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A B S T R A C T

Recent research has demonstrated that survivors of childhood cancer are at risk for a myriad of
late effects that affect physical and mental quality of life. We discuss the patterns and prevalence of
neurocognitive problems commonly experienced by survivors of CNS tumors and acute lymphoblastic
leukemia, the two most commonly researched cancer diagnoses. Research documenting the direct
effects of tumor location and treatment type and intensity is presented, and patient characteristics that
moderate outcomes (eg, age at diagnosis and sex) are discussed. Potential biologic mechanisms of
neurotoxic treatment exposures, such as cranial irradiation and intrathecal and high-dose antimetabolite
chemotherapy, are reviewed. Genetic, brain imaging, and neurochemical biomarkers of neurocognitive
impairment are discussed. Long-term survivors of childhood cancer are also at risk for physical morbidity
(eg, cardiac, pulmonary, endocrine) and problems with health behaviors (eg, sleep); research is reviewed
that demonstrates these health problems contribute to neurocognitive impairment in survivors with or
without exposure to neurotoxic therapies. We conclude this review with a discussion of literature
supporting specific interventions that may be beneficial in the treatment of survivors who already
experience neurocognitive impairment, as well as in the prevention of impairment manifestation.

J Clin Oncol 36:2181-2189. © 2018 by American Society of Clinical Oncology

treatment. Treatment of the CNS is performed
to affect the tumor directly or prevent relapse.
Survivors of CNS tumors are at greatest risk for
neurocognitive impairment (Table 1). Impaired
intelligence, processing speed, and executive
function are most salient, followed by deficits in
memory and attention.' Younger age at diagnosis,

Long-term survivors of childhood cancer are at
increased risk for neurocognitive problems, which
seem related to direct effects of cancer and cancer
therapy and are moderated by patient demographic
and medical factors. Children who develop neu-

rocognitive problems after diagnosis and treatment
experience impact on long-term development,
including attainment of major societal goals
(eg, education, employment, functional indepen-
dence). This manuscript presents a review of recent
literature on the prevalence and pattern of neu-
rocognitive deficits, cancer and treatment factors
associated with risk of deficits, brain imaging
and neurochemical biomarkers of deficits, medical
complications and genetic predispositions that
moderate deficits, and treatment options to facil-
itate recovery and/or prevent emergence of deficits.

Prevalence and Patterns of
Neurocognitive Deficits

Neurocognitive impairment in long-term
survivors is determined by type and intensity of

higher cranial irradiation dose, larger brain volume
irradiated, and longer time since treatment are risk
factors for worse neurocognitive outcomes. Peri-
operative complications, hydrocephalus, and vas-
culopathy increase impairment risk.”

Acute lymphoblastic leukemia (ALL) was
historically treated with CNS prophylaxis, resulting
in neurocognitive impairment, dependent on dose
of cranial radiation therapy (CRT; Table 1). Ele-
vated rates of severe impairment are reported in
intelligence, attention, memory, processing speed,
and executive function after chemotherapy-
only treatment.”® Dose-response patterns are
demonstrated or intravenous and intrathecal
methotrexate and for dexamethasone.™ Dose
response is demonstrated for CRT, although
impact can be exacerbated by younger age at
diagnosis, female sex, and longer time since
diagnosis.>”
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Neurocognitive Outcomes

Pretreatment Treatment
Clinical factors Clinical factors
Cancer severity, grade, risk Renal and hepatic function,
Tumor location, size metabolism
[ Age at diagnosis, sex Infections
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£ Pre-existing learning, attention, injury
or other developmental Vascular injury
problems Inflammation, oxidative stress
Cognitive ability Fatigue, physical activity
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e Family cohesion, support Surgical resection,
& Early childhood development complications
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2 Social interaction with peers Treatment adjustment because
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u’j Psychosocial support
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Chronic pain
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Specific attention, working
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abilities affect future complex
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T executive function)
Accelerated cognitive aging,

Pharmacotherapy dementia

eg, acetylcholinesterase

inhibitor,stimulants
Rehabilitation

Education, compensation,

cognitive remediation
Health behavior

Physical activity

Nutrition, weight management
Survivorship care

Risk-based screening

Fig 1. Model of biobehavioral impact of cancer and cancer therapy on brain development and neurocognitive outcomes in long-term survivors of childhood cancer.

