in mitigation

costs more effective. Policymakers will benefit from a better understanding of how social

and climate processes interact, which can be provided by socio-climate models.
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Introduction

According to many ancient myths, humans did not invent fire-making de novo but rather

learned it from personalities like Prometheus and subsequently spread the practice amongst

themselves. These stories reveal how ancient myth-makers already grasped the fundamental

importance of social learning—the process whereby individuals learn new behaviours, values

and opinions from others [1]. Social learning is no less relevant in the era of human-environ-

ment challenges [2–4]. The importance of social learning and social processes more generally

in climate change mitigation and adaptation is well recognised [5–8]. Increasingly sophisti-

cated geophysical climate models are helping us understand the impacts of anthropogenic

greenhouse gas (GHG) emissions [9–11], and the importance of these models is hard to under-

state. However, climate projections depend strongly on the assumed trajectory of GHG emis-

sions [12]. This trajectory is determined by human behaviour and yet climate models generally

do not incorporate dynamic social processes relevant to GHG emissions. Rather, GHG emis-

sions are assumed to follow some specified trajectory. These trajectories are constructed with

socio-economic factors in mind, (see Representative Concentration Pathways [12] and Shared

Socioeconomic Pathways [13] for instance), but are not coupled to climate dynamics and do

not capture human responses to climate change in a mechanistic way.

Just as human behaviour influences climate trends, climate change in turn influences

human behaviour concerning GHG emissions, including both climate change mitigation

and adaptation [5, 6, 8, 14, 15]. Individuals in places with rising average temperatures are

more likely to perceive climate change [15], and social effects are apparent when individuals

take steps in response to such shifting perceptions [6, 8]. There is also an important distinc-

tion between social learning and social norms—socially accepted and widely practised

modes of conduct [16]. Social norms are known to have a strong influence on human behav-

iour [17] including aspects relating to climate change [7, 16, 18] and therefore play an impor-

tant role in determining emission trajectories [6]. Multiple studies show a tendency for

individuals to conform to emerging norms in support of climate change mitigation [7, 16].

Moreover, it appears that individuals are often not consciously aware of the importance of

social norms in their decision-making and instead falsely ascribe their decisions to other fac-

tors [18]. However, it is important to note that social norms do not automatically promote

socially beneficial outcomes. They can equally well force conformity to a destructive norm

such as political extremism [19]. This also happens in the context of climate change behav-

iour, where it has been found that individuals may also conform to a norm of non-mitiga-

tion, by adjusting their habits to match those of less environmentally friendly neighbours

[18, 20].

Hence, Earth’s climate and human subsystems are part of a single coupled system where

social dynamics play a vital role. Yet, models of Earth’s coupled climate-behaviour system

remain essentially undeveloped. One such approach [21] couples a sophisticated climate

model [11] to a model for individual behavioural change based on the theory of planned

behaviour—a dominant paradigm in psychology [22]. The authors find that the sensitivity of

global temperature change to human factors such as response to extreme events, social norms

and perceived ability to adopt mitigative strategies is of a similar magnitude to its sensitivity to

geophysical factors. They deduce that quantifying behavioural uncertainty and physical uncer-

tainty in climate projections deserve equal attention. The model focuses on how individual

psychology and behaviour are influenced by extreme weather events. Social effects are mod-

elled phenomenologically (i.e., exogenously imposed): individuals do not learn behaviour or

opinions from one another, and social norms are treated as a fixed effect that does not depend

on the population’s current composition of attitudes.
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Here, we treat social learning and social norms endogenously, by modelling their dynamics

as they emerge from rules governing how individuals interact, learn and behave. Our first

objective is to develop qualitative insights into how different aspects of the system—endoge-

nous social processes, temperature trends, and mitigation costs—separately and together

determine possible dynamics of the larger socio-climate system. Our second objective is to

illustrate potential uses of coupled socio-climate models to chart social and economic policy

pathways that mitigate climate change as quickly as possible. To meet these objectives, we

sought to develop a model that (1) could capture a range of IPCC climate change scenarios,

ranging from 4 degrees of warming by 2100 (RCP 8.5 scenario) to sub 2 degrees of warming

(RCP 2.6 scenario), (2) was simple enough to analyse so that we could learn which mechanisms

drive the predicted socio-climate dynamics, (3) was based on existing approaches for model-

ling social dynamics and climate dynamics, and (4) captured the salient features of social

and climate systems. Given the model’s simplicity, it is primed for insights as to how social

and climate processes interact, though limited in its predictive capacity due to the complexity

of the socio-climate system. The development of more complex socio-climate models will be

an important research avenue, once the mechanisms of socio-climate dynamics are better

understood.

