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abstract

PURPOSE Microsatellite instability (MSI) and/or mismatch repair deficiency (MMR-D) testing has traditionally
been performed in patients with colorectal (CRC) and endometrial cancer (EC) to screen for Lynch syndrome
(LS)–associated cancer predisposition. The recent success of immunotherapy in high-frequency MSI (MSI-H)
and/or MMR-D tumors now supports testing for MSI in all advanced solid tumors. The extent to which LS
accounts for MSI-H across heterogeneous tumor types is unknown. Here, we establish the prevalence of LS
across solid tumors according to MSI status.

METHODS MSI status was determined using targeted next-generation sequencing, with tumors classified as
MSI-H, MSI-indeterminate, or microsatellite-stable. Matched germline DNA was analyzed for mutations in LS-
associated mismatch repair genes (MLH1, MSH2, MSH6, PMS2, EPCAM). In patients with LS with MSI-H/I
tumors, immunohistochemical staining for MMR-D was assessed.

RESULTS Among 15,045 unique patients (more than 50 cancer types), LS was identified in 16.3% (53 of 326),
1.9% (13 of 699), and 0.3% (37 of 14,020) of patients with MSI-H, MSI-indeterminate, and microsatellite-stable
tumors, respectively (P, .001). Among patients with LS with MSI-H/I tumors, 50% (33 of 66) had tumors other
than CRC/EC, including urothelial, prostate, pancreas, adrenocortical, small bowel, sarcoma, mesothelioma,
melanoma, gastric, and germ cell tumors. In these patients with non-CRC/EC tumors, 45% (15 of 33) did not
meet LS genetic testing criteria on the basis of personal/family history. Immunohistochemical staining of LS-
positive MSI-H/I tumors demonstrated MMR-D in 98.2% (56 of 57) of available cases.

CONCLUSION MSI-H/MMR-D is predictive of LS across a much broader tumor spectrum than currently ap-
preciated. Given implications for cancer surveillance and prevention measures in affected families, these data
support germline genetic assessment for LS for patients with an MSI-H/MMR-D tumor, regardless of cancer type
or family cancer history.

J Clin Oncol 37:286-295. © 2018 by American Society of Clinical Oncology

INTRODUCTION

Identifying individuals appropriate for germline genetic
testing for cancer susceptibility has traditionally relied
on clinical criteria, such as age at cancer diagnosis
and personal or family cancer history. In Lynch syn-
drome (LS), a cancer predisposition syndrome char-
acterized by the presence of germline mutations in the
DNA mismatch repair (MMR) genes, this has been
replaced by emphasis on universal screening of all
colorectal cancer (CRC) and endometrial cancer
(EC) by initially screening tumors for microsatellite
instability–high (MSI-H)/MMR- deficiency (MMR-D),
the hallmarks of these LS-associated tumors.1-4 At the
same time, the identification of MSI-H/MMR-D as a

biomarker for response to immune checkpoint block-
ade represents a breakthrough in the treatment of in-
dividuals with advanced solid tumors.5,6 The US Food
and Drug Administration (FDA) approval of pem-
brolizumab for all advanced MSI-H/MMR-D solid tu-
mors is the first regulatory drug authorization based
solely on a biomarker, agnostic of cancer type.7 Given
this, testing for MSI-H/MMR-D is now increasingly being
incorporated into routine oncological care of patients
with advanced solid tumors across a broad spectrum of
cancers. Notably, such tumor testing does not neces-
sarily result in downstream germline testing, and, in
fact, the underlying pan-cancer prevalence of LS in
these cases remains unknown.
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Traditionally, identification of MSI-H/MMR-D has relied on
polymerase chain reaction (PCR)–based MSI analysis or
immunohistochemical (IHC) analysis for MMR protein
expression.8 Inferring MSI via next-generation sequencing
(MSI-NGS) of tumors is an alternative method for MSI
determination, with two FDA-authorized NGS platforms
now incorporating MSI-calling algorithms.9-12

Although theMSI-H phenotype has been observed in a broad
spectrum of tumor types and is best characterized in CRC/EC,
MSI prevalence varies significantly across cancers, with re-
cent studies observing cancer-specific MSI patterns.12-15

Although studies have assessed germline MMR gene mu-
tations in a limited set ofMSI-H tumors13 or in tumors agnostic
of MSI status,16 a systematic evaluation of germline MMR
mutation prevalence across a heterogeneous group of solid
tumors according to MSI status has not been performed. We
sought to determine the prevalence of LS across multiple
cancer types as a function of tumor MSI status.

METHODS

Study Population

The study comprised 15,045 patients with cancer,
encompassing more than 50 cancer types, at Memorial
Sloan Kettering (MSK) Cancer Center who provided written
consent for an institutional review board–approved prospective
protocol (ClinicalTrials.gov identifier, NCT01775072) for tumor
and matched normal DNA sequencing via MSK-IMPACT
(MSK–Integrated Mutation Profiling of Actionable Cancer
Targets), a clinical NGS platform FDA authorized to identify
genetic variants in up to 468 cancer-related genes as well
as MSI status.10,12,17,18 Patients were enrolled between
January 1, 2014 and June 30, 2017.

MSI Analysis

For MSK-IMPACT–sequenced tumors, MSI status was
assessed via MSIsensor, a computational algorithm that
analyzes sequencing reads at designated microsatellite
regions in tumor-normal pairs, reporting the percentage of
unstable loci as a cumulative score.11,12 MSIsensor
scores $ 10 defined MSI-H status, scores $ 3 to , 10 an
indeterminate (MSI-I) status, and scores, 3 microsatellite
stable (MSS) status.11,12 For patients with MSK-IMPACT on
multiple tumors, the tumor with the highest MSIsensor
score was used for analysis.

