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Abstract
Background Identifying patients at risk of not achieving
meaningful gains in long-term postsurgical patient-
reported outcome measures (PROMs) is important for
improving patient monitoring and facilitating presurgical
decision support.Machine learningmay help automatically
select and weigh many predictors to create models that
maximize predictive power. However, these techniques are
underused among studies of total joint arthroplasty (TJA)
patients, particularly those exploring changes in post-
surgical PROMs.

Question/purposes (1) To evaluate whether machine
learning algorithms, applied to hospital registry data, could
predict patients who would not achieve a minimally clini-
cally important difference (MCID) in four PROMs 2 years
after TJA; (2) to explore how predictive ability changes as
more information is included in modeling; and (3) to
identify which variables drive the predictive power of these
models.
Methods Data from a single, high-volume institution’s
TJA registry were used for this study. We identified 7239
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hip and 6480 knee TJAs between 2007 and 2012, which,
for at least one PROM, patients had completed both
baseline and 2-year followup surveys (among 19,187
TJAs in our registry and 43,313 total TJAs). In all, 12,203
registry TJAs had valid SF-36 physical component scores
(PCS) and mental component scores (MCS) at baseline
and 2 years; 7085 and 6205 had valid Hip and Knee
Disability and Osteoarthritis Outcome Scores for joint
replacement (HOOS JR and KOOS JR scores), re-
spectively. Supervised machine learning refers to a class
of algorithms that links a mapping of inputs to an output
based on many input-output examples. We trained three
of the most popular such algorithms (logistic least abso-
lute shrinkage and selection operator (LASSO), random
forest, and linear support vector machine) to predict 2-
year postsurgical MCIDs. We incrementally considered
predictors available at four time points: (1) before the
decision to have surgery, (2) before surgery, (3) before
discharge, and (4) immediately after discharge. We
evaluated the performance of each model using area
under the receiver operating characteristic (AUROC)
statistics on a validation sample composed of a ran-
dom 20% subsample of TJAs excluded from model-
ing. We also considered abbreviated models that only
used baseline PROMs and procedure as predictors (to
isolate their predictive power). We further directly
evaluated which variables were ranked by each model
as most predictive of 2-year MCIDs.
Results The three machine learning algorithms per-
formed in the poor-to-good range for predicting 2-year
MCIDs, with AUROCs ranging from 0.60 to 0.89. They
performed virtually identically for a given PROM and
time point. AUROCs for the logistic LASSO models for
predicting SF-36 PCS 2-year MCIDs at the four time
points were: 0.69, 0.78, 0.78, and 0.78, respectively; for
SF-36 MCS 2-year MCIDs, AUROCs were: 0.63, 0.89,
0.89, and 0.88; for HOOS JR 2-year MCIDs: 0.67, 0.78,
0.77, and 0.77; for KOOS JR 2-year MCIDs: 0.61, 0.75,
0.75, and 0.75. Before-surgery models performed in the
fair-to-good range and consistently ranked the associ-
ated baseline PROM as among the most important pre-
dictors. Abbreviated LASSO models performed worse
than the full before-surgery models, though they retained
much of the predictive power of the full before-surgery
models.
Conclusions Machine learning has the potential to im-
prove clinical decision-making and patient care by
helping to prioritize resources for postsurgical moni-
toring and informing presurgical discussions of likely
outcomes of TJA. Applied to presurgical registry data,
such models can predict, with fair-to-good ability, 2-
year postsurgical MCIDs. Although we report all
parameters of our best-performing models, they cannot
simply be applied off-the-shelf without proper testing.

Our analyses indicate that machine learning holds much
promise for predicting orthopaedic outcomes.
Level of Evidence Level III, diagnostic study.

Introduction

Patient-reported outcome measures (PROMs) are in-
creasingly collected as a means of measuring healthcare
quality and value before and after elective total joint
arthroplasty (TJA) [10, 34]. While measuring PROMs is
an important step toward more patient-centered care, the
mere determination of whether a patient’s score goes up
or down after an intervention is insufficient to determine
whether that intervention was effective. What really
matters is whether a patient’s score changed by a suffi-
ciently large margin, that is, whether an improved score
constitutes a minimally clinically important difference
(MCID, sometimes called a “minimally clinically im-
portant change” or “minimally clinically important im-
provement”) [27, 30]. The MCID is defined as the
minimum change in PROM scores that patients perceive
as beneficial or clinically meaningful [3, 4, 15, 25, 37].
Identifying patients at risk of not achieving a PROM
MCID, particularly before surgery, is important for al-
locating resources toward better monitoring patients and
may aid in presurgical decision support. Many papers
have explored predicting PROMs, for example, predict-
ing pain and function after spine surgery [26] and total
knee replacement [41], predicting quality of life after
total hip replacement [35], predicting satisfaction after
TJA [7, 20, 42, 45], and predicting whether a patient
undergoing foot and ankle surgery will achieve a
MCID [23].

At the same time, the use of machine learning, a subfield
of artificial intelligence at the intersection of computer
science and statistics that uses data-driven approaches to
“teach” computer algorithms to perform specific tasks (for
example, prediction), has seen more common use. With
sustained improvements in processing power, the rise of
cloud-based computing, and ever-larger datasets, machine
learning’s application to healthcare has involved tasks as
diverse as classifying early detection of heart failure onset
[11] (using electronic health records) and classifying skin
cancer [16] (using images). Outcomes more directly rele-
vant for orthopaedics include predicting mortality [12, 22,
38, 40]; readmissions [17, 21, 38, 44]; complications [12,
22, 47], such as sepsis [18, 24]; and prolonged length of
stay [38].

