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Abstract

Cell trajectory reconstruction based on single cell RNA sequencing is important for obtaining the 

landscape of different cell types and discovering cell fate transitions. Despite intense effort, 

analyzing massive single cell RNA-seq datasets is still challenging. We propose a new method 

named Landmark Isomap for Single-cell Analysis (LISA). LISA is an unsupervised approach to 

build cell trajectory and compute pseudo-time in the isometric embedding based on geodesic 

distances. The advantages of LISA include: (1) It utilizes k-nearest-neighbor graph and 

hierarchical clustering to identify cell clusters, peaks and valleys in low-dimension representation 

of the data; (2) Based on Landmark Isomap, it constructs the main geometric structure of cell 

lineages; (3) It projects cells to the edges of the main cell trajectory to generate the global pseudo-

time. Assessments on simulated and real datasets demonstrate the advantages of LISA on cell 

trajectory and pseudo-time reconstruction compared to Monocle2 and TSCAN. LISA is accurate, 

fast, and requires less memory usage, allowing its applications to massive single cell datasets 

generated from current experimental platforms.

Keywords

Single cell RNA-seq; cell trajectory; pseudo-time; manifold learning

Open Access chapter published by World Scientific Publishing Company and distributed under the terms of the Creative Commons 
Attribution Non-Commercial (CC BY-NC) 4.0 License.
*To whom correspondence should be addressed. zhengqing.ouyang@jax.org. 

HHS Public Access
Author manuscript
Pac Symp Biocomput. Author manuscript; available in PMC 2019 June 06.

Published in final edited form as:
Pac Symp Biocomput. 2019 ; 24: 338–349.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

Single cell RNA sequencing (scRNA-seq) is emerging to revolutionize the study of 

development and disease processes. It has been widely used to investigate the dynamic gene 

expression landscape, cell type identification, cell state transition, and pseudo-time 

estimation at single cell level [1–7].

An important computational issue of scRNA-seq analysis is on the reconstruction of cell 

trajectory and pseudo-time for individual cells. Among existing methods, Monocle2 [8], 

TSCAN [9], and Slingshot [10] are shown to have relatively better performance [4]. 

Monocle2 utilizes the principal component analysis (PCA) and discriminative 

dimensionality reduction tree (DDRTree) [11]. It is often able to build a tree structure. But 

an arbitrarily large cell cluster number (usually > 100) is used for minimum spanning tree 

(MST) construction. Slingshot extends the principle curve method to fit the lineages built on 

MST. Similar to DDRTree, it makes the tree structure smoother. But the users need to 

determine the dimension reduction and clustering methods and generate cell lineages before 

using Slingshot. TSCAN uses Gaussian mixture models and the Bayesian information 

criterion for automatically determining cell cluster number, and then builds cell lineages by 

MST on cluster centers in the PCA space. TSCAN and Slingshot can only infer cell orders 

in each cell lineage and are not able to estimate the global pseudo-time of all cells. Most of 

the existing methods were only applied to small scRNA-seq datasets. It is not clear whether 

they are feasible for massive scRNA-seq datasets.

Large scale scRNA-seq technologies [5], such as 10x Genomics [12], make it possible to 

profile more than tens or hundreds of thousands of cells. Such massive scRNA-seq datasets 

promote the development of new cell trajectory reconstruction methods [1–4]. Existing 

literature has used empirical approaches to study cell lineages supervised by known time 

labels and cell marker genes [1–4]. It is not known how well one can reconstruct complex 

cell trajectory and pseudo-time by unsupervised approaches.

We have developed the Landmark Isomap for Single-cell Analysis (LISA), an unsupervised 

method aiming to reconstruct cell trajectory and pseudo-time for massive scRNA-seq 

datasets. Briefly, LISA first automatically determines cell clusters, peaks and valleys based 

on k-nearest-neighbor graph (kNN-graph) [13] and hierarchical clustering. Then it maps 

cells into the isometric embedding based on geodesic distances [14] using the peaks and 

valleys as landmarks. It then builds the MST on the cluster centers as the main cell trajectory 

in the isometric embedding. Finally, it computes the pseudo-time by projecting cells onto the 

MST.