Progression of Impairment Over Time

Neurocognitive dysfunction progresses with time since
CRT.>®® Brain imaging demonstrates decline in white matter
integrity with increasing age after CRT, a decline not present
in same-age controls or chemotherapy-treated survivors.’ Global
slowing of brain activity has been demonstrated in survivors,
a pattern that characterizes old age and neurodegenerative disease.”
This similarity may suggest accelerated aging, which could increase
risk of early-onset dementia.>” No clear indications of accelerated
aging after chemotherapy have been reported.®

The effects of therapeutic radiation can be detected for at least
50 years after exposure,'® indicating the possibility for persistent
impact on proliferating oligodendrocytes (myelin) and/or pro-
genitor cells (precursors of other cell types).'' Telomere shortening
occurs with normal aging but seems accelerated by radiation
therapy.'*'* Proliferation of neural precursor cells is highest
shortly after birth and declines with age.'> This may explain why
CRT at younger ages is associated with worse outcomes. Inhibited
neurogenesis may limit restorative capacity of the brain for life."'

Increased focus on neurocognitive outcomes has resulted in
identification of important disease and treatment risk factors. The

jeo.org

survivor’s neurocognitive trajectory is determined by multiple
direct and indirect disease- and treatment-related effects (Fig 1).

Direct Cancer and Treatment Effects

CNS tumor diagnosis alone increases risk for neurocognitive
impairment.'® Before start of treatment, 20% to 50% of patients
exhibit cognitive impairment.'” Treatment of brain tumors with
surgery alone is associated with neurocognitive impairment,'®'
including severe impairment in intelligence (9.8%), academics
(9.8%), attention (27.9%), memory (17.7%), processing speed
(40.0%), and executive function (37.1%), with impairment influ-
enced by tumor location and surgical complications (Table 1).%%**
Larger tumor size®” and infratentorial tumor location are associated
with worse neurocognitive outcomes.'” The extent of risk attrib-
utable to tumor location versus treatment type or intensity is un-
clear. Risk increases with brain tumors that affect critical brain
structures; for example, craniopharyngioma tumors are his-
tologically benign but frequently involve critical structures (eg,
hypothalamic-pituitary-adrenal axis, cranial nerves, circle of Willis)
that complicate surgical resection and are unavoidable in radiation
therapy planning.”> Surgical complications (eg, hemorrhage and
vascular injury) can increase risk for neurocognitive impairment.**

Larger CRT fields are associated with greater neurocognitive
impairment, with whole-brain CRT carrying greatest risk.”>>®
Many survivors treated with whole-brain CRT exhibit severe

© 2018 by American Society of Clinical Oncology ~ 2183
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impairment in memory (54.9%), processing speed (66.3%), and
executive function (68.3%; Table 1). Better outcomes are observed
in patients receiving reduced-dose (23.4 to 25.0 Gy) compared with
high-dose CRT (35 to 36 Gy), although any whole-brain CRT
seems to affect neurocognitive development.”® Reductions in boost
dose volumes to the tumor bed have resulted in improved neu-
rocognitive outcomes.”® Reducing dose to sensitive brain regions (in-
cluding temporal lobes and hippocampi) have demonstrated better
neurocognitive outcomes in medulloblastoma survivors.”’ Younger
age at CRT is a risk factor for neurocognitive impairment,”**>! even
at lower CRT doses.””

Advanced CRT techniques (ie, intensity-modulated CRT,
particle therapy) have improved precision of dose delivery, resulting
in clinically significant reductions in dose to healthy tissue. Proton
CRT minimizes dose to healthy tissue®> and is expected to provide
similar disease control while yielding better neurocognitive out-
comes; however, outcome studies are just emerging. A retrospective
comparison found no significant intelligence quotient (IQ) decline
or impairment in survivors treated with proton CRT, but significant
IQ decline was seen in survivors treated with photon CRT.*® In
pediatric medulloblastoma survivors, IQ decline was observed only
in survivors younger than age 8 years after proton CRT.** No ev-
idence of clinically significant cognitive impairment in attention,
processing speed, or executive functioning among survivors who
received focal proton CRT has been reported, although whole-brain
exposure was associated with impaired processing speed.’”