Although machine learning algorithms are often
rebranded classical statistical techniques, there are
deeper methodological distinctions that only a subset of
the orthopaedics prediction evidence implements. For
example, machine learning approaches typically do not
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define a priori exactly which variables will be predictive
and how; instead, the algorithm is allowed to perform
variable selection and weighting among all available
variables. Moreover, many papers report in-sample
statistics, evaluating model performance on the same
patients used to generate the model. By definition, a
model generated using specific data explains those same
data well; the true test of predictive ability is whether
the model performs well on a validation sample of data
from other patients. Although some of the papers ref-
erenced above predicted orthopaedic outcomes with
proper machine learning techniques, and others ex-
plored factors associated with postsurgical PROMs
with more traditional techniques, no studies have
attempted to predict postsurgical PROMs with proper
machine learning techniques among TJA patients, par-
ticularly in terms of whether a patient is likely to ach-
ieve an MCID.

The purposes of this study, therefore, were (1) to eval-
uate whether machine learning algorithms, applied to
hospital registry data, could predict patients who would not
achieve a MCID in four PROMs 2 years after TJA; (2) to
explore how predictive ability changes as more in-
formation is included in modeling; and (3) to identify
which variables drive the predictive power of these models.

Patients and Methods

Weconducted a retrospective study using data from a single,
high-volume institution’s hip and knee replacement registry.
We identified 7239 adult hip and 6480 adult knee patients
who underwent elective total joint arthroplasty (TJA) be-
tweenMay 2007 and April 2012, and, for at least one of four
PROMs, completed both baseline and 2-year followup
PROMs. Most patients in our machine learning sample
underwent primary unilateral replacements, although both
revisions and bilateral arthroplasties were also included
(Table 1). Medicare was the primary payor for more than
half of patients. Women were also more than half of patients
(3764 of 7239 [52%] of hips and 3953 of 6480 [61%] of
knees). Hip patients were aged 63.06 11.6 years (mean 6
SD) and knee patients were aged 66.9 6 9.7 years. Sum-
maries of ASA scores, years of education, BMI, total op-
eration time inminutes, length of stay in days, and number of
final procedure and diagnosis codeswere recorded (Table 1).

During this period, there were 43,313 total TJAs eli-
gible for registry inclusion, among which 19,187
(44.3%) joined the registry by completing a baseline
survey. Among those, 13,719 (71.5%) are included in
our sample; these patients, compared to the 29,594
who were not included, are less likely to be female

Table 1. THA and TKA registry study sample characteristics

Variable
THA (n = 7239)
Number (%)

TKA (n = 6480)
Number (%)

Binary

Unilateral primary 6370 (88%) 5314 (82%)

Unilateral revision 507 (7% ) 389 (6%)

Bilateral 362 (5%) 778 (12%)

Medicare 3185 (44%) 3758 (58%)

Female 3764 (52%) 3953 (61%)

Ordinal

ASA score = 1 636 (9%) 199 (3%)

= 2 5380 (74%) 4917 (76%)

= 3 1212 (17%) 1359 (21%)

= 4 8 (0.1%) 2 (0.03%)

= Missing 3 (0.04%) 3 (0.05%)

Continuous Mean SD Minimum Maximum Mean SD Minimum Maximum

Age (years) 63 12 18 102 67 10 22 96

Years of education 16 3 10 19 16 3 10 19

BMI (kg/m2) 28 5 15 70 30 6 16 63

Total time in OR (minutes) 134 43 41 508 142 38 66 391

Length of stay (days) 5 2 2 58 5 2 1 54

Number of procedure codes 2 1 1 12 2 1 1 13

Number of diagnosis codes 6 3 1 28 7 4 1 28

ASA = American Society of Anesthesiologists; OR = operating room.
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(p = 0.065), likely to have a lower body mass index
(BMI, p = 0.008), likely to be American Society of
Anesthesiologists (ASA) class 2-4 (as opposed to ASA
class 1, p = 0.006, 0.006, 0.043, respectively), likely to
have a shorter length of stay (p < 0.001), and likely to
have fewer diagnoses (p < 0.001). However, overall,
these variables explained less than 1.2% of the variation
in cohort inclusion (pseudo R2 from multivariable lo-
gistic regression).

The four PROMs we focused on were the SF-36 phys-
ical component score (PCS), the SF-36 mental component
score (MCS), the Hip Disability and Osteoarthritis Out-
come Score for joint replacement (HOOS JR), and the
Knee Disability and Osteoarthritis Outcome Score for joint
replacement (KOOS JR). The SF-36 was collected on all
patients; we included the PCS andMCS given their plenary
focus on a patients’ overall health. The HOOS JR and
KOOS JR were collected on only hip and knee patients,
respectively; we included these short-form PROMs be-
cause of their focus on the particular joint and procedure of
interest, as well as the fact that the Centers for Medicare &
Medicaid Services has adopted them for its bundle pay-
ment programs.