The rest of the paper is organized as follows: in Methods, we introduce the algorithm of 

LISA. In Results, we assess LISA on a simulated dataset, and two large scRNA-seq datasets. 

One dataset is on human embryo development containing 1,364 cells [15]. The other is on 

zebrafish embryogenesis including 38,731 cells [2]. We compared LISA with Monocle2 and 

TSCAN on cell trajectory reconstruction. We also compared LISA with Monocle2 on global 

pseudo-time estimation. The paper is concluded with a discussion.
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2. Methods

The workflow of LISA is shown in Fig. 1. We can start with either unnormalized or 

normalized gene expression values for K genes and N cells. If the input data are raw read 

counts, they will be log2-transformed and filtered. The filtering process removes lowly 

expressed genes. Usually, genes with low variances will be removed too. The details of the 

LISA method will be introduced as follows.

2.1. Visualize cells by PCA and t-Distributed Stochastic Neighbor Embedding (t-SNE)

PCA and t-SNE are two common dimensionality reduction methods for visualization. We 

use PCA to select top ranked PCs that keep the major variations in the data. We then derive 

the t-SNE [16] coordinates based on the selected PCs.

2.2. Identify cell clusters, peaks, and valleys

We identify cell clusters, peaks, and valleys based on kNN-graph and hierarchical clustering. 

We construct the kNN-graph based on the Euclidean distance with a default k as 50. To 

improve the speed, we use the kd-tree [13] to construct the kNN-graph, resulting a running 

time of O(NlogN), where N is the number of cells.

After building the kNN-graph, we then search for cell peaks and valleys. We first estimate 

cell density based on a nonparametric density estimation approach [17]. For each cell, if its 

density value is higher than all the k−1 nearest neighbors, it is regarded as a peak. 

Conversely, if its density value is lower than all the k−1 nearest neighbors, it is determined 

as a valley. Then we propose an iterative hierarchical clustering method as follows:

1. Do hierarchical clustering in the t-SNE embedding. Cut the resulting dendrogram 

so that the number of clusters is equal to the number of peaks.

2. Among the resulting clusters, if one cluster contains more than one peak, 

perform hierarchical clustering again on this cluster with the cluster number 

equal to the peak number in it.

3. Do step 2 until each cluster contains at most one peak.

4. For a cluster without a peak, merge it with another cluster containing a nearest 

peak. The nearest peak is defined as the one that is closest to the cluster with the 

minimum distance to the cluster.

2.3. Landmark Isomap

We employ the nonlinear dimension reduction method Landmark Isomap for deriving cell 

landscapes which preserve the geometric features of the input data. Isometric feature 

mapping (Isomap) [18] is based on neighborhood graph construction and multidimensional 

scaling of geodesic distances, with time complexity of O(N3). To improve the computing 

efficiency, we adapt the Landmark Isomap [14] to make it suitable for massive scRNA-seq 

datasets. When using n landmark points (n « N), it has a time complexity of O(mnNlogN) + 

O(n2N), where m is the number of the nearest neighbors for constructing the neighborhood 

graph. Here, we use the peaks and valleys as landmark points.
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2.4. Estimating pseudo-time

We build the main cell trajectory by MST on the cluster centers in the isometric embedding. 

We then map the cells on the main cell trajectory to estimate the pseudo-time for each cell. 

The detailed steps are as the following:

1. Set a root node in the MST.

2. Project cells ck on its nearest edge in the MST. Assume the nearest edge is ei,j = 

<vi, vj>, vi is closer to the root than vj does. The projection vector vick′  on the 

vector ei,j can be expressed as vick′ =
vick · vivj

vick vivj

vick
vivj

vivj.

3. For each projection point ck′ , calculate its distance to the root as the pseudo-time. 

The pseudotime tck
= distance(root, vi) + vick ⋅ vivj . Here, distance(root, vi) is 

the length of the shortest path from vi to the root in MST.

This method can run in O(N) time.