The transition from CRT prophylaxis to treatment with che-
motherapy only has reduced severity of neurocognitive impairments
in ALL survivors.”*** Nevertheless, ALL survivors treated with che-
motherapy only demonstrate worse neurocognitive function com-
pared with population norms*** and healthy controls.”*'™** ALL
survivors treated with chemotherapy only experience severe impair-
ment in intelligence (9.3%), attention (14.5%), memory (13.1%),
processing speed (16.8%), and executive function (15.9%; Table 1).

Higher-intensity chemotherapy (eg, intravenous and/or in-
trathecal methotrexate) is associated with greater neurocognitive
impairment.** Comparisons of triple intrathecal chemotherapy (ie,
methotrexate, cytarabine, and hydrocortisone) with single intrathecal
methotrexate have shown comparable neurocognitive outcomes.
Younger age at diagnosis (< 5 years) has been associated with 15%
higher frequency of attention problems, and female sex has been
associated with 10% higher frequency of executive dysfunction.*”
Associations between dexamethasone and worse outcomes in mem-
ory, attention, executive functioning, and academic domains have been
reported among adult survivors of pediatric ALL,>* although risk may
be dependent on intensity of corticosteroid administered.*®

Indirect Sources Neurocognitive Impairment

Survivors of CNS tumors are at risk for neurologic compli-
cations that influence neurocognitive outcomes. Hydrocephalus
and shunt placement and revisions are associated with neuro-
cognitive impairment, including lower intelligence, nonverbal
reasoning, visual-motor integration, memory, and academic
skills.”®*”->* CNS tumors and CRT are associated with increased
risk for cerebrovascular complications, including stroke, caver-
nomas, and cerebral microbleeds, which can further complicate
neurocognitive development.”' Seizures are experienced by

2184  © 2018 by American Society of Clinical Oncology

pediatric patients with brain tumors,”* > particularly those with

supratentorial tumors, and are associated with neurocognitive
impairment.”® Uncontrolled seizures and use of antiseizure
medications increase risk of neurocognitive impairment in the
general population®” and may do so in cancer survivors as well.”®

Childhood cancer survivors are at risk for morbidity in non-
CNS systems. Long-term survivors of childhood Hodgkin lym-
phoma who are not exposed to neurotoxic therapies display
increased frequency of neurocognitive impairment as a result of
cardiopulmonary morbidity.*® In survivors of osteosarcoma and
non-Hodgkin lymphoma who receive neurotoxic chemotherapies,
neurocognitive impairment is associated with cardiac, pulmonary,
and endocrine morbidity.”>*" Endocrine and pulmonary mor-
bidity contribute to neurocognitive impairment, aside from CRT
and neurotoxic chemotherapies.®'

Compared with sibling controls, long-term survivors of child-
hood cancer are at increased risk for sleep disturbance and
fatigue, particularly those diagnosed with Hodgkin lymphoma.®>*
After adjusting for neurotoxic therapies, risk of self-reported neu-
rocognitive impairment is increased by 23% to 45% in survivors
with sleep problems and 34% to 77% in survivors with clinically
relevant fatigue.** Sleep disturbance is also associated with lower
cognitive flexibility and fluency in adolescent survivors of ALL.®>%°

Although chronic health conditions in survivors are likely to
emerge during adulthood, physiologic processes affecting brain
function may begin much earlier. Low dehydroepiandrosterone
sulfate, a marker of adrenal gland dysfunction, is associated with
attention problems in long-term adolescent survivors of ALL.®”
Elevated inflammatory serum biomarkers, which affect adrenal
function,®® are associated with neurocognitive problems in these
adolescents.®® Uric acid elevations are associated with increased
inflammation.*®®’ Elevations in uric acid in adolescent survivors
are associated with cardiovascular morbidity as those survivors age,
which in turn is associated with neurocognitive impairment.”

Brain imaging, neurochemistry, and genetic polymorphisms have
been examined as biomarkers of neurocognitive impairment in
cancer survivors. These biomarkers have informed mechanisms
and/or risk of impairment, although none are currently able to
classify individuals at high or low risk.

