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In Brief
Urinary proteomes from 49
healthy adult donors were com-
prehensively analyzed. Besides
age, gender was found to be a
crucial factor contributing to in-
dividual variation. Proteins that
were increased in the male urine
samples include major prostate-
secreted proteins, and those
that were increased in the fe-
male urine samples are enriched
in immunological pathways. Ref-
erence intervals of each urinary
protein were estimated, provid-
ing the baseline for the discov-
ery of abnormalities.
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Comprehensive Analysis of Individual Variation
in the Urinary Proteome Revealed Significant
Gender Differences*□S

Chen Shao‡§‡‡‡, Mindi Zhao¶�‡‡‡, Xizhao Chen**‡‡‡, Haidan Sun‡‡, Yehong Yang‡‡,
Xiaoping Xiao‡‡§§, Zhengguang Guo‡‡, Xiaoyan Liu‡‡, Yang Lv**, Xiangmei Chen**,
Wei Sun‡‡��, Di Wu**§§§, and Youhe Gao¶¶ ¶¶¶

Disease biomarkers are the measurable changes as-
sociated with a pathophysiological process. Without
homeostatic control, urine accumulates systematic
changes in the body. Thus, urine is an attractive biolog-
ical material for the discovery of disease biomarkers.
One of the major bottlenecks in urinary biomarker dis-
covery is that the concentration and composition of
urinary proteins are influenced by many physiological
factors. To elucidate the individual variation and related
factors influencing the urinary proteome, we compre-
hensively analyzed the urine samples from healthy adult
donors (aged 20–69 years). Co-expression network
analysis revealed protein clusters representing the met-
abolic status, gender-related differences and age-re-
lated differences in urinary proteins. In particular, we
demonstrated that gender is a crucial factor contribut-
ing to individual variation. Proteins that were increased
in the male urine samples include prostate-secreted
proteins and TIMP1, a protein whose abundance alters
under various cancers and renal diseases; however, the
proteins that were increased in the female urine sam-
ples have known functions in the immune system. Nine
gender-related proteins were validated on 85 indepen-
dent samples by multiple reaction monitoring. Five of
these proteins were further used to build a model that
could accurately distinguish male and female urine sam-
ples with an area under curve value of 0.94. Based on the
above results, we strongly suggest that future bio-
marker investigations should consider gender as a cru-
cial factor in experimental design and data analysis.
Finally, reference intervals of each urinary protein were
estimated, providing a baseline for the discovery of

abnormalities. Molecular & Cellular Proteomics 18:
1110–1122, 2019. DOI: 10.1074/mcp.RA119.001343.

Disease biomarkers are the measurable changes associ-
ated with a pathophysiological process (1). Without homeo-
static control, urine accumulates systematic changes in the
body (1, 2). Thus, urine is an attractive biological material for
disease biomarker discovery. With the development of tech-
niques, urinary proteomics has become one of the most pop-
ular fields in biomarker discovery. Although the total amount
of proteins in normal urine is much lower than that in plasma,
urine contains a large variety of protein species. To date, over
six thousand proteins have been identified by the deep pro-
filing of the normal human urinary proteome (3). The urinary
proteome is mainly composed of plasma proteins that pass
the glomerular barrier and proteins shed by cells within the
urogenital system; therefore, it could reflect both systemic
and local conditions of the body (4, 5). Applications of urinary
proteomics have been focused on urogenital diseases (6, 7),
and there is also a large amount of evidence supporting that
changes in urinary proteins could reflect disorders at distant
locations such as pancreatitis (8, 9), cardiovascular system
diseases (10, 11), brain diseases (12), and breast cancers
(13–15).

One of the major bottlenecks in urinary protein biomarker
discovery is that both the concentration and composition of
urinary proteins are influenced by physiological factors such
as aging, sex hormones, diet and exercise (16–24). Previous
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observations showed a considerable level of intra-individual
variation (i.e. variation in the proteins from urine samples
collected from the same individual at different time points)
(25–29) and an even higher level of inter-individual variation
(26, 27) in the normal urinary proteome. In 2011, Mann and
colleagues quantified over 600 proteins in the urine samples
from seven individuals collected over three consecutive days
and evaluated the technical, intra-individual, inter-individual
and overall variations in the urinary proteome. In one of our
early studies (30), the variation in the urinary proteome was
measured in samples from ten male and ten female healthy
volunteers by a semi-quantitative method. Inter-gender vari-
ation was observed to be greater than intra-gender variation.

Determining the levels and sources of variation among nor-
mal urinary proteomes is the foundation to distinguishing the
real disease-mediated alterations from those caused by phys-
iological conditions. This goal could not be achieved using a
small sample size, as most of the previous studies have used.

Recently, Leng et al. established a highly efficient workflow to
analyze the sediment of urine samples acquired by ultracen-
trifugation at high speed (31). They measured the variation
among 497 urine samples collected from 167 healthy donors
and established reference intervals for �2000 proteins. How-
ever, to the best of our knowledge, studies of the urinary
supernatant, which is the most popular urine sample in bio-
marker studies with comparable sample sizes, have not been
conducted.