Our primary outcome of interest was whether a patient
achieved an MCID between preoperative baseline to 2
years after surgery for each PROM. Where possible, we
favored published, anchor-based MCIDs, given their su-
perior construct and face validity compared with
distribution-basedMCIDs (for example, a value of 17.7 for
the HOOS JR and a value of 13.6 for the KOOS JR) [28].
Given a lack of published anchor-based MCIDs for the SF-
36 PCS and MCS for TJA patients, we relied on the
distribution-based heuristic of one-half SD and, therefore,
used a value of 5.0 for both (given the component scores

are calibrated to have a SD of 10.0). This choice is also
corroborated by analyses of the highly similar SF-12 [5,
6, 43].

In all, 6465 patients who underwent hip and 5738
patients who underwent knee replacement had valid SF-
36 PCS and MCS scores at baseline and 2 years. Further,
7085 patients who underwent THA had valid HOOS JR
scores, and 6205 patients who underwent TKA had valid
KOOS JR scores. We determined the percent of TJAs who
reached the 2-yearMCID for each PROM,who did not reach
the MCID, or had such a high baseline score that they could
not mathematically reach the MCID (Table 2). More than
75% of patients achieved an MCID for the PCS, HOOS JR,
andKOOS JR; this number is only 39% for theMCS.Wedid
not include the subset of patients with a sufficiently high
preoperative baseline score such that it is mathematically
impossible for them to achieve an MCID (for example, a
patient with a 90 of 100 baseline HOOS JR could not pos-
sibly achieve a 17.7 point improvement; we can perfectly
predict they will not achieve an MCID). There were 18
(0.3%) such patients for theKOOS JRand 114 (1.6%) for the
HOOSJR (and none for the two SF-36 PROMs) (Table 2).

We next defined the predictors or features (using ma-
chine learning terminology) and categorized all registry
features into four buckets based on when each was avail-
able in our sample (Table 3). These were: (1) before the
decision to have surgery, such as demographics and self-
reported medical, surgical, and medication history (see
Appendix, Supplemental Digital Content 1, http://links.
lww.com/CORR/A141); (2) before surgery, such as
baseline PROM scores, primary operating surgeon, and
other procedures conducted before arthroplasty during the
index inpatient stay (see Appendix, Supplemental Digital
Content 2, http://links.lww.com/CORR/A142); (3) before

Table 2. Percentage of patients who reached, did not reach, or could not reach the MCID for each PROM

PROM MCID

THA TKA

Number

Percent
reached
MCID

Percent
did

not reach
MCID

Percent
could

not reach
MCID* Number

Percent
reached
MCID

Percent
did

not reach
MCID

Percent
could

not reach
MCID*

SF-36 PCS 5.0 6465 85% 15% 0% 5738 75% 25% 0%

SF-36MCS 5.0 6465 39% 61% 0% 5738 35% 65% 0%

HOOS JR† 17.7 7085 88% 11% 2%

KOOS JR† 13.6 6205 82% 18% 0.3%

*Patients who could not reach the MCID were those who had such a high baseline score that it was mathematically impossible
possible for them to improve enough to achieve an MCID; for example, someone with a baseline KOOS JR score of 99 of 100 could
only improve by one point, which is much lower than the MCID.
†percentages for HOOS JR and KOOS JR do not add to 100% because of rounding; MCID =minimally clinically important difference;
PROM = patient-reported outcome measure; PCS = physical component score; MCS = mental component score; HOOS JR = Hip
Disability and Osteoarthritis Outcome Score for joint replacement; KOOS JR = Knee Disability and Osteoarthritis Outcome Score for
joint replacement.
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hospital discharge, such as total operation time, hour
admitted, anesthesia type, and other procedures (see
Appendix, Supplemental Digital Content 3, http://links.
lww.com/CORR/A143); and (4) after hospital discharge,
such as length of stay, claims-based diagnosis codes, and
discharge disposition (see Appendix, Supplemental Digital
Content 3, http://links.lww.com/CORR/A143). Categorical
variableswith “n” categorieswere transformed into n-1 binary
variables. It is important to note that patients were only
enrolled in the registry after deciding to have surgery.

Therefore, baseline PROMs were measured before surgery
but not before the decision to undergo surgery.

Statistical Analysis

For each of our four PROMs, we began by randomly
splitting TJAs into two mutually exclusive sets: a training
set (80% of TJAs), and a validation set (remaining 20%).
Importantly, all modeling was conducted on the 80%

Table 3. Numerical and categorical features used in each machine learning model

Model Numerical features Categorical features

Before decision Age; BMI; years of education; years of
pain medication use

Knee versus hip; race; Hispanic or not;
sex; laterality (left, right, bilateral);
primary versus revision; zip code;
primary and secondary payor;

cohabitation; prior shoulder, hip, or
knee replacements (same-side or

contralateral); prior spinal surgery; ever
taken bisphosphonates; ever had

cortisone injection on operated joint;
self-reported disease history

Before surgery Baseline PROM summary scores for: SF-
36 (PCS, MCS, and eight domains),
HOOS/KOOS (five domains and JR),
LEAS, WOMAC (three domains), VAS
(pain, fatigue, general health), EQ-5D,
expectations; number of procedures
before index surgery date during
inpatient stay; all earlier numerical