Brain Imaging

Quantitative brain imaging includes measures of gray matter
volume, white matter integrity, cerebral metabolism, neuro-
chemistry, and functional activation. White matter pathways form
structural scaffolding underlying functional networks and are
essential for connectivity and integration of distributed information
processing.”' Diffusion tensor imaging is a magnetic resonance
imaging (MRI) sequence that assesses axonal organization from
diffusion of water molecules along white matter tracts. Fractional
anisotropy indicates diffusion preference, with lower values sug-
gesting lower white matter integrity.”> Mean, axial, and radial dif-
fusivities measure diffusion along different axes, with higher values
indicating lower white matter integrity.”> Abnormalities of white

JOURNAL OF CLINICAL ONCOLOGY
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Cognitive Impairment

Fig 2. (A) Survivors of childhood acute lym-
phoblastic leukemia demonstrate a profile
of both higher (warm colors) and lower (cool
colors) white matter connectivity compared
with healthy controls (color bar indicates T
score). (B) Connectivity seems to have an opti-
mal range with respect to cognitive function.®’

]

Connectivity

matter can reflect changes in axon diameter, packing, myelin in-
tegrity, astrocytes, and vasculature, among others. Information
processing occurs in gray matter regions, which can be measured
from volumetric assessment of T1-weighted MRIs. The function of
gray matter regions can be measured using functional MRI (fMRI),
which measures the hemodynamic response to neural activity, or
using positron emission tomography, which uses radiotracers that
elucidate the cerebral metabolic rate of glucose.

Decades after treatment, childhood cancer survivors show
smaller white matter volumes in distributed brain regions.”*”*
Compared with noncancer controls, childhood cancer survivors
show lower fractional anisotropy,””>®** although long-term adult
survivors display higher fractional anisotropy, potentially because
of glial scarring and/or white matter compaction.’® White matter
damage is widespread, affecting frontal-striatal, frontal-occipital,
periventricular, cerebellar, parietal, and temporal regions, and is
detected decades after treatment. White matter integrity has been
shown to be lowest in patients who received adjuvant therapy
compared with surgery alone and those who received cranial ir-
radiation® or had higher methotrexate exposure.**

Gray matter abnormalities associated with childhood cancer in-
clude lower volumes of cortical surface area with thicker prefrontal
cortex.”*** Childhood cancer survivors demonstrate higher fMRI ac-
tivation in prefrontal areas during memory and attention tasks com-
pared with healthy controls.*> Higher frontal lobe fMRI activity and
thicker prefrontal cortices are associated with higher methotrexate ex-
posure,** although higher dexamethasone exposure is associated with
lower activation in retrosplenial regions.”” Atypically higher fMRI ac-
tivation may reflect engagement of additional neural systems as a result
of insufficient local processing capacity secondary to gray matter atrophy.
Although higher activation suggests a compensatory adjustment, it also
indicates increased burden on metabolic resources. Decreased white
matter integrity may disrupt healthy constraint of functional network
dynamics, resulting in higher than normal activation. Positron emission
tomography studies have demonstrated lower glucose metabolism in
cancer survivors.* Some studies have shown a greater negative effect of
CRT on cerebral metabolism compared with chemotherapy alone,*’
and one group demonstrated higher metabolism in survivors treated
with 24-Gy CRT compared with those treated with lower CRT dose.*®

The interpretation of brain imaging metrics is complex
and context dependent. Brain imaging focused on connectivity

jeo.org

improves characterization of the complexity of the brain. These
studies demonstrate both functional hypo- and hyperconnectivity
among multiple regions in survivors of ALL.*® Reduced struc-
tural connectome organization and resilience have also been
demonstrated in ALL survivors with regions of both hypo- and
hyperconnectivity.*”>*® Importantly, U-shaped relationships be-
tween local connectome organization and cognitive impairment
suggest an optimal range of regional connectivity (Fig 2).*’

Neurochemical Markers

Brain injury has also been demonstrated by MR spectroscopy,
which measures metabolic markers of brain parenchymal integrity
and function.®” These metabolites are considered markers of neu-
ronal health, viability, and/or number (NAA), energy metabolism
and homeostasis (Cr), and neuronal density and/or rate of mem-
brane turnover (Cho).¥ Reduced NAA/Cho and increased Cho/Cr
from baseline to 20 weeks after diagnosis was demonstrated in
survivors treated with CRT compared with healthy controls.”