In this study, the urine samples from a total of 134 healthy
donors were analyzed with proteomic approaches. A total of
49 samples were comprehensively analyzed by 2D LC-
MS/MS in the discovery phase to evaluate individual variation
in the urinary proteome. A network was established to explore
the co-expression patterns of urinary proteins. Markedly differ-
ent patterns between the male and female urinary proteomes
were observed. The gender-related differences were then vali-
dated with a set of samples from the other 85 donors, demon-
strating that gender is one of the main factors that contributes to
individual variation in the normal urinary proteome. Finally, the
reference intervals for each gender were estimated, providing a
baseline to discover changes under disease conditions. The
workflow of this study is illustrated in Fig. 1.

EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale—All donors of the
urine samples were recruited from a cohort at the PLA General
Hospital in Beijing, China. Donors were provided written informed
consent. All the protocols for urine collection were approved by the
Ethics Board. All donors were free of acute or chronic illnesses and
were not taking any prescription or over-the-counter medications at
the time of urine collection. Female donors were not pregnant or
menstruating at the time of urine collection. All donors completed a
series of physical examinations and laboratory tests. Measurements
such as blood pressure, body mass index (BMI)1, plasma glucose

1 The abbreviations used are: BMI, body mass index; 2DLC-MS/
MS, two dimensional liquid chromatography - tandem mass spec-
trometry; ACPP, prostatic acid phosphatase; ANXA1, annexin A1;
APOD, apolipoprotein D; AUC, area under curve; AZGP1, zinc-alpha-
2-glycoprotein; AZU1, AZU1 protein; CI, confidence interval; CV,
coefficient of variation; eGFR, estimated glomerular filtration rate;
FABP5, fatty acid binding protein 5; FASP, filter-aided sample prep-
aration; IGKC, Ig kappa chain C region; KNG1, kininogen-1; LC -MS/
MS, liquid chromatography - tandem mass spectrometry; MRM,
multiple reaction monitoring; MSMB, beta-microseminoprotein; PER-
MANOVA, permutational multivariate analysis of variance; PSA, pros-
tate specific antigen; PTGDS, prostaglandin-H2 D-isomerase; QC,
quality control; RI, reference interval; ROC, receiver operation curve;
S100A9, protein S100-A9; SPP1, osteopontin; SPRR3, small proline-
rich protein 3; TC, total cholesterol; TG, triglyceride; TIMP1, tissue
inhibitor of metalloproteinase-1; TXN, thioredoxin; UMOD, uromodu-
lin; VMO1, vitelline membrane outer layer protein 1 homolog.

134 healthy donors
Protein extraction
 and digestion

Set II: 85 samples

+
Set I: 49 samplesMixture(QC) sample

2DLC-MS/MS & label-free quantification

MRM analysis

Urinary proteome profiles

Co-expression networks Gender-related proteins

Collect one random 
urine sample per person

Validation of gender-related proteins

FIG. 1. The flowchart of the urinary
proteome analysis of individuals.
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level, total cholesterol (TC), triglyceride (TG), urinary white blood cell,
red blood cell and total protein levels, and estimated glomerular
filtration rate (eGFR) were employed to select healthy donors. A total
of 134 healthy donors aged 20 to 69 years were included in this study.
The detailed characterization of donors is provided in supplemental
Table S1.

One second voided urine specimen was collected from each do-
nor. Samples were divided into two sets. Set I, including 49 urine
samples, was used as the discovery group and analyzed by 2D
LC-MS/MS. Set II, including the remaining 85 samples, was used as
the validation group for targeted multiple reaction monitoring (MRM)
analysis (tier 3). In both sets I and II, each gender and age group were
represented by a similar number of donors. The donors were cate-
gorized by their age and gender as summarized in Table I. To evaluate
the technical reproducibility of the profiling and targeted MS experi-
ments, quality control (QC) samples were generated by pooling all
samples in sets I and II in equal amounts and were repeatedly ana-
lyzed throughout the entire MS process.

Urine Sample Collection and Storage—Urine samples were col-
lected in 250 ml conical tubes, immediately acidified to pH 2.7 with
hydrochloric acid and then stored at �80 °C to prevent bacterial
growth and proteolysis.

Sample Preparation—Samples were centrifuged at 5000 � g for 30
min, and the precipitates were removed. The supernatants were
precipitated overnight at 4 °C using 3 times the volume of ethanol for
2 h. After 30 min of centrifugation at 10000 � g, the pellets were
resuspended in lysis buffer (7 M urea, 2 M thiourea, 0.1 M DTT, and 50
mM Tris). The protein concentration of each sample was quantified by
the Bradford method.

Five hundred micrograms of protein from each sample were di-
gested with the filter-aided sample preparation (FASP) method (32).
The protein samples were reduced with 20 mM DTT at 37 °C for 1 h
and then carboxyamidomethylated with 50 mM IAA at room temper-
ature in the dark for 45 min. Then, the sample was loaded onto a 10
KD ultracentrifugation filter, washed twice with UA buffer (containing
7 M urea and 50 mM Tris), and washed twice with 25 mM NH4HCO3.
The treated samples were digested with trypsin (2 �g per 100 �g
protein) in 25 mM NH4HCO3. The digested peptides were eluted from
the 10 KD filter, and the samples desalted on C18 columns (3 cc, 60
mg, Oasis, Waters Corporation, Milford, MA). The desalted peptides
were lyophilized by vacuum centrifugation and stored at �80 °C.