3. Results

To demonstrate LISA’s capabilities to accurately build cell trajectory and estimated pseudo-

time, we evaluated it on one simulated dataset and two real datasets. The sizes of datasets 

range from several hundreds to tens of thousands. All of them contain true time labels. LISA 

identified cell trajectory and estimated pseudo-time for all datasets. We used the Spearman 

correlation coefficients between the true time labels and the estimated pseudo-time to assess 

the performance of LISA. Furthermore, we compared our results with two other state-of-the-

art tools, Monocle2 and TSCAN.

3.1. Datasets

SLS3279 is a simulated dataset which contains 475 cells and 48 genes [19]. The time label 

ranges from 1 to 5 with continuous values. It contains two terminal lineages along with time.

The EMTAB dataset contains 1,529 cells from 88 human preimplantation embryos from E3 

to E7 [15]. The processed Reads Per Kilobase of transcript per Million mapped reads 

(RPKM) values is downloaded from EMBL-EBI (https://www.ebi.ac.uk/). Here, we 

obtained 1,364 cells after filtering lowly represented cells using Seurat-1.4.1 [20]. We then 

used the 736 high variance genes from Petropoulos et al. [15]. The RPKM values were log2-

transformed.

We also used 38,731 cells from zebrafish embryos across 12 developmental stages between 

3.3–12 hours [2]. The raw dataset was processed by URD (https://github.com/farrellja/

URD). The processed data was normalized to Transcripts Per Million (TPM) values. The 

TPM values were then log2-transformed. There were 1,883 highly variable genes in the 

dataset.
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We compared the performance of LISA, Monocle2, and TSCAN on cell trajectory 

reconstruction. We also compared the performance of LISA and Monocle2 on global 

pseudo-time estimation. In the latter scenario, TSCAN was not compared as it cannot 

generate global pseudo-time for all cells. We also compared all three methods for running 

time and memory usage.

3.2. Simulation results

First, we used the simulated dataset to verify the capability of LISA. In the simulated 

dataset, it contains two cell lineages. We did PCA for SLS3279, and all PCs were retained. 

The PCA result was input for t-SNE. Fig. 2A shows the cell clusters, peaks, and valleys that 

were derived from the t-SNE embedding by kNN-graph and hierarchical clustering 

described in the Methods section. The cell densities were shown in Fig. 2B. 

Correspondingly, it contains four peaks. Then we performed Landmark Isomap and built the 

MST of the cluster centers (Fig. 2C). We obtained the cell trajectory with two terminal 

lineages by setting cluster 1 as the root cluster (Fig.2D).

For comparison, we applied Monocle2 and TSCAN to the simulated datasets. In the 

Monocle2 result, the cells were more concentrated at the ends of the branches (Fig. 2E). And 

the Spearman correlation coefficients between the estimated pseudo-time and true time 

labels were higher in LISA (0.97) than in Monocle2 (0.92). In the TSCAN result, the cells 

were more dispersed (Fig. 2F) and the global pseudo-time was not obtained. These results 

showed the potential of LISA in reconstructing cell trajectory and pseudo-time.

3.3. Application to the EMTAB dataset

We applied LISA to the EMTAB dataset which contains 1,364 cells [15]. It includes human 

preimplantation embryos cells developed into epiblast (EPI), primitive endoderm (PE) and 

trophectoderm (TE) cells from E3 to E7. The cell clusters, peaks and valleys were shown in 

Fig. 3A. The cell density plot was shown in Fig. 3B implying the complexity of cell 

clustering. We obtained 10 cell clusters. We then built the main cell trajectory in the 

isometric embedding (Fig. 3C). By setting cluster 9 as the root of cell trajectory, it clearly 

shows three terminal lineages in the cell differentiation path leading to cluster 5, 4, and 3, 

respectively. To understand the nature of the cell lineages, we used the 71 maker genes from 

EPI, PE and TE [15] to examine the genes expression patterns in different cell clusters (Fig. 

S1 in Appendix). It can be seen that cluster 5 is enriched for EPI marker genes, cluster 4 is 

enriched for PE marker genes, and cluster 3 is enriched for TE marker genes.

As comparison, applying Monocle2 to the EMTAB dataset resulted in only two terminal 

lineages (Fig. 3E). Moreover, the Spearman correlation coefficients between the estimated 

pseudo-time and true time points were much higher in LISA (0.90) than in Monocle2 (0.77). 