Sphingomyelin and lysophosphatidylcholine are phospho-
lipids found in cerebrospinal fluid (CSF) that are biomarkers of
myelin and blood-brain barrier integrity.”’ Sphingomyelin and
lysophosphatidylcholine increase in newly diagnosed patients
with ALL after induction and consolidation treatment. In-
creased sphingomyelin was related to slower motor speed, and
increased lysophosphatidylcholine was associated with poorer
verbal working memory. Declines in visual working memory were
associated with elevations in sphingomyelin occurring later in
therapy.”' Lipid peroxidation in CSF is considered an indicator of
oxidative stress. Phosphatidylcholine and phosphatidylinositol,
lipids abundant in neuronal cell membranes, increase in CSF across
treatment phases, with the greatest increase occurring post-
induction. Higher methotrexate dose was correlated with higher
oxidized phosphatidylcholine, whereas older age at diagnosis was
associated with higher oxidized phosphatidylinositol.”"**

Genetic Polymorphisms

Emerging evidence suggests genetic predispositions moderate
the effect of cancer therapy on neurocognitive outcomes in
childhood cancer survivors (Table 2 summarizes polymorphisms
examined). Polymorphisms in the folate pathway are associated

© 2018 by American Society of Clinical Oncology ~ 2185
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with increased risk for problems in attention and executive func-
tion in survivors of ALL treated with chemotherapy only.***>**
Genes that regulate oxidative stress have also been associated with
neurocognitive outcomes in survivors of ALL.%>

Genetic predisposition for neurocognitive impairment may
accelerate the onset of neurocognitive impairment in survivors.
Polymorphisms in catechol-O-methyltransferase, an enzyme that
helps regulate catecholamines (ie, dopamine, epinephrine, nor-
epinephrine), have been associated with increased risk for neu-
rocognitive problems in survivors of CNS tumors.”® In survivors of
ALL treated with chemotherapy only, polymorphisms in mono-
amine oxidase A, an enzyme that catalyzes oxidative deamination of
amines (ie, dopamine, norepinephrine, serotonin), are associated
with increased risk for attention problems compared with survi-
vors without such polymorphisms.*® Apolipoprotein E-epsilon 4
(APOE €4) is a protein that affects lipids in the bloodstream and
has been associated with dementia in the elderly. Polymorphisms
in APOE &4 are also associated with attention problems in sur-
vivors of childhood ALL.* The APOE &4 allele has been associ-
ated with accelerated telomere shortening, indicating accelerated
cell aging. Additional collaborative research is needed to
independently validate current association studies and to evaluate
accuracy of risk prediction in prospective models.

Compensatory interventions are offered for many survivors, in-
cluding behavioral and cognitive strategies to help accommodate to
deficits. These are delivered in the form of school-based accom-
modations (preferential seating, note taking, extended time for tests)

2186 © 2018 by American Society of Clinical Oncology

Table 2. Frequency of Targeted Pathway Polymorphisms Examined As Mediators of Neurocognitive Outcomes
Survivor
Genomic Minor Allele Population
Gene Gene Description Gene Function Variation ~ Frequency (%) Studied Findings

MTR Methionine synthase Regeneration of methionine from A2756G 22 ALL Increased risk of attention
homocysteine; polymorphisms problems?*®:%
result in excess homocysteine

MTHFR Methylenetetrahydrofolate Catalyzes production of circulating ~ A1298C 25 ALL Increased risk of attention

reductase folate; polymorphisms result in problems and executive

lower folate concentration dysfunction®94

GSTP1 Glutathione S-transferase Catalyzes glutathione conjugation of G313A 35 ALL Increased risk for attention
products of reactive oxidation and problems?*®:%°

GSTT1 sequesters steroids; GSTT1*0 5 ALL Increased risk for attention
polymorphisms result in increased problems*°
susceptibility to oxidative stress

APOE4 Apoliopoprotein E Metabolizes lipoproteins; Cys112Arg 15 ALL Increased risk for attention
polymorphisms increase risk for problems*°
vascular disease and Alzheimer's

COMT Catechol-O-methyltransferase Inactivates catecholamine Val158Met 37 ALL, CNS tumor Increased risk for
neurotransmitters such as neurocognitive
dopamine, epinephrine, and impairment in CNS
norepinephrine; polymorphisms tumor?®%8
result in excess extracellular
dopamine

MAOA Monoamine oxidase A Breaks down amine T1460C 45 ALL Increased risk for attention
neurotransmitters such as problems®*°
dopamine, norepinephrine, and
serotonin; polymorphisms result in
excess extracellular
neurotransmitter concentrations

Abbreviation: ALL, acute lymphoblastic leukemia.