2DLC-MS/MS Analysis—Offline HPLC separation. The digested
peptides were fractionated using a high pH RPLC column from Wa-
ters (4.6 mm�250 mm, Xbridge C18, 3 �m, Waters Corporation,
Milford, MA). The samples were loaded onto the column in buffer A1
(H2O, pH � 10). The elution gradient was 5–35% buffer B1 (90% ACN,
pH � 10; flow rate � 1 ml/min) over 30 min. The eluted peptides were
collected at a frequency of one fraction per minute. The dried 30
fractions were resuspended in 0.1% formic acid and pooled into 8
fractions by combining fractions 6–7, 8–9, 10–11, 12–13, 14–16,
17–19, 20–22 and 23–26.

Online LC/MS/MS Analysis—The peptide fractions from both the
individual urine samples and the QC samples were analyzed by the

same LC-MS/MS configuration. Each fraction was analyzed with a
reverse-phase C18 self-packed capillary LC column (75 �m�100
mm). The eluted gradient was 5–30% buffer B2 (0.1% formic acid,
99.9% ACN; flow rate � 0.3 �l/min) over 40 min. A TripleTOF 5600
mass spectrometer (AB Sciex, Framingham, MA) was used to analyze
the eluted peptides from LC. The MS data were acquired using
high-sensitivity mode with the following parameters: 30 data-de-
pendent MS/MS scans per full scan; full scans acquired at a reso-
lution of 40,000 and MS/MS scans at a resolution of 20,000; rolling
collision energy; charge state screening (including precursors with
a �2 to �4 charge state); dynamic exclusion (exclusion duration
15 s); MS/MS scan range of 100–1800 m/z; and scan time of 100
ms. A total of 432 LC-MS/MS runs were conducted, including 392
runs for the 49 individual samples and 40 runs for the five technical
replicates of the QC sample. To avoid time-dependent systematic
bias, the samples from different HPLC fractions were arranged in
random order for LC-MS/MS analysis.

2DLC-MS/MS Data Analysis—All MS/MS data were searched
against the human section of the SwissProt database (www.uniprot.
org, 20121 entries, downloaded on October 2016) using Mascot
(Matrix Science, London, UK; version 2.5.01) with the following pa-
rameters: fully tryptic digestion and up to two miss cleavage sites;
0.05 Da for both precursor and fragment ion mass tolerance; carb-
amidomethyl of cysteine as a fixed modification; and methionine
oxidation and �43 on Kn (carbamyl) as variable modifications. The
database search results obtained with Mascot were further pro-
cessed by Scaffold (version 4.0.7, Proteome Software Inc., Portland,
OR) for protein inference and false discovery rate (FDR) calculation.
The probabilities of protein identification were estimated by the Pro-
teinProphet algorithm (33). Only protein groups with at least 2 unique
peptides were accepted as positively identified. The false discovery
rates (FDR) were set at �1% at both the peptide and protein levels.

The acquired wiff files were imported into the Progenesis LC-MS
software (Nonlinear Dynamics, Newcastle, UK, Version 4.0) for label-
free quantification analysis. LC alignments were automatically con-
ducted between the runs of the same offline HPLC fractions based on
nonlinear mapping of the extracted features. Peptide identifications
were then transferred between the aligned features. The abundances
of peptide ions based on the robust estimation of the mean log peak
area ratio of all peptide ions in the target run were normalized against
an automatically selected reference run. Only features of peptide ions
with charge states from �2 to �5 were selected for quantification.
Protein abundances were calculated by the sum of the normalized
abundances of their unique peptides.

MRM Experiments and Data Analysis—Data derived from a spectral
library of the normal urine proteome generated by conventional 1D
LC-MS/MS and 2D LC-MS/MS using HCD collision were imported
into Skyline version 3.5 (33). Skyline was employed to manually select
the most intense peptide transitions. Up to five transitions per peptide
were traced on a QTRAP 6500 mass spectrometer (AB Sciex,
Framingham, MA). Peptides with potential modification sites (cysteine
and methionine) and those with missed cleavage sites were excluded.
A total of 1–3 peptides from one protein were selected for quantifi-
cation. All samples were loaded onto a self-packed C18 RP capillary
column (100 mm�0.075 mm, 3 �m) with buffer A (0.1% formic acid).
The peptides were eluted with 5–30% buffer B (0.1% formic acid,
99.9% ACN; flow rate � 300 nL/min) for 60 min. The samples were
analyzed in a random order, and each sample was analyzed three
times. All the MRM data were imported into Skyline, which was used
for further visualization, transition detection, and abundance calcula-
tion. The peptide abundance in a sample was calculated as the mean
summed peak area of all selected transitions.

TABLE I
Characteristics of urine donors. F, female; M, male

Age group Set I (F/M) Set II (F/M)

A (20–30 years) 7/3 9/9
B (30–40 years) 6/4 9/5
C (40–50 years) 4/6 10/10
D (50–60 years) 7/3 6/10
E (�60 years) 4/5 9/8
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To observe the stability of the MS signal, the mixed peptide sample
was used as a QC sample and analyzed 3 times every 2 days during
the process of MS analysis.