Materials and methods

Model

Geophysical models in the climate science literature span a wide range of different complexi-

ties depending on the associated research objective. Highly complex models are the state-of-

the-art for weather and climate prediction [11, 23, 24], whereas simple models allow us to

assess processes and feedbacks, thereby improving our intuition of climate system dynamics

[25–29]. Likewise, the behavioural sciences have benefited from a variety of modelling

approaches, that address the diverse set of social processes that take place on the individual

and societal level [30]. Here, we use minimal models for both social and climate dynamics.

Starting simple allows us to build intuition on the effect of socio-climate feedbacks that have

yet been considered in the climate change literature. The social model is widespread and,

despite its simplicity, captures the salient aspects of social dynamics [2, 30, 31]. Moreover, the

simple Earth system model that we use [25] accurately follows the projections of the state-of-

the-art CMIP5 models when forced with the IPCC emission scenarios (S1 Fig).

Behaviour dynamics. Individuals in our model are either ‘mitigators’ or ‘non-mitigators’

and they learn these behaviours from others at a specified social learning rate. They switch to

the more attractive behaviour according to a utility function governed by the costs of climate

change mitigation (such as the cost of installing solar panels or buying gas-electric hybrid vehi-

cles), the costs imposed on non-mitigative behaviour (such as a carbon tax), the costs associ-

ated with the average global temperature anomaly, and the utility associated with social norms

that reinforce the majority behaviour, whether it be mitigation or non-mitigation. Social

norms strengthen as the majority behaviour becomes more prevalent, consistent with empiri-

cal studies [7, 18]. Formally, the utility of being a mitigator is taken as

eM ¼ � aþ c~f ðTf Þ þ dx ð1Þ

where α is the cost of adopting mitigative strategies, c is a proportionality constant that regu-

lates the extent to which climate change costs influence incentive to mitigate, ~f ðTÞ is the cost

associated with with a temperature anomaly of T degrees Celsius, Tf is a projected temperature

anomaly (see below), δ is the strength of social norms and x is the proportion of mitigators in
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the population. The utility of being a non-mitigator is taken as

eN ¼ � g � ~f ðTf Þ þ dð1 � xÞ; ð2Þ

where γ is the cost of non-mitigative behaviour, representing for example a carbon tax. Note

that the utility due to social norms here is instead weighted by the proportion of non-mitiga-

tors, 1 − x.

Social learning is implemented as follows. Each individual samples other members of the

population at a fixed rate κ. If ‘individual A’ samples ‘individual B’ and B’s strategy has a higher

payoff that of A, then A will switch to B’s strategy with a probability proportional to the differ-

ence in payoffs. Thus if there are x mitigators in the population, the rate at which a non-mitiga-

tor encounters a mitigator is κx. Should there be a utility gain in switching (eM> eN), the non-

mitigator will switch their strategy with a probability proportional to the payoff difference,

eM − eN. Since there are a total of 1 − x non-mitigators in the population, the total rate at which

non-mitigators switch to being mitigators is

rN!M ¼ kxð1 � xÞmaxfeM � eN ; 0g: ð3Þ

Using similar arguments, one can show

rM!N ¼ kxð1 � xÞmaxfeN � eM; 0g ð4Þ

and so the net rate of change in mitigators is

dx
dt
¼ rN!M � rM!N ¼ kxð1 � xÞðeM � eNÞ; ð5Þ

which has an equivalent form to the replicator equations of evolutionary game theory [32].

Writing the payoff functions explicitly gives

dx
dt
¼ kxð1 � xÞ g � aþ ðcþ 1Þ~f ðTf Þ þ dð2x � 1Þ

h i
; ð6Þ

which can be reduced to

dx
dt
¼ kxð1 � xÞ � bþ f ðTf Þ þ dð2x � 1Þ

h i
; ð7Þ

by introducing the new parameter β = α − γ (the net cost to mitigate) scaled function

f ðTÞ ¼ ðcþ 1Þ~f ðTÞ (the net temperature associated gain to mitigate).