Germline Analysis

DNA from blood samples was used for germline analysis of
five MMR genes (MLH1, MSH2, MSH6, PMS2, EPCAM).
For individuals with non-MSS tumors (MSIsensor scores
$ 3), germline analysis was performed in an identified
manner via institutional review board approval. Baseline
demographics, tumor stage and pathology, and cancer
family history were obtained via electronic medical records.
Family and personal cancer history analysis allowed for
evaluation of the extent to which patients with LS met

criteria for LS genetic testing, using the National Com-
prehensive Cancer Network guidelines4 and revised
Bethesda criteria.19 For patients positive for LS, clinical
confirmation of research results and disclosure was facil-
itated by the MSK Genomic Advisory Panel and the Clinical
Genetics Service. For MSS tumors, germline analysis was
performed in an anonymized fashion.

Germline variant calling was performed as previously de-
scribed.18 Germline copy number aberrations were iden-
tified by comparing sequence coverage of targeted regions
to a standard diploid normal.20 Regions with fold change of
coverage,21.5 and P, .05 were used to detect germline
copy number losses as previously described.20 Only
samples with two or more contiguous exons deleted were
included, unless single-exon deletions were confirmed by
orthogonal method. Only rearrangements/deletions in-
volving the 39 region of EPCAM, implicated as causative of
LS,21,22 were included. PMS2 deletions including exons 13
and/or 14 were excluded, given frequent alignment artifacts
as a result of pseudogene presence. Identified variants
were independently assessed and manually curated, ap-
plying current standards for variant classification by the
American College of Medical Genetics and Genomics and
compared with variant databases and publications.23-25

Patients with germline mutations classified as likely
pathogenic/pathogenic were considered as having LS.

IHC Staining and Tumor Signature Analysis

In patients with LS with MSI-H/I tumors, IHC staining for
MMR protein expression was performed using standard
procedures.26 Previous studies demonstrated that genomic
mutational signatures can be derived from targeted-capture
and sequencing data.17 Using the patterns and nucleotide
context of observed somatic synonymous and non-
synonymous substitutions in tumors from patients with LS,
mutations in each tumor were assigned to a set of 30
previously describedmutational signatures using a signature
decomposition approach previously described.27 To ensure
robust mutational signature decomposition, we only con-
sidered samples with 20 or more somatic mutations. Be-
cause of the wide age range in our cohort and the similarity of
the aging signature (signature 1) to a known MMR signature
(signature 6), the dominant signature for each tumor was
calculated after excluding signature 1. We considered any
tumor where the dominant signature matched a known
MMR-D signature (6, 15, 20, 26) as having a genomic
mutational signature consistent with MMR-D.27

Statistical Analysis

Continuous and categorical variables were compared using
a two-tailed t test and x2 statistics, respectively. P values
, .05 were considered statistically significant.

RESULTS

Of 15,045 tumors assessed by MSK-IMPACT, 93.2% (n =
14,020) were MSS, 4.6% (n = 699) MSI-I, and 2.2%
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(n = 326) MSI-H (Fig 1). More than 50 different cancer
types were represented, with breast (n = 2,371) and lung
(n = 1,952) cancer representing 28.7% of tumors. The
mean age at diagnosis, sex, race, and cancer stage in the
MSI-H andMSI-I groups are listed in Table 1. Although CRC
and EC comprised only 9% of all tumors (n = 1,351), these
canonical LS-associated tumors represented 62% (n =
201) of the MSI-H cohort (P , .001). The highest pro-
portion of MSI-H tumors was noted in small bowel cancer,
followed by EC and CRC (Fig 1).

In the MSI-H, MSI-I, and MSS groups, the overall preva-
lence of LS was 16.3% (53 of 326), 1.9% (13 of 699), and
0.3% (37 of 14,020), respectively (P , .001; Fig 2). Of

patients with LS and an MSI-H/I tumor, 50% (33 of 66) had a
primary tumor other than CRC/EC (Table 2; Fig 2). Germline
MMR mutations were identified in individuals with MSI-H/I
cancers not previously, or rarely, implicated in LS, including
mesothelioma,melanoma, soft tissue sarcoma, adrenocortical,
prostate, pancreatic, small bowel, glioma, and ovarian germ
cell tumor.28-30 A history of prior malignancy was observed in
22.7% (15 of 66) of patients with LS with MSI-H/I tumors. In
the MSI-H/I groups, compared with LS-positive CRC/ECs,
patients with LS with other tumors had lower MSIsensor
scores and a higher prevalence of MSI-I tumors (non-CRC/EC
MSI-I, 30.3% [10 of 33] v CRC/EC MSI-I, 9.1% [three of 33];
P = .03; Appendix Tables A1 and A2, online only).
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FIG 1. Distribution of microsatellite instability (MSI) status across cancer types. Tumor types are indicated on
the x-axis. (A) Bar graphs demonstrate the percentage of tumors that are high-frequency MSI (MSI-H; blue)
and indeterminate MSI (MSI-I; red) by cancer type. (B) MSIsensor score is indicated on the y-axis. Box and
whisker plots illustrate that the majority of tumors were microsatellite stable (MSS; 93.2%), with MSIsensor
score, 3, and teal dots indicate individual tumorMSIsensor scores for MSI-H (score$ 10) andMSI-I (score$
3 to , 10) tumors. Dark orange dots indicate patients in whom germline mismatch repair (MMR) pathogenic
variants were identified. The one germline MMR mutation (dark orange dot) seen in Other Tumor Type was in
an adenocarcinoma of unknown primary. Bladder/urothelial category includes renal pelvis, ureter, bladder,
and urethral cancers. CNS tumors category includes glioma, astrocytoma, embryonal, and miscellaneous
brain tumors. Other tumor type category includes less common tumors, including ampullary carcinoma, anal
carcinoma, appendiceal carcinoma, osteosarcoma, peripheral nerve sheath tumor, choriocarcinoma, cervical
cancer, neuroendocrine tumor, neuroblastoma, thymic tumor, pheochromocytoma, vaginal carcinoma, Wilms
tumor, cancer of unknown primary, head and neck cancer, hepatocellular carcinoma, cholangiocarcinoma,
chondrosarcoma, Ewing sarcoma, non-Hodgkin lymphoma, leukemia, and retinoblastoma.
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The highest proportions of LS among patients with MSI-H/I
tumors were in urothelial (37.5%; 12 of 32), CRC (19%; 26 of
137), and gastric cancers (15.4%; twoof 13; Table 2). Although
only 4.1% (34of 824) of patientswith pancreatic cancer had an
MSI-H/I tumor, 14.7% (five of 34) of these patients were LS-
positive. When considering MSI-H pancreatic tumors alone,
83.3% (five of six) of patients were found to have LS. Of
the 43.2% (19 of 44) of MSI-H/I adrenocortical tumors, 10.5%
(two of 19) were LS positive. We did not identify LS among
the 6.3% (150 of 2,371) of MSI-H/I breast tumors, nor
did we identify LS in any ovarian tumors, including the 13.4%
(43 of 343) that were found to be MSI-H/I (Table 2).