Estimation of Absolute Protein Concentrations and Reference In-
tervals—First, a protein MS abundance measurement like iBAQ (34)
was calculated for each protein. The abundance was defined as
(protein molecular weight) * (summed peptide peak areas)/(number of
theoretical peptides that could be detected by mass spectrometry).
As reported in an epidemiological study, the mean concentration of
urinary albumin among healthy 40–59-year-old Chinese individuals
was �2.675 mg/L (35). A conversion factor between the protein MS
abundance measurement and its absolute concentration was then
calculated by dividing 2.675 by the mean albumin abundance among
samples within the same age range. Consequently, the concentration
of each protein in each sample could be estimated by multiplying its
MS abundance measurement by the conversion factor. For each
protein, the 2.5% and 97.5% quantiles of concentration values were
calculated to estimate the 95% reference interval of protein concen-
trations in the normal population.

Evaluation of the Effects of Potential Influencing Factors on Urinary
Proteome—Hierarchical clustering was employed to evaluate and
visualize the overall similarities between samples. This analysis was
performed on log2 transformed protein abundance data using the
Pearson correlation coefficient for similarity calculation and the
Ward agglomeration method. Only proteins with the biological co-
efficients of variation (CVs) above the median were used for clus-
tering. PERMANOVA (permutational multivariate analysis of vari-
ance) was employed to test whether there was a significant effect of
each potential influencing factor on the urinary proteome. All tests
were performed with the adonis2 function in the vegan package of
R using the same distance matrix as in the hierarchical clustering,
and the number of permutations was set to 999.

Protein Coexpression Network Analysis—Network analysis was
performed to identify co-expressed urinary protein clusters in differ-
ent individuals. First, the Spearman correlation coefficients between
proteins were calculated, and tests of significance were conducted. p
values were then corrected for multiple hypothesis testing using the
method described by Hochberg (36). A protein co-expression net-
work was constructed based on the correlation analysis. In this net-
work, each vertex denotes a protein; two vertices were linked by an
edge if and only if the correlation between the two proteins was
significant (adjusted p value � 0.05), and the weight of this edge was
determined by the absolute value of the correlation coefficient of the
two proteins. Densely connected subnetworks were discovered by
the fast greedy community detection algorithm in the iGraph package
of R (37, 38). Each subnetwork was required to contain at least 7
vertices and contain more edges than vertices. To identify hub pro-
teins, Kleinberg’s hub centrality scores considering edge weights
were calculated for all vertices in a subnetwork (39).

Identification of Differentially Expressed Proteins Between Male
and Female Urine Samples—To determine the gender-related pro-
teins in urine, a t test with the assumption of unequal variances was
performed on the log transformed abundance value for each protein.
Adjusted p values for multiple hypothesis tests were then calculated
using the Benjamini-Hochberg method (40). Proteins with an adjusted
p value less than 0.05 and a fold change over 1.5 were significantly
differentially expressed between the two groups.

Discriminate Model—In the training set (Set I), the peak area of
each candidate protein was log2 transformed and then standardized
(mean � 0 and standard deviation � 1). The LASSO logistic regres-
sion model was performed with the glmnet package in R (41). Ten-fold
cross-validation was used to determine the lambda value for the
LASSO model. The lambda value was the largest value with an error
within 1 standard error of lambda that gives the minimum mean

cross-validated error. The fitted “urinary gender model” included a
panel of proteins that perfectly separated male and female samples.
In the test set (Set II), the abundance of each protein was calculated
as the weighted sum of peptide peak areas. The weight of a peptide
was defined as its median peak area among all samples divided by
the sum of median peak areas of the peptides belonging to the same
protein. The protein abundances were log2 transformed and stan-
dardized in the same way as the training set. The performance of the
“urinary gender model” was evaluated by the ROC curve with the
pROC package in R (42).

Functional Analysis—The subcellular localization of proteins was
annotated by the IPA software (Ingenuity Systems, Mountain View,
CA). The significance of enrichment for each subcellular localization
term was then calculated by one-sided Fisher’s exact test, using all
urinary proteins identified in this study as the background. Overrep-
resentation analysis of protein functions and pathways was per-
formed by IPA and Reactome (43), respectively.

RESULTS

Protein Identification and Label-free Quantification—Urine
samples from 49 healthy donors aged 20–69 years in sample
Set I were comprehensively analyzed by 2D LC-MS/MS. Do-
nors were assigned to five categories based on age, and each
category spanned ten-year interval. Thus, the whole sample
set was classified into ten groups based on donor age and
gender. A total of 3008 proteins were identified with a protein
FDR of �1% and with at least two unique peptides. For each
sample, a median of 1162 protein groups was identified by
peptide-spectrum-matching, whereas 1884 protein groups
could be identified by either peptide-spectrum-matching or
the match-between-runs approach (Fig. 2A and supplemental
Table S2A).

A total of 1872 proteins were quantifiable (supplemental
Table S2B). A total of 1738 of these with quantitative data in
more than half of the samples were selected for further
analysis. Technical variation of this analysis was evaluated
by calculating the CV of the protein abundances among the
five QC replicates. The median and 75% quantile of tech-
nical CVs were 0.23 and 0.39, respectively. Considering that
the whole mass spectrometry analysis process included
432 LC-MS/MS runs and lasted for 60 days, the technical
reproducibly with the label-free quantification used in this
analysis is acceptable.

