Skip to main content
. 2019 Jun 6;14(6):e0217639. doi: 10.1371/journal.pone.0217639

Table 1. Optimal parameters for each machine learning model are selected through the grid search.

Model Optimal parameters
LR Penalty: ‘l2,’ C: 0.1
SVM C: 0.1, gamma: 0.01, kernel: ‘rbf’
RF n_estimators: 3000, max depth: 5, min samples leaf: 4, min samples split: 10
ANN Optimizer: ‘Adam’, learning rate: 0.0001, batch size: 200, epoch: 60
XGB n_estimators: 5000, learning rate: 0.05, colsample bytree: 0.3, max depth: 4, gamma: 1, lambda: 0.5, alpha: 0.5