Temperature projection. Because long-term climate forecasts are known to influence

individual decisions on whether to support mitigation [14], the utility function assumes that

individuals base decisions on long-term extrapolations of recently experienced climate trends.

The projected temperature takes the form

Tf ðtÞ ¼ TðtÞ þ
tf
tp

 !

ðTðtÞ � Tðt � tpÞÞ ð8Þ

where tp is the number of years back to extrapolate from and tf is the number of years forward

to extrapolate to.

Perceived costs associated with climate change. We assume that the costs associated

with climate change have a sigmoidal relationship with the global temperature anomaly.

This is motivated by the slow mitigative response to global warming over the past decade

(S8–S10 Figs) and the anticipated non-linear alterations in the Earth system with increasing
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temperature [33]. Specifically

~f ðTÞ ¼
~f max

1þ e� oðT� TcÞ
; ð9Þ

where ~f max corresponds to a maximum cost, ω is the degree of nonlinearity of the sigmoid, and

Tc is the critical temperature about which costs are most sensitive to change (S5 Fig). We com-

bine c and ~f max into the single parameter

fmax ¼ ðcþ 1Þ~f max; ð10Þ

which yields the functional form

f ðTÞ ¼
fmax

1þ e� oðT� TcÞ
; ð11Þ

as used in (7).

Earth system model. We couple the social model to an Earth system model [25] with

reduced ocean dynamics [34]. Dynamics for atmospheric CO2 is modified to include an

anthropogenic emission term, dependent on the proportion of non-mitigators. Specifically

dCat

dt
¼ �ðtÞð1 � xÞ � P þ Rveg þ Rso � Foc ð12Þ

where Cat is the deviation in atmospheric CO2 from pre-industrial values, �(t) is the baseline

rate of CO2 emissions in the absence of mitigation, P is the rate of carbon uptake via photosyn-

thesis, Rveg is the outward carbon flux via plant respiration, Rso is the outward carbon flux via

soil respiration and Foc is the net uptake of carbon by the oceans. Functional forms for the

transfer of carbon via these processes are provided in S1 Text. Global surface temperature is

assumed to evolve with the carbon cycle according to [25]

c
dT
dt
¼ ðFd � sT

4ÞaE ð13Þ

where T is the deviation in global surface temperature from pre-industrial values, c is the ther-

mal capacity specific heat capacity of the Earth’s surface, Fd is the net downward flux of radia-

tion absorbed at the planet’s surface (which depends on the opacity of CO2), σ is the Stefan-

Boltzmann constant, and aE is the Earth’s surface area. Full details are provided in S1 Text.

Simulation

Over the period from 1800 to 2014, the socio-climate model is simulated with a fixed social

component, forced with historical anthropogenic carbon emissions. Initial conditions for all

climate variables are zero since they represent deviations from pre-industrial values. Social

dynamics are initiated in 2014 with an initial proportion of mitigators x0 = 0.05. The ensuing

dynamics of �(t) follow an increasing but saturating trend corresponding to the world’s

increasing but saturating population size and energy demands. Specifically

�ðtÞ ¼
linear interpolation of historical emissions t � 2014

�2014 þ
ðt� 2014Þ�max
t� 2014þs t � 2014

8
<

:
ð14Þ

where �max is the saturating value, and s the half-saturation constant, of �(t). This expression is

shown graphically in S7 Fig. The system of (delay) ordinary differential equations is simulated
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using the NDSolve package in Wolfram Mathematica. Historical CO2 emissions were obtained

from the CDIAC data repository [35].

Parameters and sensitivity analysis

Baseline climate parameters are obtained from the original Earth system model [25] where

they were fitted to obtain historical trends of temperature and carbon dynamics. Social param-

eters are more speculative and so are given wide upper and lower bounds. The relative cost of

warming (f(T)) with respect to the net cost of mitigation (β) is chosen in accordance with the

argument that the costs of preventative action will be far less than the cost implied otherwise

by global warming [36]. For sensitivity analyses we draw parameters from triangular distribu-

tions that peak at baseline values and extend to upper and lower bounds (S2 Table). Parame-

ters are kept fixed preceding 2014 to retain historical trends in the simulations.