Individual Variation in the Normal Urinary Proteome—For
each protein, the biological variation was evaluated as the CV
of the measured protein abundances in the 49 urine samples.
The median biological CV was 0.60, remarkably greater than
the median technical CV (0.23). The distributions of the tech-
nical and biological variations are shown in Fig. 2B. The
dynamic range spanned seven orders of magnitude. As more
abundant proteins are generally easier to precisely quantify,
protein abundance was negatively correlated with the techni-
cal CV.

Proteins with CV � 0.77 (the 95% quantile of the technical
CV) were considered outliers and removed from the subse-
quent analysis. A total of 1640 proteins remained in the final
dataset for quantitative analysis. Hierarchical clustering anal-
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ysis was performed to classify 48 out of the 49 samples (a
female sample in age group C was not included) into ten small
clusters (Fig. 3). Each cluster is dominated by samples from
an age and gender group. Only five samples were “mistak-
enly” classified into four clusters in which the dominant sam-
ples were from a different group. This observation suggests
that gender and age are the core contributing factors to the
individual variability of the normal urinary proteome. The sig-
nificance of their effects was tested by PERMANOVA (p �

0.001 for both age and gender). The effects of five other
physiological factors (TC, TG, blood glucose level, BMI and
eGFR) were also examined. Only eGFR showed a significant
(p � 0.003) effect based on the PERMANOVA tests. It is
important to note that eGFR is well known to decline with the
normal aging process (44), and it showed a strong negative
correlation with age in our dataset, as expected (Pearson
correlation coefficient � -0.78). For the other four physiolog-
ical factors, no significant correlations were observed with
either age or gender, and none of them showed significant
effects on the urinary proteomes (p � 0.17, 0.11, 0.78, 0.41 for
TC, TG, blood glucose level, and BMI, respectively).

Urinary Protein Co-expression Network—Protein co-ex-
pression analysis was then performed to identify proteins with
similar urinary expression profiles across different individuals.
A protein co-expression network containing 332 vertices and
480 edges was built as described in the Experimental Proce-
dures section. In this network, each vertex represents a pro-
tein, whereas each edge linking two vertices represents a
significant abundance correlation between two proteins.
Densely connected subnetworks representing protein clus-
ters with similar expression profiles were detected and char-
acterized in Fig. 4A and 4B.

FIG. 2. Protein identification and CV distributions. A, Number of
protein groups identified in each sample. Darker color: number of
proteins identified by MS/MS spectral match; Lighter color: number
of proteins identified by match between runs. The first and second
letters of each label on the x axis denote the age and gender group of
the sample, respectively. B, Technical and biological CVs. The x axis
denotes the median log10 protein abundance among the QC runs.

0.8 0.85 0.9 0.95 1

AF
BF
CF
DF
EF
AM
BM
CM
DM
EM

FIG. 3. Hierarchical clustering of the
49 individual urinary proteomes. Sam-
ples were categorized into ten groups
based on donor age and gender, as il-
lustrated by the colored bars beside
both rows and columns of the heatmap.
Based on the clustering tree, the 48
samples were classified into 10 clusters,
and 1 was an outlier. The clusters are
labeled by their dominant sample groups
on the corresponding branches of the
dendrogram with the same color code.
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FIG. 4. Protein co-expression networks. A, Characteristics of the 9 protein co-expression subnetworks. #Vertices. Number of vertices (i.e.
proteins) in the subnetwork; #Edges, the median edge number of all vertices; Correlation, the median absolute Spearman correlation coefficient
of all vertex pairs, regardless of whether they are linked by edges; CV, the median biological CV of all proteins in that subnetwork; Hub proteins,
proteins with a hub score � 0.9. B, Expression profiles of the protein co-expression subnetworks. For the convenience of visualization, the high
dimension abundance matrix in each subnetwork was summarized into a one-dimensional array (an eigengene in co-expression network
analysis[45]) by principal component analysis. In detail, the abundance values for each protein were log2 transformed and scaled to a mean
of 0 and standard deviation of 1. Then, the eigengene for each subnetwork was calculated as its first principle component, which explained
49.65% to 75.59% of the total protein variance. Thus, the major information of protein abundance distribution in a subnetwork could be
represented by the distribution of its eigengene. C, The metabolism subnetwork. Proteins involved in different metabolic pathways are
displayed in different colors. All of the proteins were positively correlated with each other.
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Subnetwork No.1, the largest one, is composed of 55 pro-
teins (Fig. 4C). It is a relatively stable component of the
individual urinary proteomes, with a median biological CV of
0.51. Proteins in this subnetwork did not exhibit different
abundance patterns between the two gender groups. Accord-
ing to the REACTOME database, a total of 36 proteins are
involved in metabolic pathways. Four metabolic pathways
were significantly enriched: metabolism of carbohydrates (12
proteins, FDR adjusted p value � 1.39E-7), metabolism of
amino acids and derivatives (11 proteins, FDR adjusted p
value � 1.18E-04), biological oxidation (9 proteins, FDR ad-
justed p value � 1.18E-04) and metabolism of vitamins and
cofactors (5 proteins, FDR adjusted p value � 0.05). The tissue
expression patterns of the proteins in these pathways were then
queried in The Human Protein Atlas (www.proteinatlas.org) (45).
Twelve proteins were observed to be highly expressed in the
kidney, liver or both. Proteins highly expressed in kidney and
liver are particularly enriched in the pathway of amino acid and
derivative metabolism, in which 4 proteins are increased in both
kidney and liver, whereas another one is increased in kidney and
some other tissues. Because kidney and liver play important
roles in the metabolism of the body, this subnetwork might act
as a urinary indicator of metabolic state. Significant alterations
observed in this subnetwork might indicate abnormalities in the
metabolic system.