97

and can include teaching organizational strategies, time man-
agement, and planning (eg, making lists, electronic organizers).
Despite wide implementation, the efficacy of these interventions in
long-term survivors is largely unknown. In the absence of efficacy
data, there is a need for medical and psychosocial teams to provide
advocacy for survivors during school reintegration and while estab-
lishing academic accommodations.”® Additionally, several types of
interventions are being applied or investigated.

Pharmacologic Treatment

Pharmacologic agents targeting cholinergic (memory system)
and dopaminergic (attention and executive function systems)
neurotransmitters have been evaluated in survivors of childhood
cancer. The acetylcholinesterase inhibitor donepezil has been
associated with moderate improvements on performance-based
tasks of executive functioning and visual memory in survivors of
childhood brain tumors.”® The acute and long-term efficacy of the
psychostimulant methylphenidate in pediatric cancer survivors
have been supported in several trials.”” Methylphenidate is asso-
ciated with improvement in attentional functioning, as evidenced
by performance-based tasks and parent and teacher ratings. Al-
though survivors have shown improvements on a variety of
measures of attention with methylphenidate treatment, no im-
provements in academic functioning have been associated with
methylphenidate therapy in this population.

Rehabilitation Programs

Researchers have investigated nonpharmacologic inter-
ventions to address neurocognitive deficits in childhood cancer
survivors. These programs generally involve cognitive and/or

JOURNAL OF CLINICAL ONCOLOGY
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behavioral skills acquisition approaches. Clinic-based cognitive
remediation programs demonstrate improvements in academic
achievement and parent ratings of attention, although participa-
tion rates and treatment adherence are suboptimal.'” There is
evidence that computerized, home-based cognitive training is
more feasible and acceptable to families and survivors.'°®!%!
Targeted cognitive skills are amenable to improvement with
successful completion of the training programs,'®> and gains are
associated with changes in brain function.'”>'®> Although the
evidence for efficacy of cognitive interventions is still emerging,
there is currently no evidence that cognitive training is harmful.

Health Behavior Programs

Interventions targeting health behavior and physical activity have
been examined. Exercise training positively affects brain structure and
function in pediatric brain tumor survivors.'™* Specifically, after
12 weeks of group-based exercise, increased white matter and hip-
pocampal volume were observed and reaction time improved.'"

Prevention Efforts

There are limited studies examining prophylactic interventions
during cancer treatment. In a randomized controlled trial of
an intensive math intervention delivered to children during
continuation/maintenance therapy for ALL to preserve survivors’
achievement over time, children who received math training evi-
denced gains in achievement over a 3-year period compared with
children in a standard-of-care (ie, individualized recommendations
for school-based interventions) control group.'” On the basis of
success in trials of adults with metastatic brain cancer,'® clinical
trials evaluating potential neuroprotective effects of memantine, an
N-methyl-D-aspartate antagonist, are currently being planned or
initiated for pediatric patients being treated with CRT.

Neurocognitive deficits are a relatively common long-term
outcome of childhood cancer and cancer therapy. Many studies

have characterized children at greatest risk and identified as-
pects of neurotoxic treatment exposures, although more work
is needed to clarify sources of variability in outcomes. Guidelines
for neuropsychological monitoring of children at risk have been
detailed by a number of investigators and advocacy
groups.'**1°71% For children with CNS-affecting cancers or
treatment, there is broad consensus that neurocognition should
be formally evaluated by the end of planned therapy at the latest,
but recommendations differ on the best timing for a baseline
assessment. Afterward, periodic testing for survivors with im-
pairments is suggested, particularly at times of transition (eg,
primary to secondary school). Recommendations include the
medical team members performing routine clinical surveillance
of neurocognitive outcomes in at-risk survivors using a combi-
nation of clinical interviewing, available data (eg, report cards,
school testing), and rating scales.'®® If indicated, survivors
should then be referred for neuropsychological consultation.
Strategies for improving or preventing neurocognitive late
effects are relatively understudied. However, healthy dietary
practices and especially physical exercise are appropriate for
many survivors to prevent or mitigate cardiovascular and
metabolic late effects that may ultimately contribute to neuro-
cognitive health.
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