Table 1. Optimal parameters for each machine learning model are selected through the grid search.
Model | Optimal parameters |
---|---|
LR | Penalty: ‘l2,’ C: 0.1 |
SVM | C: 0.1, gamma: 0.01, kernel: ‘rbf’ |
RF | n_estimators: 3000, max depth: 5, min samples leaf: 4, min samples split: 10 |
ANN | Optimizer: ‘Adam’, learning rate: 0.0001, batch size: 200, epoch: 60 |
XGB | n_estimators: 5000, learning rate: 0.05, colsample bytree: 0.3, max depth: 4, gamma: 1, lambda: 0.5, alpha: 0.5 |