The remaining 8 subnetworks are shown in supplemental
Fig. S1. Two gender-related subnetworks exhibit the top two
largest individual variations: Subnetwork No. 2 contains 46
proteins that were increased in the female urine samples as
well as only one increased in the male urine samples, whereas
all the proteins in Subnetwork No. 7 were more abundant in
the male urine samples than in the female urine samples.
Subnetwork No. 7 represents the prostate secretion states of
individuals, as it contains all the three predominate prostate-
secreted proteins: prostate-specific antigen (abbreviated as
PSA or KLK3), prostatic acid phosphatase (ACPP) and beta-
microseminoprotein (MSMB) (47). In-depth analysis of the
gender-related urinary proteome differences are provided in
the next section.

Gender-related Urinary Proteins—A total of 35 and 76 pro-
teins that were significantly increased in the male and female
urine samples, respectively, with changes larger than 1.5-fold
and p values �0.05 were identified (supplemental Table S3
and Fig. 5A). This gender-related protein list includes 6
proteins in Subnetwork No. 7 and 39 proteins in Subnetwork
No. 2.

First, proteins that might originate from the reproductive
system were analyzed. Three predominant proteins secreted
by the human prostate gland (PSA, ACPP, and MSMB) were
observed in all 49 samples. Despite not being uniquely iden-
tified in the male urine samples, these proteins were 3 to 7
times more abundant in the male urine samples than in the
female urine samples. In addition, several proteins that were
observed to be highly expressed in the vagina and cervix were

increased in the female urine samples. Among them, fatty acid
binding protein 5 (FABP5) and small proline-rich protein 3
(SPRR3) were reported to be characteristic vaginal fluid pro-
teins (48).

Next, differences in the subcellular localization distribu-
tion and protein functions between the proteins that were
increased in males and females were investigated (Fig. 5B).
The proteins that were increased in the male urine samples
are enriched with extracellular proteins (odds ratio � 3.20
and p � 0.01), whereas those increased in the female urine
samples had a significantly greater proportion of cytoplas-
mic proteins (odds ratio � 1.82 and p � 0.01) and a lower
proportion of plasma membrane proteins (odds ratio � 0.41
and p � 0.02).

The molecular functions of the gender-related proteins
were analyzed by IPA (Fig. 5C). An interesting phenomenon is
that the proteins that were increased in the different gender
groups showed an opposite effect on cell invasion (supple-
mental Fig. S2). In the group of proteins that were increased in
males, 4 of the 5 proteins related to cell invasion were pre-
dicted to have an inhibitory effect, whereas in the group of
proteins that were increased in females, 10 of the 13 proteins
related to this function showed a potential activating effect.
The two protein groups also display opposite effects on apo-
ptosis, which was predicted to be inhibited by the proteins
that were increased in males and slightly activated by the
proteins that were increased in females. Additionally, proteins
with several molecular functions, such as the migration of
cells, catabolism of protein, and cross-linking of peptides,
were significantly enriched only in the group of proteins that
were increased in females.

Pathway analysis was further performed by the online anal-
ysis tool of the REACTOME database (Fig. 5D). The immune
system is the most significantly enriched category, containing
nearly half (36/76) of the proteins that were increased in
females. The markedly enriched immunological pathways in-
cluded neutrophil degranulation, which contained 24 and 6
proteins that were increased in females and males, respec-
tively, and antimicrobial peptides, containing 9 proteins en-
riched in females. The differential proteins in urine might re-
flect the gender-related immunological differences across the
whole body. The second enriched pathway category is kera-
tinization, which contains 15 proteins that were increased in
females that are specifically involved in the formation of the
cornified envelope. This observation might suggest more
shed keratinocytes in women’s urine than in men’s urine.

Nine proteins with interesting functions were chosen for
further validation (Table II). An independent set of urine sam-
ples from 85 donors (Set II) was employed for validation by the
MRM approach. The result of the validation analysis is shown
in Fig. 6A. Detailed information on the monitored transitions
and their quantitative information in each sample is listed in
supplemental Table S4. The same direction of significant
abundance changes (p � 0.05 by two-sided t test on log2
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transformed peptide peak areas) was observed as in the Set
I analysis for all peptides of the nine proteins quantified in the
MRM experiments.

The nine gender-related proteins were then used to develop
a “urinary gender model” to distinguish male and female urine
samples. The 2D LC-MS/MS results (Set I) were used to train
a LASSO logistic regression model. As shown in Fig. 6B, male
and female samples were perfectly distinguished by their
gender scores. The same model was then applied to predict
donors’ genders for sample Set II. The ROC curve illustrating
the discriminant power is displayed in Fig. 6C. Most of the
samples were correctly classified except for three outliers.