In non-LSMSI-H tumors, we assessed prevalence of somatic
events at the MMR genes to determine the etiology of the
MSI-H status. Double somatic events, composed of either
two somatic mutations, one somatic mutation plus loss of
heterozygosity, or a somatic copy number loss, were iden-
tified in 20.8% (57 of 274) of LS-negative MSI-H tumors.
When selecting for non-CRC/EC, this increased to 23.3% (24
of 103). Similarly, in LS-positive MSI-H/I cases, we detected
biallelic inactivation, either through loss of heterozygosity or a
second somatic mutation, in 66.7% (44 of 66) of tumors.

To confirm loss of MMR protein expression in patients with
germline LS mutations, IHC was performed in LS-positive
MSI-H/I tumors with available tissue. IHC was concordant

with the LS mutational results in 98.2% (56 of 57) of cases
(Fig 3). Tumors analyzed included CRC, EC, urothelial,
prostate, glioma, adrenocortical, soft tissue sarcoma,
ovarian germ cell, gastric, pancreatic, and small bowel (Fig
3). The lone discordant tumor with intact MMR protein
expression by IHC was a patient with CRC with an MSI-
sensor score of 42 who was found to harbor the Ashkenazi
Jewish germline founder mutation in MSH2 (c.1906G.C;
p.Ala636Pro), suggesting a false-negative IHC screen
(Appendix Table A1). Among non-CRC/EC tumors with
tissue available, IHC demonstrated concordant MMR-D in
100% (26 of 26) of cases. Among patients with LS, we
identified one pediatric patient with cancer with an MSI-H
ovarian germ cell tumor, harboring an MSH2 germline
mutation, with tumor demonstrating concordant absence of
MSH2/MSH6 protein expression on IHC. Given a diagnosis
of cancer during childhood, we considered constitutional
MMR-D, with biallelic germline mutations in MSH2.31

However, because the normal tissue retained MSH2/
MSH6 protein expression, the diagnosis was consistent
with LS rather than constitutional MMRD.

Applying the recommendation of universal tumor testing for
CRC/EC tumors, 100% of patients with LS with MSI-H/I
CRC/ECs met criteria for genetic testing. In comparison,
54.5% (18 of 33) of patients with LS with MSI-H/I non-CRC/
EC tumors met testing criteria on the basis of personal and/
or family cancer history alone.19

Although the majority of patients with LS exhibited MSI-H/I
tumors, 36% (37 of 103) had MSS tumors. These were
predominantly non-CRC/ECs (Fig 4). We considered that
these patients harbored mutations in the lower-penetrance
MMRgenes,32,33 they had low tumor purity that confounds the
ability to detect MSI, or tumors were driven by mechanisms
other than the MMR mutations. Indeed, although 71.2% (47
of 66) of germline mutations in the LS-positive MSI-H/I tumors
were in MLH1, MSH2, or EPCAM, 78.4% (29 of 37) of
germline mutations in the LS-positive MSS tumors were in the
lower-penetrance PMS2 or MSH6 genes (P , .001; Fig 2B).

In addition, we assessed tumor mutational signatures
among patients with LS according to MSI status. Although
87.9% (58 of 66) of MSI-H/I tumors from patients with LS
exhibited MMR-D signatures, the majority (89.2%; 33 of
37) of MSS tumors from patients with LS did not haveMMR-
D signatures (P , .001). Of four LS-positive MSS tumors
that manifested an MMR-D–dominant signature, three
were CRC or EC, with one tumor having lower tumor purity.
Three patients had MSH6 germline mutations, associated
with lower MSI levels in prior studies using MSI-PCR (Fig
4).34 We identified LS in 0.3% (seven of 2,371) of patients
with breast cancer. Among these, all corresponding tumors
were MSS and lacked an MMR-D tumor signature (Fig 4).
These results suggest that germlineMMRmutations among
the MSI-H/I groups were likely causative of the patients’
cancers, compared with those patients with MSS tumor

TABLE 1. Baseline Characteristics of Patients with MSI-H or MSI-I Tumors

Characteristic
MSI-H

(n = 326)
MSI-I

(n = 699)