Results

The model demonstrates how the social learning rate can strongly determine temperature

trends. We first consider a null hypothesis where adaptive behaviour is removed from the

model by forcing the proportion of mitigators in the population to remain constant. In this

case of fixed behaviour, emissions saturate and the temperature anomaly increases indefinitely

(S2 Fig). However, once social learning is added and the proportion of mitigators is allowed to

evolve dynamically as in our baseline model, the predicted average global temperature anom-

aly can peak anywhere from 2.2˚C, near the Intergovernmental Panel on Climate Change

(IPCC) limit [37] (in the case of very rapid social learning) to 3.5˚C (in the more realistic case

where social learning unfolds on a generational timescale) (Fig 1a–1c). Whether people discuss

climate change more or less often can therefore strongly influence temperature trends. Because

we model social norms as something that tends to reinforce majority behaviour and attitudes

—whatever they might be—one might think that social norms act as a double-edged sword. In

fact, they operate more like an unhelpful scimitar, as illustrated by comparing cases of low and

high strength of social norms. Because the population starts off from a state of largely non-mit-

igating behaviour, increasing the strength of social norms suppresses the spread of mitigating

behaviour for decades by entrenching non-mitigation as a norm, even when rising tempera-

tures strongly justify an immediate shift (Fig 1d–1f). (This model dynamic echoes not only

current climate norms reinforcing non-mitigation [20] but also past social shifts occurring on

decadal timescales, such as evolving social norms about when and where smoking is accept-

able.) However, when mitigating behaviour eventually does become widespread, a higher

strength of social norms does not significantly accelerate its spread. Rather, the two curves for

cases of high and low social norm strength simply move in parallel to one another because by

this time, the utility function that determines behaviour change is dominated by the large tem-

perature anomaly (Fig 1d). In this parameter regime, social norms generate a perverse asym-

metry, in contrast to findings from other socio-climate models that assume social norms can

only support climate change mitigation [20].

The model also shows how a reduction in net mitigation cost can significantly accelerate

the onset of social change. For instance, a 67% reduction in the mitigation cost increases the

percentage of mitigators by 2060 from 10% to 90% (Fig 1g–1i). Therefore, policies that reduce

the cost of mitigation (through e.g. subsidies, tax cuts) will benefit from the accelerating effects

of social learning and must be timed correctly.

Our baseline model assumes that individuals’ perceived cost of climate change impacts

depends on a linear extrapolation of the recent temperature anomaly over the previous ten

years (Methods). If individuals instead base their decisions only on the current temperature
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anomaly, the simulated global temperature anomaly lies well above the 2˚C target set by the

IPCC, and exhibits wide variation in sensitivity analysis (Fig 2). This contrasts with our base-

line model where the population movement towards mitigative strategies ignites earlier, signif-

icantly reducing the global temperature anomaly. This predicted dynamic stems from the

multi-decadal lag between GHG emissions and the consequent global temperature rise [38].

Our model predicts medium-term GHG emission trajectories (Fig 1b, 1e and 1h) that are

qualitatively similar to those often assumed under various future emissions scenarios. This

raises the question of how such models can be useful. The socio-climate model enables us to

explore how socio-climate dynamics might respond to changes that are under the control of

Fig 1. Endogenous social dynamics influence climate trajectories. Shown are ensembles of model simulations comparing two parameter values for the social

learning rate (κ) (a-c), strength of social norms (δ) (d-f), and costs associated with mitigation (β) (g-i). All other parameters are drawn from triangular probability

distributions with defined upper, lower and baseline values (S2 Table). Displayed are median trajectories with 95% confidence intervals from an ensemble of 100

realisations. Additional details in Methods.

https://doi.org/10.1371/journal.pcbi.1007000.g001
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policymakers. For instance, it is possible to compare social and economic policy interventions

by considering the effects of simultaneous parameter changes, instead of one at a time. This

enables us to chart out the quickest pathways from highest to lowest temperature anomalies.