The cell trajectory from TSCAN were shown in Fig. 3F, which also contains only two 

lineages.

3.4. Application to the Zebrafish dataset

We further applied LISA to a large zebrafish embryo differentiation dataset which contains 

38,731 cells [2]. There are mainly three cell lineages including axial mesoderm, other 
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mesendoderm, and ectoderm. In addition, it contains primordial germ and enveloping layer 

cells.

The cell clusters, peaks, and valleys of the zebrafish dataset is shown in Fig. 4A. The cell 

density plot is shown in Fig. 4B. We identified 27 cell clusters, peaks and valleys. We used 

the cell type marker genes [2] to investigate whether the main cell trajectories (Fig. 4C) are 

corresponding to known paths. As shown in Fig. S2 in Appendix, the endoderm marker 

genes were enriched in cluster 11 and 12. The primordial germ cell markers were enriched 

in cluster 1, 2 and 3. The enveloping layer cells (EVL) marker genes were enriched in 

cluster 4. The intermediate/lateral mesoderm marker genes were enriched in cluster 18, 24 

and 25. The axial mesoderm marker genes were enriched in cluster 12 and 13. The paraxial 

mesoderm marker genes were enriched in cluster 19, 24 and 26. The pre-placodal ectoderm 

marker genes were enriched in cluster 21, 22, 26 and 27. The non-neural ectoderm marker 

genes were enriched in cluster 22, 23, 25, and 27. The hindbrain, fore/mid brain, neural crest 

and spinal cord marker genes were enriched in cluster 26 and 27. Based on the gene 

expression patterns, the cell lineage along cluster 11, 18, 12, and 13 was mainly 

corresponding to endoderm and axial mesoderm. The lineage along cluster 18, 20, 23, and 

24 was mainly corresponding to intermediate/lateral mesoderm and paraxial mesoderm. The 

lineage along cluster 20, 21, 22, 25, 26, and 27 was corresponding to ectoderm which 

includes pre-placodal ectoderm, non-neural ectoderm, hindbrain, fore/mid brain, neural 

crest, and spinal cord. The lineage along cluster 1 was mainly corresponding to primordial 

germ cells. The lineage along cluster 4 was corresponding to EVL. Overall, the main cell 

trajectories reconstructed by LISA were consistent with those in Farrell et al. [2]. We set 

cluster 1 as the root of cell trajectory and estimated the pseudo-time of all cells. The 

Spearman correlation coefficients between the true time labels and the pseudo time 

reconstructed by LISA is 0.91.

As comparison, Monocle2 only generated one cell lineage (Fig. 4E). Furthermore, the 

pseudo-time reconstructed by Monocle2 is reverse to the true time labels resulting in a 

negative Spearman correlation coefficient. The TSCAN derived cell lineages were 

compressed and hard to be distinguished (Fig. 4F). Also, the cell lineages were not 

corresponding to Farrell et al. [2].

3.5. Performance comparisons

To estimate the pseudo-time of all cells, we set the root cluster based on the initial time 

point. In our comparisons, the clusters which contain the most numbers of cells at the initial 

time point were selected as the roots for both LISA and Monocle2. However, in the 

Zebrafish dataset, Monocle2 only showed one lineage. In this case, the root cell was 

determined by Monocle2 automatically. The pseudo-time reconstructed by LISA was more 

consistent with the true time points than Monocle2 did (Fig. 5).

Overall, LISA showed better performance on reconstructing cell trajectory than Monocle2 

and TSCAN did. Moreover, LISA used lower amount of computation time and required 

dramatically less memory than Monocle2 did (Fig. 6A–D). LISA used lower amount of 

computation time and memory than TSCAN did on the EMTAB dataset (Fig. 6A and C), 

and more computation time and similar memory usage compared to TSCAN on the 
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Zebrafish dataset (Fig. 6B and D). In addition, in our tests, as cell number increased to 

exceed 50,000, Monocle2 was not able to estimate the pseudo-time, and TSCAN was not 

able to run its clustering procedure.