features

Day of week of baseline survey; month
of year of baseline survey; doctor;
surgeon; day of week of surgery;
month of year of surgery; whether
attended pre-surgery class; CCS

procedure codes before surgery date
during inpatient stay; ASA score; all

earlier categorical features

Before discharge Total time in OR; number of nonindex
procedures on day of surgery; all earlier

numerical features

Hour admitted; anesthesia type; CCS
nonindex procedure codes on surgery
date during inpatient stay; all earlier

categorical features

After discharge Length of stay; total number of
procedure codes during inpatient stay;

number of procedure codes after
surgery date during inpatient stay;
total number of diagnosis codes
during inpatient stay; Charlson

comorbidity index; all earlier numerical
features

Discharge disposition; CCS nonindex
procedure codes after surgery date
during inpatient stay; CCS diagnosis
codes during inpatient stay; Elixhauser
and Charlson comorbidity indicators;

all earlier categorical features

Abbreviated 1 PROM summary scores for outcome of
interest (SF-36 PCS, SF-36 MCS, HOOS

JR, or KOOS JR)

Knee versus hip

Abbreviated 2 PROM summary scores for all baseline
PROMs (SF-36 PCS, SF-36 MCS, HOOS

JR, and KOOS JR)

Knee versus hip

ASA = American Society of Anesthesiologists; OR = operating room; PROM = patient-reported outcome measure; PCS = physical
component score; MCS = mental component score; HOOS = Hip Disability and Osteoarthritis Outcome score; HOOS JR = Hip
Disability and Osteoarthritis Outcome Score for joint replacement; KOOS = Knee Disability and Osteoarthritis Outcome Score; KOOS
JR = Knee Disability and Osteoarthritis Outcome Score for joint replacement; LEAS = Lower Extremity Activity Scale; EQ-5D = 5-
domain EuroQol quality of life survey; CCS = clinical classifications software.
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training set, and all testing on the 20% validation sample. A
model generated using specific data is by definition fit to
explain those same data well; the true test of predictive
ability is whether the model performs well on data from
other patients.

We considered models that incrementally added features
available at each of the four time points to predict whether a
patient would not achieve a 2-year MCID. That is, the
before-decision models included only features available
before decision; the before-surgery models included fea-
tures available before decision and before surgery.

Missing features were handled differently for categori-
cal and numerical variables. For categorical variables, we
created a separate “missing” category, thereby allowing
missing information to be informative. For numerical
variables, we imputed the missing values to the mean
among nonmissing observations in the training set. Only
three categorical features had missing values for more than
10% of patients; only 12 categorical features had missing
values for more than 10% of patients (see Appendices,
Supplemental Digital Content 1, http://links.lww.com/
CORR/A141, 2, http://links.lww.com/CORR/A142, and
3, http://links.lww.com/CORR/A143).

Given whether a patient achieves a MCID is a direct
function of the baseline PROM, we further considered ab-
breviated models, which used as predictors only baseline
PROMs andwhether the patient was having their hip or knee
replaced. The first set of abbreviated models used only the
baseline PROM for the MCID being predicted, for example,
for predicting the PCSMCIDs,we use only the PCS baseline
scores. The second set of abbreviated models used all
baseline PROMs. For example, for predicting PCS MCIDs,
we used the PCS, MCS, KOOS JR, and HOOS JR baseline
scores. By comparing these models to others, we could
isolate how much of our prediction performance was driven
by the baseline PROMs and, therefore, the mechanical re-
lationship between baseline score and MCID achievement.

For each of the four PROMs and four time points, we
applied three of the most popular supervised machine
learning algorithms: (1) logistic least absolute shrinkage
and selection operator (LASSO), (2) random forest, and (3)
linear support vector machine. Supervised machine learn-
ing refers to a class of algorithms that learns a mapping of
inputs to some output based on many input-output exam-
ples; this mapping can then be applied to new inputs to
predict their likely outputs (or probabilities of outputs).
Classical logistic regression is an example of a supervised
machine learning algorithm; however, it is typically used to
identify associations (such as, calculate the sign and
magnitude of relevant coefficients). Here, our goal is dif-
ferent: namely, to generate models and then perform pre-
diction. We specifically chose three algorithms that
automatically select and weigh a subset of features among a
larger pool of available variables. These algorithms often

have tuning parameters associated with them (also called
hyperparameters), which control technical details of how
each algorithm operates.

Logistic LASSO is very similar to classical logistic re-
gression, but with an additional tuning parameter that
forces some variables to be assigned zero weight (coef-
ficients equal to zero); the other features are included in the
LASSO and assigned non-zero coefficients. This regula-
rization tends to make models perform better on new
samples (or validation samples) because, with fewer fea-
tures, models are less fit to the specific training data, and
therefore more generalizable. This is exactly why we chose
logistic LASSO over classical logistic regression: the latter
does not perform regularization, and instead includes all
variables, and is therefore likely to perform much worse on
new or validation data.