Reference Intervals of Urinary Proteins—In addition to gen-
der, many other factors might also influence the urinary pro-
teome. The reference interval for each protein provides a
baseline to discover abnormalities in urinary biomarker anal-
ysis. Therefore, absolute concentrations of urinary proteins
were estimated based on the mean value of urinary albumin
concentration in the Chinese population. The 95% reference
interval for each protein was calculated (supplemental Ta-
ble S5).

Table III lists the concentrations of the top 10 most abun-
dant proteins in the normal urinary proteome. None of these
proteins had significant differences in abundance in female

FIG. 5. Gender-related differential protein analysis. A, Volcano plot for protein abundance changes between the male and female urine
samples. B, Comparison of the subcellular localization distributions of the proteins that were increased in the different gender groups. C,
Functional analysis by IPA. The significance of the enrichment was tested by Fisher’s exact test. The x axis represents the -log10 p value of
this test. The color of the bar represents the Z-score, which was calculated to predict the effect of protein changes. A positive/negative Z-score
indicates that proteins with observed changes in abundance have a potential activating/inhibitory effect on a function. D, Pathway analysis with
REACTOME. The significance of the enrichment for each pathway is shown as the -log10 p value adjusted for multiple hypothesis tests. E,
Enrichment of related diseases analyzed by IPA.
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and male urine. Most of these proteins are extracellular
glycoproteins existing in plasma. Among them, uromodulin
(UMOD) is the only one that is exclusively secreted by the
kidney.

DISCUSSION

The characterization of the normal urine proteome provides
fundamental information for the diagnosis and monitoring of
diseases. In this study, we found that in addition to age,
gender is a crucial factor that contributes to individual varia-
tion. The female and male urinary proteomes exhibited dis-
tinct expression profiles and could be accurately distin-
guished by a linear model consisting of merely five proteins.

The effect of gender on the urinary proteome has not yet been
well studied except for our previous studies using small sam-
ple sizes (16, 30).

By looking at gender-related proteins, physiological differ-
ences between men and women could be revealed. Typical
proteins secreted by the prostate (PSA, ACPP, and MSMB)
were enriched in male urine, but did not specifically exist in the
male urine. It was reported that Skene’s gland, the homolog of
the prostate in females, is a source of PSA secretion into female
urine (60, 61). These proteins were also found to be secreted or
expressed by other tissues, such as lung, kidney, stomach,
ovary, and breast, suggesting that their existence in female
urine might come from multiple sources (62–65).

TABLE II
Nine gender-related proteins that were validated by MRM approach

Gene Increase
group

Subcellular
localizationa Tissue specificity Functions and pathways Related diseasesa,e

ANXA1 Female Plasma Membrane Enriched in esophagusd Activation of cell
invasiona; Innate and
adaptive immune
respondsb,c;
chemotaxisa,c;
keratinocyte
differentiationc

Breast, gastrointestinal
cancer; glomerulopathy;
inflammatory arthritis

S100A9 Female Cytoplasm Highly expressed in
squamous epithelial
cells of vagina and
cervixd

Activation of cell
invasiona; neutrophil
chemotaxisc; defense
response to
bacteriumb,c;
chemokine and
cytokine productionc;
apoptoisisa,c

Various inflammatory and
autoimmune diseases[49];
various cancers[50];
cardiovascular diseases[51]

TXN Female Cytoplasm cell redox homeostasisb;
Innate Immune
Systemb

Cardiovascular disease; heart
failure, stroke, inflammation,
metabolic syndrome,
neurodegenerative
diseases, arthritis, and
cancer[52]

AZU1 Female Cytoplasm Enriched in bone marrowd Induction of positive
chemotaxisa,c;
Neutrophil
degranulationb;
antimicrobial humoral
responsec

Periodontitis; cornea cancer

SPRR3 Female Cytoplasm Characteristic vaginal fluid
protein; highly
expressed in
keratinocytesc

Formation of the cornified
envelopeb

Esophageal and skin
tumors[53]

FABP5 Female Cytoplasm Highly expressed in
squamous epithelial
cells of vagina and
cervixd

Activation of cell
invasiona; lipid
metabolismc; neutrophil
degranulationb;
Keratinocyte
Differentiationb;[54]

Psoriasis; basal and
squamous cell
carcinomas[55]; tongue
carcinoma[56]

PSA Male Extracellular Space Prostate secreted protein Inhibition of cell invasiona Prostate cancer and other
prostate diseases[57]

TIMP1 Male Extracellular Space Metalloproteinase
inhibitor; regulation of
cell differentiation,
migration and cell
deathc

Various cancer and renal
diseases

AZGP1 Male Extracellular Space Inhibition of cell invasiona;
stimulation of lipolysisc

Diabetes; cachexia;
obesity[58]; ovarian, bladder
and prostate cancers[59]

a IPA; b REACTOME; c UniProtKB; d The Human Protein Atlas, data available from v18.proteinatlas.org; e Urinary Protein Biomarker
Database, http://upbd.bmicc.cn.
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The most interesting finding in our study is that many pro-
teins increased in the female urine have functions in the
immune system, such as neutrophil degranulation and anti-
microbial peptides. Sex differences cause complicated differ-
ences in immune response throughout lifetime. These differ-
ences occur in both innate and adaptive immune responses,
which are thought to be contributed by both the genes lo-
cated on the X chromosome and the sex hormones (66, 67).
For example, females are more susceptible to autoimmune

diseases (68), whereas infectious diseases are more prevalent
in males. Our study indicates that certain gender differences
in the immune system could be reflected in the urinary pro-
teome. A proteomic study on normal saliva also observed
elevated abundances of immune-related proteins in females
(69). These findings together suggest that the systematic sta-
tus of the human body might be reflected by various biofluids.