The relative merits of increasing the social learning rate vs. reducing the net cost of mitigation

are illustrated with a contour plot where the contours represent peak temperature anomaly

as a function of the two parameters (Fig 3). Increasing the social learning rate (e.g. through

media coverage and public fora devoted to climate change) is particularly effective when social

learning is slow, but has saturating benefits, as indicated by the increasing vertical spacing of

contour lines for at higher learning rates. In contrast, reducing the net mitigation cost (e.g.

through tax breaks) drives a more linear response in peak temperature anomaly. Crucially, it

should be noted that both a reduction of net mitigation cost and an increase in the social learn-

ing rate are required to achieve the IPCC target. The arrows in Fig 3 show the ‘path of steepest

descent’—the most efficient combination of the two measures. Starting from a situation of

high projected temperature anomalies, the model predicts that increasing the social learning

rate should first be prioritised, followed by a reduction in net mitigation cost once the benefits

of social learning begin to saturate. This approach gets us to the region of parameter space cor-

responding to the IPCC target faster than alternative trajectories.

A sensitivity analysis reveals the relative influence of each parameter on the peak tempera-

ture anomaly (Fig 4). The time horizon of individuals’ temperature projection, social learning

rate and costs of mitigation are major factors, all of which may be influenced by appropriate

intervention. The importance of social parameter uncertainties in determining climate predic-

tions indicated by our model has also been predicted by other socio-climate models [21]. Inter-

estingly, the system is relatively insensitive to the initial proportion of mitigators, suggesting

that the mediation of social processes, as opposed to the current social state, is key to guiding

Fig 2. Peak temperature anomaly strongly depends on individual time horizon. Box-and-whisker plot shows the

peak temperature anomaly measured over 100 realisations for fixed time horizons (tf) and all other parameters drawn

from triangular probability distributions with defined upper, lower and baseline values (S2 Table). Boxes span the

interquartile range, whiskers span the entire set of realisations, and box dividers mark the median. Additional details in

Methods.

https://doi.org/10.1371/journal.pcbi.1007000.g002

Charting pathways to climate change mitigation in a coupled socio-climate model

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007000 June 6, 2019 8 / 16

https://doi.org/10.1371/journal.pcbi.1007000.g002
https://doi.org/10.1371/journal.pcbi.1007000


the socio-climate system to a trajectory of reduced emissions. Sensitivity analyses such as these

can help investigators determine priorities for data collection: the parameters exhibiting the

greatest influence on predictions should be targeted for data collection so we can best reduce

model uncertainty.

A striking feature revealed by the sensitivity analysis is the asymmetry in many of the

parameter dependencies. Consider the three parameters with highest impact on the peak tem-

perature anomaly (concerning forecast horizon, learning rate and global warming costs). A

decrease in these parameters is more detrimental than an increase is beneficial. For example, a

forecast horizon 10 years above baseline value results in a 0.6 degree decrease in peak tempera-

ture anomaly, whereas a forecast horizon 10 years below baseline value results in a 1 degree

increase. This imbalance is a manifestation of the nonlinear interactions between and within

each of the social and climate system.

The sensitivity analysis also reveals non-monotonic relationships between the peak tem-

perature anomaly and the parameters. For example, both an increase and a decrease in solar

flux results in a higher peak temperature anomaly. Interestingly, this is not the case if the cli-

mate subsystem is considered in isolation. For a fixed emissions scenario, a higher (lower)

solar flux will always result in a higher (lower) peak temperature anomaly, since the solar

flux is proportional to the net downward radiation absorbed by the planet’s surface. The

coupling to social dynamics fundamentally alters this relationship. In the socio-climate sys-

tem, a reduced solar flux results in a slower increase in surface temperature. As a conse-

quence, individuals are less incentivised to mitigate, causing the social system to maintain a

regime of non-mitigative behaviour. The accompanying high rate of CO2 emissions quickly

Fig 3. Optimal pathways to mitigation via increasing social learning and reducing mitigation costs. Contour plot

showing peak temperature anomaly at specified values of the net cost of mitigation (β) and rate of social learning (κ).

Arrows indicate the direction of steepest descent—the most efficient combination of the two measures to reduce

temperature anomalies. All other parameters are fixed at baseline values (S2 Table). Additional details in Methods.

https://doi.org/10.1371/journal.pcbi.1007000.g003
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overcompensates for the reduced solar flux, yielding a higher peak temperature anomaly.

Thus seemingly useful interventions to the physical system can actually end up doing more

harm than good when there is strong coupling to a social system, as is the case for global

warming.