Random forests are a nonparametric approach (that is,
no coefficients) that are likely less familiar to readers. They
are based on the average predictions of many individual
decision trees. For each decision tree, first a random subset
of features are chosen (the exact number is based on a
tuning parameter). Next, among the selected features, the
feature that splits the data into cases and controls with the
most discriminatory power is first included (at the base of
the tree), and subsequent branches are filled out with fea-
tures that split the data second best, third best, and so on,
until some predefined stopping criteria are reached (con-
trolled by more tuning parameters). After generating many
thousands of these random decision trees (the exact number
is yet another tuning parameter), each of which produces a
prediction (and can be generated by following the branches
of the tree to the relevant leaf), the predictions are finally
averaged across trees to reach a forest-based prediction.
There are two types of random forest – classification and
regression – which vary in terms of how predictions are
calculated. Although typically classification is used with
binary outcomes, and regression with continuous out-
comes, regression random forest can also be used with
binary outcomes; we used regression random forest here
given evidence of superior predictive ability in binary or-
thopaedic outcomes [8, 29].

A support vector machine (SVM) assigns individuals to
cases and controls based on their relative distances from
each other according to their features. The algorithm is easy
to visualize with only two features (two dimensions) and a
linear kernel – draw a line that separates the cases and
controls such that cases and controls, on average, are sep-
arated the most. With more features, this line (support
vector) becomes a higher-dimensional separating hyper-
plane that maximizes the separation between that hyper-
plane and the data points. With other kernels, this support
vector can be a nonlinear or curved. As with logistic
LASSO, regularization is often included via a tuning pa-
rameter to control the number of features considered by the
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algorithm. While we included regularization, we only
used a linear kernel; other kernels (for example, poly-
nomial, sigmoid, radial basis function) were experimented
with, but yielded no better predictive power and much
longer computation times.

We empirically optimized the various tuning parameters
of these algorithms by performing fivefold cross-validation
within the 80% training sample. That is, to figure out which
values of the hyperparameters tuned the models to provide
the best predictions, we trained a model on a random 80%
of the training set and tested it on the remaining 20% of the
training set. We repeated this for all five possible permu-
tations, averaged the results, and repeated for various po-
tential values of the tuning parameters, noting and retaining
which values performed best. For logistic LASSO and
linear SVM, the only tuning parameter was the regulari-
zation parameter. For random forest, we tuned three: (1) the
number of features used for each decision tree, (2) the size
of the terminal nodes (that is, the minimum number of
samples required to be at a leaf), and (3) the number of trees
generated in each forest.

We evaluated the performance of our models by using
area under the receiver operating characteristic (AUROC)
statistics on the 20% randomly selected validation set of
patients not used in model generation. AUROCs theoreti-
cally range from 0.50 (no better than a coin flip) to 1.00
(perfect prediction) and can be interpreted as the proba-
bility that two random patients, one who achieved the
MCID and one who did not, would be correctly ranked by
the model in terms of their predicted probabilities. We
calculated 95% confidence intervals (CIs) for the AUROCs
via bootstrapping (that is, we calculated the AUROC on a
random subset of validation sample patients, repeated that
1000 times with different random subsets, sorted the 1000
estimates from smallest to biggest, and cited the 25th and
975th as the 95% CI).

For each PROM, for our best-performing full logistic
LASSO models (and in the case of ties, most parsimonious,
that is, the fewest features), as well as for our best-
performing abbreviated logistic LASSO models, we report
all model parameters (including coefficients, intercepts, and
how we imputed and standardized each continuous feature).
Although these models cannot be used off-the-shelf without
proper testing, our hope, beyond providing methodological
guidance, is to facilitate such validationwork.We also report
calibration tables and plots for these models, which indicate
whether the probabilities predicted for our validation sam-
ples actually reflect observed outcomes (for example, does a
predicted probability of 50% really translate to equal like-
lihoods of achieving an MCID or not).

We also compared machine learning model perform-
ances with dummymodels. These dummymodels used very
simple heuristics for prediction, for example, they always
guessed “achieve MCID” or guessed randomly. The idea is

that it is possible that a very simple heuristic might out-
perform our machine learning models, and we wanted to
make sure such a simple, powerful heuristic does not exist.
We only report the best-performing dummy models.

Finally, we also detailed the top five features ranked by
each model (for each PROM and time point) as most pre-
dictive. Although these top predictors cannot be interpreted
causally nor as unbiased associations, they are useful to
report to get a direct sense of how the models are working
and what is driving their predictions.We focused on logistic
LASSO before-surgery models for three reasons: (1) our
three machine learning models performed nearly identically
for a given PROM and time point, (2) logistic LASSO is
similar to standard logistic regression and is therefore likely
to be most familiar and easily understood (and it is
straightforward to report its coefficient estimates), and (3)
our before-surgery models performed just as well as models
that incorporated additional information available during
hospitalization and after discharge. We evaluated feature
importance based on themagnitude of features’ coefficients.

Results

Could Machine Learning Models Predict Patients Who
Would Not Achieve a MCID?

The three machine learning algorithms performed in the
poor-to-good range, with AUROCs ranging from 0.60 to
0.89. They performed virtually identically to each other for a
given time point and PROM, such as the SF-36 PCS and
MCS (see Appendix, Supplemental Digital Content 4, http://
links.lww.com/CORR/A144) and HOOS JR and KOOS JR
(see Appendix, Supplemental Digital Content 5, http://links.
lww.com/CORR/A145). All machine learning models
performed better than dummy models, which never
achieved AUROCs higher than 0.52.

How Does Predictive Ability Change as More
Information is Included?