The overrepresented disease terms that are associated with
the gender-related proteins identified by IPA are highly en-

FIG. 6. Urinary gender model. A, MRM validation results for nine gender-related proteins. B, Distribution of the “gender score” among the
training (2D LC-MS/MS) set. C, Performance of the urinary gender model on the test (MRM) set. ROC curves represent the urinary gender
model as well as five predictors using individual proteins in this model.

TABLE III
The top 10 most abundant proteins in urinary proteome. The unit of protein concentration is mg/l. Proteins were ranked based on the median

concentration among all of the 49 samples

Protein ID Protein Name CV Concen. all Concen. male Concen. female

P02768 ALB 0.27 2.74 (1.63–4.57) 2.63 (1.7–4.54) 2.93 (1.77–4.4)
P07911 UMOD 0.92 1.14 (0.24–5.72) 1.04 (0.2–4.73) 1.23 (0.31–4.51)
P02760 AMBP 0.38 1.07 (0.53–1.95) 1.34 (0.82–1.71) 0.93 (0.49–2.09)
P05090 APOD 0.47 0.56 (0.11–1.03) 0.71 (0.28–1) 0.45 (0.08–1.03)
P01834 IGKC 0.45 0.51 (0.28–1.09) 0.53 (0.33–1.05) 0.47 (0.28–1.2)
P41222 PTGDS 0.41 0.49 (0.23–1) 0.61 (0.33–1.09) 0.44 (0.19–0.91)
P01042 KNG1 0.4 0.35 (0.11–0.66) 0.35 (0.18–0.67) 0.34 (0.1–0.65)
P10451 SPP1 0.67 0.3 (0.05–0.84) 0.32 (0.14–0.77) 0.28 (0.04–0.95)
P13987 CD59 0.28 0.23 (0.11–0.34) 0.23 (0.1–0.35) 0.21 (0.13–0.34)
Q7Z5L0 VMO1 0.46 0.22 (0.07–0.42) 0.26 (0.11–0.48) 0.18 (0.07–0.36)
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riched in a diverse dermatological, immunological and inflam-
matory-related diseases and disorders, including dermatitis,
hypersensitive reaction, psoriasis, and lupus erythematosus
(Fig. 5E). Some of these diseases are known to be more
prevalent in females than in males (70–73). In addition, many
clues suggest that the levels of these gender-related proteins
change in the urine under various other disease conditions.
Detailed data can be found in the Urinary Protein Biomarker
Database (6).

Individual variation is thought to be an important factor for
the inability to validate the biomarker candidates discovered
in pilot proteomic studies (17). The bias of factors causing
individual variation in case-control studies may lead to an
inaccurate list of differentially expressed proteins. Consider-
ing the wide range of diseases associated with gender-related
proteins, we strongly suggest that future biomarker studies
should consider gender as a crucial factor in both experimen-
tal design and data analysis. Gender-stratified analysis is
preferable when the proper sample size is available; other-
wise, the number of female and male subjects must be bal-
anced between groups.

Aging is another important factor that influences the urinary
proteome, because aging kidneys show a progressive decline
of renal function, such as loss of GFR and decline of the
capacity to concentrate urine (74). In a previous study, Bakun
et al. reported altered extracellular matrix turnover and declin-
ing immune function from the changes in proteins in an elderly
group (aged from 70 to 90 years) compared with the young
and middle-age groups (23). The correlation with age and the
urinary proteome was also observed in our datasets from
relatively younger donors (aged 20 to 69 years). Trends of
aging-related differences were also observed in Subnetworks
No. 1 and 5 in both gender groups. To accurately measure the
age-related differences, our further investigations will include
donors with an extended age range and use a larger sample
size.

In our data set, plasma glucose levels, TC, TG and BMI
showed insignificant effects on the normal urinary proteome.
Other known (e.g. diet and exercise) and unknown factors
may also cause changes in urinary proteins. The results of the
protein co-expression network analysis might offer clues for
further studies. For example, Subnetwork No. 9, the third
most variable subnetwork, includes a hub vertex UMOD. All of
the other six proteins showed a strong correlation with this
hub protein. UMOD is a tubular specifically secreted protein
and a famous marker of renal function (75). However, none of
the other proteins have been observed to be highly expressed
in the kidney. The functional associations of proteins in this
subnetwork remain to be discovered.

Finally, we estimated reference intervals for 1640 urinary
proteins quantified in Set I among normal males and females
providing a baseline for detecting abnormalities in urine. We
previously used the same approach to determine the absolute
concentration of 2571 urinary proteins in a pooled sample and

showed a medium correlation with immunoassay results (3).
It is an interesting phenomenon that UMOD exhibited much
broader intervals than the high abundant proteins that orig-
inated from the plasma. This suggests that the levels of
renal secretion are variable among healthy donors in our
study. We hope that the omic-scale reference interval would
be helpful for urinary proteome clinical applications and
related research.
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