Fig 4. Peak temperature anomaly is sensitive to both social and climate parameters. Tornado plot showing the deviation in peak temperature anomaly when

parameters are varied individually. A red (blue) bar indicates the deviation when the specified parameter adopts its upper (lower) bound, while all other

parameters are fixed at baseline values (S2 Table). Parameters ordered by relative impact from top to bottom. Additional details in Methods.

https://doi.org/10.1371/journal.pcbi.1007000.g004
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Discussion

This study has shown how social processes can influence climate dynamics, according to one

possible way of modelling social dynamics and norms. However, other frameworks for model-

ling human behaviour could yield different predictions. For instance, the socio-climate model

of Ref. [21] does not include social learning. Individuals respond directly to changes in the cli-

mate, and not through interactions with one another. As a consequence, the rate at which indi-

viduals adopt mitigative strategies only varies with the current climate situation, and not with

current population consensus. Mitigation efforts can therefore be expected to closely follow

the severity of climate change in the model. In our model, social learning manifests as a feed-

back within the social system, resulting in qualitatively different socio-climate trajectories.

Mitigative behaviour is initially suppressed–even as temperatures rise to levels that should

incentivise mitigation–due to low numbers of mitigating individuals and therefore little turn-

over of behaviour in the population. However, social learning creates a positive feedback loop

once there is a net positive utility to mitigate, and so as the numbers of mitigators increases,

so too does the rate at which non-mitigators switch to being mitigators. This results in a sharp

non-linear increase in mitigators, as a combined outcome of both the social and the climate

system dynamics. We note that, all else being equal, adding social learning to a model has the

effect of slowing down behaviour change in the human population (since a process takes time,

by definition), and therefore the mitigation response of human populations.

Conversely, the case of very rapid social learning recovers a ‘best response’ model similar to

those assumed in classical economics, where individuals immediately adopt the highest payoff

strategy without learning the behaviour from others. Whether or not this assumption can

approximate behaviour in real human populations hinges upon how fast social learning occurs

—individuals would need to sample others rapidly enough to enable complete population

behaviour change within 5 years for this approximation to work in our model, which seems

implausible (Fig 1a–1c).

In a different vein, we assumed a homogeneous population with respect to mixing and indi-

vidual utilities. The model’s social dynamics capture interactions at the individual level, though

there are many different scales of social organisation that the model does not consider, from

families/neighbourhoods to cities/states and up to interacting countries. Future models could

include this more hierarchical social structure. Similarly, these models could include different

types of individual with correspondingly different utilities. For instance, the model could

include industrial corporations with utilities biased toward shareholder profit, and social insti-

tutions (such as laws, taxes, the education system) that reflect the current governmental stance.

Social learning may also take on different forms due to diverse individual psychologies and val-

ues [39–41]. Such heterogeneities are known to affect the dynamics of a wide variety of systems

[42] and can prevent population consensus by permitting development of echo chambers [43].

Our model also makes the simplifying assumption that individuals base their temperature pro-

jection on linear extrapolation of past temperatures. This could be generalised to a non-linear

extrapolation to reflect an individual’s perception of ‘accelerating’ change. Extending socio-cli-

mate models to include these finer details should prove valuable in further investigations.

Climate change is a manifestation of coupled human-environment dynamics and therefore

we should start coupling climate models to social models [5, 44]. Our simple coupled socio-cli-

mate model shows that the rate at which individuals learn socially strongly influences the peak

global temperature anomaly, to the point that variation of this parameter within plausible

ranges changes the peak temperature anomaly by more than 1˚C. Therefore, it matters

whether social processes cause slow or fast uptake of climate change mitigation measures. We

found that social norms may not provide help when we most need it, although this finding
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could be nuanced by adding social heterogeneity. Finally, we illustrated how exploring the

parameter space of socio-climate models suggests optimal paths for mitigating climate change.

A more sophisticated policy impact assessment model based on a coupled socio-climate

approach could therefore be useful to decision-makers facing a mandate to reduce GHG emis-

sions with a fixed budget. In summary, it is essential for climate change research to account for

dynamic social processes in order to generate accurate predictions of future climate trends,

and the paradigm of coupled socio-climate modelling could help us address this challenge.
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with the greatest cumulative output. Data was obtained from the CDIAC data repository [35].
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S10 Fig. CO2 emissions per capita by country. Total industrial CO2 emissions per capita

from the ten countries with the greatest cumulative output. Data was obtained from the
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