Including more information available from “before de-
cision” to “before surgery” improved predictive power
dramatically (fair-to-good range), but adding further in-
formation available before discharge and after discharge
yielded no further improvements. The abbreviated models
performed worse than the full before-surgery models, but
not by much (particularly for SF-36 MCS). AUROCs for
predicting PCS scores at the four time points (before de-
cision, before surgery, before discharge, and after dis-
charge) for the logistic LASSO models were: 0.69, 0.78,
0.78, and 0.78, respectively (Fig. 1A). For MCS scores
these were: 0.63, 0.89, 0.89, and 0.88 (Fig. 1B); for
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HOOS JR they were: 0.67, 0.78, 0.77, and 0.77 (Fig. 1C);
and for KOOS JR, they were: 0.61, 0.75, 0.75, and 0.75
(Fig. 1D).

Given the fact that the before-surgery models performed
best (and had the fewest features among ties), we report the
full parameters for each of these four PROMs MCIDs
prediction models: SF-36 PCS (see Appendix, Supple-
mental Digital Content 6, http://links.lww.com/CORR/
A146), SF-36 MCS (see Appendix, Supplemental Digital
Content 7, http://links.lww.com/CORR/A147), HOOS JR
(see Appendix, Supplemental Digital Content 8, http://
links.lww.com/CORR/A148), and KOOS JR (see
Appendix, Supplemental Digital Content 9, http://links.
lww.com/CORR/A149). The associated calibration tables
(see Appendix, Supplemental Digital Content 10, http://
links.lww.com/CORR/A150) and figures (see Figure,
Supplemental Digital Content 11, http://links.lww.com/
CORR/A151) indicate that the probabilities reported by the

before-surgery models have good, albeit imperfect face
validity. The SF-36 MCS MCID model is nearly perfectly
calibrated. The other models are not as well calibrated,
although reported probabilities are indeed monotonically
related to their actual incidences in the validation sample.
In practice, other facilities wanting to use our models
would first want to test them on their own validation sample
(for acceptable AUROC), and then use their validation
sample to create their own calibration tables.

The first abbreviated model achieved AUROCs of 0.65,
0.88, 0.68, and 0.69 (for the PCS, MCS, HOOS JR, and
KOOS JR, respectively) (Fig. 1A-D). The second abbre-
viated model achieved AUROCs of 0.71, 0.88, 0.72, and
0.71 (Fig. 1A-D). Given the fact that the second abbrevi-
ated model performed better than the first, we report their
full model parameters for each of the four PROMs MCIDs
(see Appendix, Supplemental Digital Content 12, http://
links.lww.com/CORR/A152). The associated calibration

Fig 1 A-D. Area under the receiver operating characteristic (AUROC) statistics with 95% confidence intervals for full logistic least
absolute shrinkage and selection operator (LASSO)models (at four time points: before decision, before surgery, before discharge, and
after discharge, in black), abbreviated models 1 (before surgery, in gold), abbreviated model 2 (before surgery, in blue), and best-
performing dummy models (four time points, in red), predicting: (A) SF-36 physical component score (PCS) minimally clinically
important differences (MCIDs), (B) SF-36mental component score (MCS)MCIDs, (C) HipDisability andOsteoarthritis OutcomeScore for
joint replacement (HOOS JR) MCIDs, and (D) Knee Disability and Osteoarthritis Outcome Score for joint replacement (KOOS JR) MCIDs.
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tables (see Appendix, Supplemental Digital Content 13,
http://links.lww.com/CORR/A153) and figures (see Figure,
Supplemental Digital Content 14, http://links.lww.com/
CORR/A154) indicate the probabilities reported by the
models are also monotonically related to their actual
incidences in the validation sample.

Which Features Drive Predictive Power?

For each before-surgery logistic LASSO model, the as-
sociated baseline PROM score was always the first or
second most predictive feature (for example, the baseline
SF-36 PCS score is most predictive of whether a patient
will achieve an SF-36 PCSMCID) (Table 4). For the PCS,
the next top four features were: whether the patient was
undergoing unilateral revision, self-reported back pain,
the type of surgery (knee versus hip), and having one
particular surgeon. For the MCS, the next top four fea-
tures were: self-reported depression, the baseline SF-36
role emotional score, the baseline SF-36 social function-
ing score, and whether the secondary payor was Medic-
aid. For the HOOS JR, the top feature was whether the
patient was undergoing unilateral revision, followed (very
closely) by the baseline HOOS JR score, whether the
secondary payor was commercial, whether the secondary
payor was Blue Cross, and the baseline WOMAC stiff-
ness score. Finally, for KOOS JR, the next top four fea-
tures (after baseline KOOS JR score) were: whether the
patient was undergoing unilateral revision, whether the
primary payor was commercial, whether the patient
reported their race as white, and whether the patient un-
derwent bilateral surgery.

Discussion

Surgeons and healthcare systems are increasingly using
PROMs to measure quality and value in TJA [10, 34].
However, it is not enough to know whether a patient’s
score on a PROM improved; what really matters is whether
the patient’s long-term perception of improvement was
enough to consider the intervention worthwhile [27, 30].
The concept of the MCID captures this, by defining the
smallest change in a PROM that a patient considers bene-
ficial [3, 4, 15, 25, 37]. It is well documented that some
10% to 30% of TJA patients do not achieve a “good”
outcome (such as, satisfaction [7], lack pain or function
[33, 48], MCID [28]). The rapidly growing field of ma-
chine learning has also seen new applications in predicting
medically relevant outcomes [9, 11, 12, 13, 16–19, 21, 24,
36, 38, 40, 44, 46, 47]. Analogously, we believe machine
learning holds the potential to help clinicians identify, in
advance, patients who are less likely to achieve meaningful
improvements and, therefore, inform presurgical dis-
cussions of likely outcomes of TJA.