Mean age at diagnosis, years 58.5 53.7

Median age at diagnosis, years 60 55

Stage at diagnosis*

Stage 0 to III 62.6 (204) 12.4 (87)

Stage IV/recurrent 36.7 (120) 87.5 (612)

Unknown 0.6 (2) 0 (0)

Sex

Male 44.2 (144) 37.9 (265)

Female 55.8 (182) 62 (434)

Race/ethnicity

Non-Hispanic white 78.8 (257) 75.8 (530)

Non-Hispanic black 4.6 (15) 11 (77)

Hispanic 6.1 (20) 5.6 (39)

Asian 8 (26) 4.3 (30)

Native American 0.3 (1) 0.3 (2)

Other 0.3 (1) 1.4 (10)

Preferred not to answer 1.8 (6) 1.6 (11)

NOTE. Data presented as % (No.) unless otherwise noted.
Abbreviations: MSI-H, high-frequency microsatellite instability; MSI-I, indeterminate

microsatellite instability.
*There was limited clinical and no staging information available for two patients in

the MSI-H group.
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types in which the underlying germline MMR mutation was
more likely an incidental finding.

DISCUSSION

Our comprehensive assessment of MSI, spanning more
than 50 cancer types and 15,045 tumors, demonstrates
that the presence of MSI-H is predictive of LS, with 16% of
patients with MSI-H tumors harboring germline mutations
in the MMR genes. In our study, 50% of patients with LS
with MSI-H/I tumors had cancers rarely or not previously
associated with LS, with 45% not meeting clinical criteria
for LS genetic testing on the basis of personal or family
cancer history. The FDA’s recent tissue site–agnostic ap-
proval of pembrolizumab for advanced MSI-H/MMR-D
solid tumors7 and the increasing availability of tumor
NGS platforms that simultaneously report MSI status9 are
expected to increase routine MSI testing across a broad

spectrum of cancers. Our results support that all MSI-H/
MMR-D tumors should undergo germline assessment for
LS, with cascade testing of at-risk relatives, given clinical
implications for increased cancer surveillance and potential
risk-reducing surgeries that may be warranted. Although
we used an NGS-based platform for MSI detection, con-
cordance between MSI-H/I and IHC staining for MMR-D
was 98.2% in our patients with LS, suggesting that IHC for
MMR-D may also be a suitable screen in noncanonical
tumors.

Among our LS-positive MSI-H/I cohort, we observed that
noncanonical tumor types had a more modest MSI phe-
notype and were therefore more likely to be categorized as
MSI-I than patients with LS with CRC/EC. Nonetheless,
despite the MSI-I status, IHC staining demonstrated MMR-
D in 10 of 10 of tested cases, including rare tumors such as
soft tissue sarcoma, adrenocortical carcinoma, and glioma.
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In these LS-positive MSI-I tumors, the lower MSIsensor
scores were not a result of low tumor purity. This is con-
sistent with prior assessments of LS-associated tumors,
suggesting that the extent of MSI, as detected by PCR,
varies according to tumor type, with MSI-H more consis-
tently found in ureter, gastric, and CRC cancers and lower
MSI levels in EC and brain tumors.30 Our data suggest that
the MSI level needed to predict presence of LS may be
different for different tumor types, with additional studies
needed to address the optimal method of assessing MSI/
MMR-D in noncanonical tumors. Because prior studies
implicated double somatic events in the MMR genes
leading to a sporadic form of MSI/MMR-D in colorectal and
endometrial cancers,35,36 we also assessed this phenom-
enon, finding that 20.8% (57 of 274) of LS-negative MSI-H
tumors could be explained by double somatic events in the
tumor.

By assessing LS prevalence in all patients regardless of MSI
status, we determined the distribution of MMR gene mu-
tations in MSS versus MSI-H/I tumors and observed an
enrichment of MSH6 and PMS2 mutations in MSS tumors.
Prior evidence has demonstrated that MSH6 and PMS2
mutations are more prevalent in the general population and

are associated with lower cancer penetrance than other
MMR genes.32,33 Although the majority of LS-positive MSI-
H/I tumors had concordant MMR-D on IHC and 87.9% had
MMR-D–dominant mutational tumor signatures, among
LS-positive MSS tumors, 89.2% did not exhibit an MMR-D
mutational signature. This suggests that the germline MMR
mutations in patients with MSS tumors were likely to be
incidental findings rather than causative of the MSS tumor.
In fact, our observed 0.3% LS prevalence among the
14,020 MSS tumors is identical to the estimated one in 300
prevalence of LS in the general population.37

We assessed the prevalence of LS in breast cancer, an area
of current controversy, where some studies suggest, and
others refute, an increased risk of breast cancer in MSH6
and PMS2 carriers.38-40 In our cohort of patients with breast
cancer, we did not identify a higher incidence of LS over the
general population, and our tumor analysis did not support
that breast tumors diagnosed in LS-positive patients were a
result of MMR-D. Our analysis, along with other recent
publications,16,25 demonstrates the strength of integrating
somatic and germline data to help elucidate tumor etiology
with relevance for cancer treatment and accurate cancer
penetrance estimation. We did not identify LS in any of the

TABLE 2. Prevalence of Lynch Syndrome by Tumor Type and MSI Status
Tumor Type Total Count MSI-H/I % MSI-H/I Lynch 95% CI