4. Discussion

LISA is a new tool to reconstruct cell trajectory and pseudo-time of cells from scRNA-seq 

data. It uses kNN-graph and hierarchal clustering for identifying cell clusters, peaks, and 

valleys in the t- SNE embedding in an unsupervised way. It then uses the fast Landmark 

Isomap to derive the global geometrical structure of the data to estimate the main cell 

trajectory. Finally, it projects individual cells on the main cell trajectory and computes the 

global pseudo-time.

The assessments of cell trajectory and global pseduo-time reconstruction of LISA 

demonstrate its improved performance over existing methods such as Monocle2 and 

TSCAN. Meanwhile, LISA runs faster and requires less memory usage than Monocle2 does. 

In LISA, the root cluster can be set by the users for customized cell trajectory and pseudo-

time analysis. Existing biological knowledge of specific gene sets, e.g., known marker genes 

of cell types or states, can be used to reveal the biological meanings of the reconstructed cell 

lineages. In summary, LISA is an accurate, efficient, and flexible tool that can be broadly 

applied to massive scRNA-seq datasets.
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Figure S1. 
The gene expression heatmap of marker genes from three cell types (EPI, PE, TE). The 

branch names correspond to the cell clustering results.
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Figure S2. 
The expression patterns of the marker genes of the 12 cell types in 27 clusters. (A) 

Enveloping layer cell and Periderm. (B) Primodial germ. (C) Axial mesoderm. (D) 

Intermediate or lateral mesoderm. (E) Paraxial Mesoderm. (F) Endoderm. (G) Neuron. (H) 

Spinal cord. (I) Brain. (J) Hindbrain. (K) Non-neural ectoderm. (L) Pre-placodal ectoderm.
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Figure 1. 
Workflow of LISA. (1) Do PCA for the gene expression matrix (K genes * N cells) and 

select top ranked PCs. Then the N cells with the selected PCs are mapped into the t-SNE 

embedding. (2) Estimate cell density in the t-SNE embedding and build the k-NN graph to 

find peaks and valleys. Then perform hierarchical clustering until each cluster contains one 

peak point (star shape). Valley points are shown as inverted triangles. (3) Using peaks and 

valleys as landmark points and map the N cells with the selected PCs into the isometric 

embedding based on geodesic distances. (4) Build the main cell trajectory using MST on the 

cluster centers in the isometric embedding. (5) Estimate global pseudo-time by projecting 

cells onto the main cell trajectory.
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Figure 2. 
SLS3279 results. (A) The cell clusters, peaks, and valleys in the t-SNE embedding. (B) The 

cell density landscape. (C) The cell trajectory in the isometric embedding. (D) The cell 

trajectory reconstructed by LISA. (E) The cell trajectory reconstructed by Monocle2. (F) 

The cell trajectory reconstructed by TSCAN. In (D)-(F), the true time labels are shown.
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Figure 3. 
EMTAB results. (A) The cell clusters, peaks, and valleys in the t-SNE embedding. (B) The 

cell density landscape. (C) The cell trajectory in the isometric embedding. (D)The cell 

trajectory reconstructed by LISA. (E) The cell trajectory reconstructed by Monocle2. (F) 

The cell trajectory reconstructed by TSCAN. In (D)-(F), the true time labels are shown.
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Figure 4. 
Zebrafish results. (A) The cell clusters, peaks, and valleys in the t-SNE embedding. (B) The 

cell density landscape. (C) The main cell trajectory in the isometric embedding. (D)The cell 

trajectory reconstructed by LISA. (E) The cell trajectory reconstructed by Monocle2. (F) 

The cell trajectory reconstructed by TSCAN. In (D)-(F), the true time labels are shown.
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Figure 5. 
Comparing the Spearman correlation coefficients between the pseudo-time and the true time 

labels for different datasets using Monocle 2 and LISA. (A) SLS3279. (B) EMTAB. (C) 

Zebrafish.
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Figure 6. 
Computation time and memory usage of EMTAB and Zebrafish using LISA, Monocle2 and 

TSCAN. (A) The computation time on the EMTAB dataset. (B) The computation time on 

the Zebrafish dataset. (C) The memory usage of the EMTAB dataset. (D) The memory usage 

of the Zebrafish dataset.
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