This study has several limitations. First, the registry data
used was from a single, American, high-volume specialty
hospital from 2007 to 2012. It is unclear the extent to which
these models are externally valid to other hospitals and
time periods. We have reported all parameters of our best-
performing full logistic LASSO model so that other facil-
ities can test them. However, these models include a large
number of features, making their use practically challeng-
ing; it is also unlikely that other facilities would collect the
exact same features. Therefore, we also report all param-
eters of our best-performing abbreviated logistic LASSO
models, which only include baseline PROMs and surgery

Table 4. Top five features for each PROM for before surgery logistic LASSO models

Feature
rank

SF-36 PCS SF-36 MCS HOOS JR KOOS JR

Feature Coefficient Feature Coefficient Feature Coefficient Feature Coefficient

1 Baseline SF-36 PCS 1.270 Baseline SF-36 MCS 2.500 Unilateral revision 1.112 Baseline KOOS
JR

1.132

2 Unilateral revision 0.756 Depression 1.102 Baseline HOOS JR 1.110 Unilateral
revision

1.131

3 Back pain 0.465 Baseline SF-36 role
emotional

0.708 Secondary payor:
commercial

-0.433 Primary payor:
commercial

0.635

4 Knee patient (not
hip patient)

0.449 Baseline SF-36 social
functioning

0.401 Secondary payor:
Blue Cross

-0.355 Race: white -0.479

5 Surgeon #105 -0.425 Secondary payor:
Medicaid

0.329 Baseline WOMAC
stiffness score

-0.334 Bilateral -0.313

The outcome was coded so that 0 = (achieve MCID) and 1 = (did not achieve MCID); depression and back pain measured with a self-
reported health problems survey asking, “Do you have this problem?” with “Yes” or “No” as possible responses; MCID = minimally
clinically important difference; LASSO = least absolute shrinkage and selection operator; PROM = patient-reported outcome
measure; PCS = physical component score; MCS = mental component score; HOOS JR = Hip Disability and Osteoarthritis Outcome
Score for joint replacement; KOOS JR = Knee Disability and Osteoarthritis Outcome Score for joint replacement.
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type as features. It is also important to note that everyone in
our analyses had surgery. Using these tools for presurgical
decision support is therefore probably most appropriate
among patients who would otherwise have surgery but
might reconsider given (in part) their likelihood of not
achieving a MCID.

Second, it is worth emphasizing the limitations on how
our analyses can be interpreted. Correlation is not causa-
tion. However, this adage must be taken a step further
when a large number of correlated features are included;
this multicollinearity breaks one of the assumptions
guaranteeing that logistic regression produces unbiased
coefficients. Because we are focused on the combined
predictive power of all these variables, it is acceptable to
break this assumption. We can look at these coefficients to
get a sense of what is mechanically driving prediction, but
we cannot read too much into the sign nor magnitude of
those (potentially biased) coefficients. For example, the
SF-36 PCS MCID model ranks having one particular sur-
geon as the fifth most important predictor. We cannot look
at the associated coefficient’s sign and say that this sur-
geon’s patients are more or less likely to achieve anMCID.

Third, there may exist selection bias given that only
44.3% of patients undergoing TJA in the relevant time
period joined the registry, and among those, 71.5% were
included in our analyses. Included patients were indeed
more likely to be male, have lower BMI, have a shorter
length of stay, and were healthier. It is therefore possible
that our models would not work as well on sicker patients.
However, these variables overall explained less than 1.2%
of the variation in inclusion. Further testing on less healthy
samples would ameliorate this concern. Missing predictor
data was far less of an issue. There were also a small per-
centage of patients not included because their baseline
HOOS JR scores were so high that it was mathematically
impossible to reach an MCID; these patients were more
likely to be female, have lower baseline expectations, more
diagnoses, and higher baseline SF-36 PCS scores. Given
that our sample is already tilted toward healthier patients,
excluding these healthier patients likely helped mitigate
selection bias.

Fourth, the predicted probabilities produced by these
models were not perfectly calibrated in our validation
sample (except for the SF-36 MCS), although all calibra-
tion plots were upward sloping as expected. Someone ap-
plying these models to a new sample would still need to
first assemble, impute, and scale the relevant validation
data; calculate uncalibrated probabilities with the models;
test for acceptable AUROC; and then generate their own
sample-specific calibration plots. This highlights that ma-
chine learning is rarely a simple matter of applying existing
models. Fifth, we restricted our attention toMCIDs for four
particular PROMs after TJA. There aremany other PROMs
and orthopaedic procedures for which similar analyses

would be useful; we chose PROMs that have generally
been adopted globally in arthroplasty research. Similarly,
there are many machine learning algorithms; we picked
three of the most popular. Sixth, there are additional fea-
tures not included in the registry that might be powerful
predictors, for example, unstructured image and text data
such as radiology images or reports, or medications taken
during the inpatient stay; these were not part of our registry.