Colorectal 826 137 19 (26/137) 12.8 to 26.6

Endometrial 525 119 5.9 (7/119) 2.4 to 11.7

Small bowel 57 17 11.8 (2/17) 1.5 to 36.4

Gastric 211 13 15.4 (2/13) 1.9 to 45.5

Esophageal 205 16 0 (0/16) 0.0 to 20.6

Bladder/urothelial 551 32 37.5 (12/32) 21.1 to 56.3

Adrenocortical 44 19 10.5 (2/19) 1.3 to 33.1

Prostate 1,048 54 5.6 (3/54) 1.2 to 15.4

Germ cell 368 33 3 (1/33) 0.1 to 15.8

Soft tissue sarcoma 785 45 4.4 (2/45) 0.5 to 15.1

Pancreatic 824 34 14.7 (5/34) 5.0 to 31.1

Mesothelioma 165 6 1.7 (1/6) 0.4 to 64.1

CNS tumors 923 30 3.3 (1/30) 0.1 to 17.2

Ovarian 343 46 0 (0/46) 0.0 to 7.7

Lung 1,952 94 0 (0/94) 0.0 to 3.8

Renal 458 11 0 (0/11) 0.0 to 28.5

Breast 2,371 150 0 (0/150) 0.0 to 2.4

Melanoma 573 25 4 (1/25) 0.1 to 20.4

Other tumor type* 2,816 144 0 (1/144)* 0.0 to 3.8

NOTE. Bladder/urothelial tumors include renal pelvis, ureter, bladder, urethral cancer. Other tumor type includes less common tumors, the majority of
which were ampullary carcinoma, anal carcinoma, appendiceal carcinoma, osteosarcoma, peripheral nerve sheath tumor, choriocarcinoma, cervical cancer,
neuroendocrine tumor, neuroblastoma, thymic tumor, pheochromocytoma, vaginal carcinoma, Wilms tumor, cancer of unknown primary, head and neck
cancer, hepatocellular carcinoma, cholangiocarcinoma, chondrosarcoma, Ewing sarcoma, non-Hodgkin lymphoma, leukemia, and retinoblastoma.
Abbreviation: MSI-H/I, high-frequency or indeterminate microsatellite instability.
*Lynch syndrome was identified in an adenocarcinoma of unknown primary.

Journal of Clinical Oncology 291

MSI Associated With Lynch Syndrome Pan-Cancer



343 ovarian tumors, including the 13.4% (43 of 343) that
were found to be MSI-H/I. The LS prevalence in ovarian
cancer is estimated to be 0.9% to 2.7%.41 The lack of LS in
our cohort may be a reflection of the relatively small sample
size for this particular tumor. Moreover, although in LS
nonserous adenocarcinomas of various histologic types are
more common, the majority (67%) of our ovarian tumors
were high-grade serous adenocarcinomas.42,43

There are several limitations to our study. First, our patient
cohort reflects that of a large referral center primarily
composed of non-Hispanic white patients. Second, in
patients with LS with MSS tumors, because of patient
anonymization, clinical annotation is limited, and we were
also unable to perform IHC for MMR protein expression,
raising the possibility of false-negative MSI screening tests
in some cases. To address this, we used tumor mutational

signatures, which confirmed that only four patients with LS
with MSS tumors exhibited an MMR-D tumor signature,
with three of these patients harboring MSH6 germline
mutations, known to be associated with a more modest MSI
phenotype34 and a possible false-negative MSI screen.
Third, although MSI-I tumor status clearly predicts for a
higher prevalence of LS than MSS status, this group
reflects a heterogeneous population, including some
patients with LS or somatic MMR mutations resulting in
an MMR-D tumor as well as patients with MMR-proficient
tumors.12 This amorphous categorization is similar to the
controversial significance of the MSI-low designation via
MSI-PCR analysis.44 As is often done in MSI-low tumors
on the basis of MSI-PCR, a reasonable undertaking in the
MSI-I category, for both predicting presence of LS as well
as potential response to immunotherapy, is to perform a
second level of tumor screening via IHC. Although

MSI Status IHC Concordant IHC Discordant IHC Not Available

MSI-H (n = 53)

MSI-I (n = 13)

46

10 0 3

61 (CRC)

A

B

FIG 3. Concordance of immunohisto-
chemical staining (IHC) for the mismatch
repair proteins with high-frequency
microsatellite instability (MSI-H) or in-
determinate MSI (MSI-I) status in patients
with Lynch syndrome (LS). (A) Of 53
MSI-H tumors in patients with LS, IHC was
performed on 89% (47 of 53) of tumors,
with 98% concordance. One MSI-H co-
lorectal tumor (MSIsensor score, 42) had
intact expression of mismatch repair pro-
teins. Among MSI-I tumors of patients with
LS, IHC was performed on 77% (10 of 13),
with 100% concordance. (B) IHC on a
urothelial tumor of a patient with LS with an
MSH2 germline mutation. Top panels
demonstrate intact protein expression of
MLH1 (left) and PMS2 (right), and bottom
panels demonstrate absence of protein
expression of MSH2 (left) and MSH6
(right). CRC, colorectal cancer.
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community centers may not have access to MSI-NGS
algorithms, limiting the applicability of this specific
method of analysis, alternative screening modalities
(MSI-PCR, IHC) are widely available, and commercially
available NGS assays incorporating MSI are increasingly
being used by community oncologists. Last, we recognize
that 36% of patients with LS had MSS tumors. Although
this percentage seems high, the absolute number of LS
cases incrementally detected, if universal germline
screening of all patients with cancer is undertaken, is
more modest, as we screened 14,020 MSS tumors to
identify 37 LS cases. This 0.3% prevalence is equivalent
to the LS prevalence in the general population. As such, to
capture all patients with LS, universal germline screening
of the population at large would need to be used, if
warranted, by future studies assessing cost efficiency or
decision tree analysis.

This study establishes the prevalence of LS in a pan-cancer
analysis on the basis of MSI status and demonstrates that
once an MSI-H/MMR-D tumor phenotype is established,
germline genetic assessment for LS is necessary, regardless
of tumor type and family history. Our data suggest that the
spectrum of LS-associated tumors is more heterogeneous
than currently deduced from classic studies. The identifi-
cation of LS in a patient with an MSI-H tumor, even in the
metastatic cancer setting, may have significant clinical im-
plications, as some patients now have long-term and even
complete clinical responses to immunotherapy. With these
rapid advances in the treatment of patients with MSI-H/
MMR-D cancer, there also exists the opportunity for
phenotype-agnostic, genomic diagnosis of LS, with impor-
tant implications for cancer surveillance and prevention
strategies for LS families.
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APPENDIX

TABLE A1. Baseline Patient and Tumor Characteristics for Patients With Lynch Syndrome in MSI-I/MSI-H Cohort

Patient
Age at Dx
(years)

Cancer
Stage Race/Ethnicity Tumor Type

MSIsensor
Score Gene

RefSeq
Transcript Variant

IHC
Concordance

Met NCCN Testing
Guidelines Prior Malignancy

001 64 IIA Non-Hispanic white Colorectal cancer 47.7 MSH2 NM_000251 c.2169dupC; p.Thr724Hisfs*5 Y Y None

002 74 IIA Non-Hispanic white Colorectal cancer 45.45 MSH2 NM_000251 c.929T.G; p.Leu310Arg Y Y Endometrial

003 43 III Non-Hispanic white Colorectal cancer 44.71 MLH1 NM_000249 c.866_867dupAC; p.Pro290Thrfs*8 Y Y None

004 36 IIB Asian Colorectal cancer 42.85 MLH1 NM_000249 c.1852_1854delAAG; p.Lys618del Y Y None

005 41 IIA Asian Colorectal cancer 42.76 MSH2 NM_000251 c.2348delA; p.His783Leufs*29 Y Y None

006 46 IIIB Non-Hispanic white Colorectal cancer 42 MSH2 NM_000251 c.1906G.C; p.Ala636Pro N Y None

007 32 IIA Non-Hispanic white Colorectal cancer 41.9 MSH2 NM_000251 c.1906G.C; p.Ala636Pro Y Y None

008 43 IV Non-Hispanic white Urothelial 41.29 MSH2 NM_000251 c.1255C.T; p.Gln419* Y Y None

009 50 III Non-Hispanic white Colorectal cancer 39.06 MLH1 NM_000249 c.1852_1854delAAG; p.Lys618del Y Y None

010 48 IIA Non-Hispanic white Colorectal cancer 38.83 MSH2 NM_000251 c.2635C.T; p.Gln879* Y Y None

011 33 IV Non-Hispanic white Colorectal cancer 38.44 MLH1 NM_000249 Whole gene deletion Y Y None

012 32 IIIB Non-Hispanic white Colorectal cancer 37.6 MSH2 NM_000251 c.942+3A.T Y Y None

013 62 IIIB Non-Hispanic white Colorectal cancer 36.28 PMS2 NM_000535 c.1927C.T; p.Gln643* Y Y None

014 30 I Non-Hispanic white Colorectal cancer 34.3 MLH1 NM_000249 c.1582_1583insGGTT; p.His528Argfs*30 Y Y None

015 43 III-B Non-Hispanic white Colorectal cancer 33.36 EPCAM NM_002354 Deletion exons 8-9 Y Y None

016 33 III Non-Hispanic white Colorectal cancer 33.2 MSH2 NM_000251 c.1302delA; p.Val435Phefs*3 Y Y None

017 45 III Non-Hispanic white Pancreatic cancer 30.33 MLH1 NM_000249 c.1731G.A; p.Ser577Ser Not available Y None

018 69 II Non-Hispanic white Urothelial 30.05 MSH2 NM_000251 c.1046C.G; p.Pro349Arg Y Y Colon, prostate,
squamous cell
carcinoma of skin

019 63 IV Non-Hispanic white Gastric carcinoma 29.37 MSH2 NM_000251 Deletion exons 1-3 Not available N Pancreas

020 69 IB Non-Hispanic white Endometrial cancer 27.69 MSH6 NM_000179 c.2619delG; p.Ile874Serfs*32 Y Y Breast

021 60 IV Non-Hispanic white Urothelial 26.55 MSH2 NM_000251 c.1906G.C; p.Ala636Pro Y Y None

022 40 IV Non-Hispanic white Colorectal cancer 26.21 MLH1 NM_000249 c.793C.T;p.Arg265Cys Y Y None

023 35 IV Non-Hispanic white Small bowel cancer 25.65 MLH1 NM_000249 c.1731G.A; p.Ser577Ser Y Y None

024 20 IV Non-Hispanic white Colorectal cancer 25.44 MLH1 NM_000249 c.793C.A; p.Arg265Ser Y Y None

025 62 IIA Non-Hispanic white Colorectal cancer 24.93 PMS2 NM_000535 Deletion exons 10-11 Y Y None

026 48 IV Non-Hispanic white Prostate cancer 24.75 MSH2 NM_000251 c.1228_1229delGG; p.Gly410Tyrfs*6 Not available Y Colon

027 75 IV Non-Hispanic white Pancreatic cancer 24.06 MSH2 NM_000251 c.1906G.C; p.Ala636Pro Y Y Gastric, prostate,
urothelial

028 61 IIIB Non-Hispanic black Colorectal cancer 23.54 MLH1 NM_000249 c.199G.A; p.Gly67Arg Y Y Prostate

029 44 I Non-Hispanic white Small bowel cancer 23.44 PMS2 NM_000535 c.1605_1606delTC; p.Gln536Glyfs*5 Y Y None

030 54 IV Non-Hispanic white Gastric carcinoma 23.4 MSH2 NM_000251 c.1968C.G; p.Tyr656* Y N None

031 43 II Non-Hispanic white Urothelial 23.26 MSH2 NM_000251 Deletion exons 1-8 Y Y None

032 31 IV Non-Hispanic white Urothelial 22.7 MSH2 NM_000251 c.1216C.T; p.Arg406* Y Y None

033 64 IIIB Non-Hispanic white Colorectal cancer 22.23 MSH6 NM_000179 c.3743_3744insT; p.Tyr1249Leufs*26 Y Y None

034 68 Recurrent Non-Hispanic white Pancreatic cancer 22.18 MSH2 NM_000251 c.2038C.T; p.Arg680* Not available Y Colon,
endometrial

035 27 IV Non-Hispanic white Colorectal cancer 21.96 MLH1 NM_000249 Deletion exons 1-2 Y Y None

036 65 IV Non-Hispanic white Urothelial 21.67 MSH2 NM_000251 c.1906G.C; p.Ala636Pro Y Y Endometrial

037 40 IV Hispanic Endometrial cancer 19.19 MLH1 NM_000249 c.1731+1G.T Y Y None

038 36 IV Non-Hispanic white Urothelial 17.98 MLH1 NM_000249 c. 790+2T.C Y Y Endometrial,
duodenal

039 55 I Non-Hispanic white Urothelial 17.39 MSH2 NM_000251 c.1906G.C; p.Ala636Pro Y Y Colon,
squamous cell
carcinoma of skin

040 63 II-B Asian Pancreatic cancer 16.9 PMS2 NM_000535 Deletion exon 11 Y N None

041 58 IA Non-Hispanic white Endometrial cancer 16.84 MSH6 NM_000179 c.3991C.T; p.Arg1331* Not available Y None

042 38 III Hispanic Colorectal cancer 14.9 MLH1 NM_000249 c.790+1G.A Not available Y None

043 67 IV Asian Pancreatic cancer 14.9 MSH6 NM_000179 c.3268G.T; p.Glu1090* Y N None

044 9 IV Non-Hispanic white Germ cell tumor 14.42 MSH2 NM_000251 c.2089T.C; p.Cys697Arg Y N None

045 63 IIA Non-Hispanic white Colorectal cancer 14.14 MSH6 NM_000179 c.3743_3744insT; p.Tyr1249Leufs*26 Y Y None

(continued on following page)
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TABLE A1. Baseline Patient and Tumor Characteristics for Patients With Lynch Syndrome in MSI-I/MSI-H Cohort (continued)

Patient
Age at Dx
(years)

Cancer
Stage Race/Ethnicity Tumor Type

MSIsensor
Score Gene

RefSeq
Transcript Variant

IHC
Concordance

Met NCCN Testing
Guidelines Prior Malignancy

046 86 IV Non-Hispanic white Urothelial 13.88 MSH2 NM_000251 Deletion exons 9-10 Y N None

047 42 IIIC Non-Hispanic white Endometrial cancer 13.62 MSH6 NM_000179 c.3991C.T; p.Arg1331* Y Y None

048 64 IV Non-Hispanic white Prostate cancer 13.35 PMS2 NM_000535 c.137G.T; p.Ser46Ile Y N None

049 58 IV Non-Hispanic white Urothelial 12.46 MSH2 NM_000251 c.1784T.G; p.Leu595Arg Y N None

050 31 IV Non-Hispanic white Colorectal cancer 12.1 MSH6 NM_000179 c.3476dupA; p.Tyr1159* Y Y None

051 32 IIIC Non-Hispanic white Colorectal cancer 12.08 MSH6 NM_000179 c.3573dupT; p.Val1192Cysfs*2 Y Y None

052 52 IV Non-Hispanic black Endometrial cancer 10.54 MSH2 NM_000251 c.942+3A.T Y Y None

053 35 IV Non-Hispanic white Cancer unknown
primary

10.37 MSH2 NM_000251 c.1871T.G; p.1624Ser Y N None

054 25 I Non-Hispanic white Colorectal cancer 9.9 MSH2 NM_000251 Deletion exons 1-6 Y Y None

055 71 II-B Non-Hispanic white Soft tissue sarcoma 9.78 MSH2 NM_000251 c.1216C.T; p.Arg406* Y Y Colon,
endometrial,
sebaceous
adenoma

056 29 IV Non-Hispanic white Adrenocortical
carcinoma

7.55 MSH2 NM_000251 c.1906G.C; p.Ala636Pro Y Y None

057 31 IIIC Non-Hispanic white Endometrial cancer 7.21 MLH1 NM_000249 c.2194A.T; p.Lys732* Y Y Ovarian

058 35 IV Non-Hispanic white Glioma (glioblastoma
multiforme with
oligodendroglioma
component)

7.04 MSH6 NM_000179 c.3261dupC; p.Phe1088Leufs*5 Y N None

059 48 IV Non-Hispanic white Adrenocortical
carcinoma

6.53 MSH6 NM_000179 c.3261delC; p.Phe1088Serfs*2 Not available N None

060 62 IV Non-Hispanic white Prostate cancer 6.42 MSH2 NM_000251 c.1216C.T; p.Arg406* Y Y Colon,
squamous cell
carcinoma of skin

061 73 IV Asian Mesothelioma 4.96 MSH6 NM_000179 c.2862C.G; p.Tyr954* Not available N None

062 32 I Non-Hispanic white Soft tissue sarcoma 4.77 MSH2 NM_000251 c.229_230delAG; p.Ser77Cysfs*4 Y N None

063 84 Recurrent Non-Hispanic white Urothelial 4.39 MSH6 NM_000179 c.3261dupC; p.Phe1088Leufs*5 Y N None

064 66 IB Non-Hispanic white Endometrial cancer 4.22 PMS2 NM_000535 c.1A.G; p.Met1? Y Y None

065 45 Recurrent Non-Hispanic white Urothelial 3.8 MSH2 NM_000251 c.942+3A.T Y Y Endometrial

066 57 IV Non-Hispanic white Melanoma 3.76 PMS2 NM_000535 Deletion exons 1-8 Not available N None

NOTE. Table includes age at diagnosis, cancer stage, patients’ race/ethnicity, tumor type, MSIsensor score, the MMR gene in which a pathogenic or likely
pathogenic variant was discovered, the specific variant call, and if IHC showed concordant mismatch repair deficiency.
Abbreviations: Dx, diagnosis; IHC, immunohistochemistry; MSI-H, high-frequency microsatellite instability; MSI-I, indeterminate microsatellite instability;

N, no; NCCN, National Comprehensive Cancer Network; RefSeq, National Center for Biotechnology Information reference sequence database; Y, yes.
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TABLE A2. Baseline Tumor Characteristics for Patients With Lynch Syndrome in MSS Cohort
Patient Tumor Type MSIsensor Score Gene RefSeq Transcript Variant

067 Hepatobiliary cancer 2.56 PMS2 NM_000535 c.943C.T; p.Arg315*

068 Endometrial cancer 2.48 MSH6 NM_000179 c.3959_3962delCAAG; p.Ala1320Glufs*6

069 Breast cancer 2.4 PMS2 NM_000535 c.1053delG; p.Leu351Phefs*5

070 Bone cancer 2.23 MLH1 NM_000249 c.199G.A; p.Gly67Arg

071 Colorectal cancer 2.07 MSH6 NM_000179 c.1458_1459delTG; p.Glu487Aspfs*10

072 Pancreatic cancer 2.01 MSH2 NM_000251 c.1906G.C; p.Ala636Pro

073 Soft tissue sarcoma 1.94 PMS2 NM_000535 del exon 8-9

074 Thyroid cancer 1.86 MSH6 NM_000179 c.3261delC; p.Phe1088Serfs*2

075 Prostate cancer 1.61 MSH6 NM_000179 c.3984_3987dupGTCA; p.Leu1330Valfs*12

076 Colorectal cancer 1.21 MSH2 NM_000251 c.1906G.C; p.Ala636Pro

077 Bladder cancer 1.14 MSH6 NM_000179 c.3463C.T; p.Gln1155*

078 Pancreatic cancer 1.14 PMS2 NM_000535 c.1076dupT; p.Leu359Phefs*6

079 Breast cancer 1.08 PMS2 NM_000535 c.736_741delinsTGTGTGTGAAG; p.Pro246Cysfs*3

080 Breast cancer 1.07 MSH6 NM_000179 c.3103C.T; p.Arg1035*

081 Germ cell tumor 0.88 PMS2 NM_000535 c.943C.T; p.Arg315*

082 Prostate cancer 0.72 MSH6 NM_000179 c.3959_3962delCAAG; p.Ala1320Glufs*6

083 Breast cancer 0.58 MSH6 NM_000179 c.3959_3962delCAAG; p.Ala1320Glufs*6

084 Breast cancer 0.55 PMS2 NM_000535 c.137G.T; p.Ser46Ile

085 Pancreatic cancer 0.52 PMS2 NM_000535 c.1831delinsTT;p.Ile611Phefs*2

086 Glioma 0.4 MSH2 NM_000251 c.301_306delGAAGTT; p.Glu101_Val102del

087 Breast cancer 0.33 MLH1 NM_000249 c.866_867dupAC; p.Pro290Thrfs*8

088 Hepatobiliary cancer 0.26 PMS2 NM_000535 c.137G.T;p.Ser46Ile

089 Hepatobiliary cancer 0.15 PMS2 NM_000535 c.137G.T;p.Ser46Ile

090 Endometrial cancer 0.13 MSH6 NM_000179 c.3984_3987dupGTCA; p.Leu1330Valfs*12

091 Head and neck cancer 0.08 PMS2 NM_000535 c.137G.T; p.Ser46Ile

092 Non–small-cell lung cancer 0.08 MSH6 NM_000179 c.3972_3979delGAAGATGA; p.Lys1325Sfs*13

093 Renal cell carcinoma 0.08 MSH6 NM_000179 c.3238_3239delCT; p.Leu1080Valfs*12

094 Soft tissue sarcoma 0.08 MSH2 NM_000251 c.942+3A.T

095 Bone cancer 0.07 MSH2 NM_000251 c.528_529delTG; p.Cys176*

096 Bone cancer 0 MLH1 NM_000249 c.1333C.T; p.Gln445*

097 Breast cancer 0 MSH6 NM_000179 c.3959_3962delCAAG; p.Ala1320Glufs*6

098 Glioma 0 PMS2 NM_000535 del exons 9-11

099 Non–small-cell lung cancer 0 MSH6 NM_000179 c.1250delA; p.Lys417Serfs*36

100 Non–small-cell lung cancer 0 PMS2 NM_000535 c.164-1G.C

101 Prostate cancer 0 PMS2 NM_000535 c.137G.T; p.Ser46Ile

102 Prostate cancer 0 PMS2 NM_000535 c.538-1G.C

103 Renal cell carcinoma 0 MSH6 NM_000179 c.2731C.T; p.Arg911*

NOTE. Table includes tumor type, MSIsensor score, the mismatch repair gene in which a pathogenic or likely pathogenic variant was discovered, and the
specific variant call in the anonymized MSS group.
Abbreviations: MSI microsatellite instability; MSS, microsatellite stable; RefSeq, National Center for Biotechnology Information reference sequence

database.
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