The three machine learning algorithms performed in the
poor-to-good range, with AUROCs ranging from 0.60 to
0.89. This performance is in line with prior studies that
attempted to predict orthopaedic-related postsurgical
PROMs [5, 6, 23, 26, 31] (AUROCs ranging from 0.64 to
0.83). However, few existing studies in orthopaedics have
used machine learning algorithms beyond classic logistic
regression or a proper validation sample to test predictive
ability, although there are exceptions [14, 22, 26, 39]. In
unreported analyses, we reproduced our four full models
for each PROM using classical logistic regression instead
of LASSO. Indeed, with so many features, the models were
overfit to the training data, and performed substantially
worse on the validation sample. We are aware of no pre-
vious studies that have attempted to predict postsurgical
PROMs MCID achievement with machine learning algo-
rithms and a proper validation sample among TJA patients.
Extending these analyses to other orthopaedic treatments
and PROMs should be the subject of future research.

Including more information available moving from
before decision to before surgery (such as baseline
PROMs) improved predictive power, but adding further
information from the hospitalization yielded no further
improvements. Moreover, the abbreviated models, which
included just baseline PROMs, performed worse than the
full before-surgery models, but not by much. Most existing
orthopaedic research does not compare predictive power
across information available at different points along the
timeline of care; most simply consider some single set of
features [5, 6, 7, 14, 20, 22, 23, 26, 31, 32, 35, 39, 41, 42].
Baker et al. [2] compared the ability of preoperative versus
postoperative information to predict patient satisfaction
after knee replacement; they found that postoperative fea-
tures were more predictive. It is possible that postsurgical
PROMs collected sooner after surgery could add predictive
value, but these would not be useful for presurgical de-
cision support. Baker et al. [1] compared patient and sur-
gical features’ relative ability to predict PROM
improvements; they found that patient factors were more
important, particularly preoperative PROM scores and
general health status. Overall, collecting baseline PROMs
before the decision to have surgery (that is, moving up
collection) would facilitate these sorts of predictions for
presurgical decision support. Future studies might more
carefully ascertain the best time to measure baseline
PROMs before the surgical decision. Considering
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additional data before the decision might also be in-
formative (for example, unstructured notes or radiographs).
Finally, whether additional information collected during
the hospitalization (such as, inpatient medications) might
be additionally predictive should be explored.

Each before-surgery logistic LASSO model directly
ranked the relevant baseline PROM score as the first or
second most-predictive feature. The degree to which the
baseline PROMs drove prediction varied by PROM: the
MCS predictions were almost entirely driven by baseline
MCS scores; the PCS, HOOS JR, and KOOS JR pre-
dictions were somewhat driven by their own baseline
scores, but also by other features, although which exact
variables were most important differed by PROM. The
power of baseline PROMs to predict postsurgical PROMs
is consistent with previous work [1, 7, 20, 26, 31, 32, 35,
41, 42]. Fewer such studies directly tried to predict MCIDs
[5, 6, 23], although these studies considered only baseline
PROMs as predictors, and did not test on a validation
sample. This again highlights the importance of collecting
baseline PROMs early enough to help identify patients who
might be at risk of not achieving an MCID.

In conclusion, machine learning has the potential to
improve clinical decision-making and patient care by
informing presurgical discussions of likely outcomes from
TJA. Patients’ own perceptions of the benefit of surgery
should be placed at the center of such evaluations; MCIDs
facilitate exactly that. Supervised machine learning algo-
rithms using presurgical registry data can predict, with fair-
to-good predictive ability, 2-year postsurgical MCIDs for
general and joint-specific health PROMs. The largest gains
in predictive power were from incorporating information
available before surgery, namely baseline PROM scores;
registry information from the hospitalization provided
negligible improvement. Although we report all parame-
ters of our best-performing models, they cannot simply be
applied off-the-shelf in new settings without proper testing
(such as the acceptable AUROC and sample-specific cali-
bration). Indeed, machine learning is rarely, in practice, a
simple matter of applying existing models, though it is
clear from our analyses that they hold much promise for
orthopaedic outcomes.
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Vidaurreta I. Responsiveness and clinically important differ-
ences for the WOMAC and SF-36 after total knee replacement.
Osteoarthritis Cartilage. 2007;15:273–280.

16. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM,
Thrun S. Dermatologist-level classification of skin cancer with
deep neural networks. Nature. 2017;542:115–118.

17. Futoma J, Morris J, Lucas J. A comparison of models for pre-
dicting early hospital readmissions. J Biomed Inform. 2015;56:
229–238.

18. Giannini HM, Chivers C, Draugelis M, Hanish A, Fuchs B,
Donnelly P, Lynch M, Meadows L, Parker SJ, Schweickert WD,
Mikkelsen ME, Fishman N, Hansen C, Umscheid C. De-
velopment and implementation of a machine-learning algorithm
for early identification of sepsis in a multi-hospital academic
healthcare system. Am J Respir Crit CareMed. 2017;195:A7015.

19. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Nar-
ayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros
J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR. De-
velopment and validation of a deep learning algorithm for de-
tection of diabetic retinopathy in retinal fundus photographs.
JAMA. 2016;316:2402–2410.

20. Hamilton DF, Lane J V, Gaston P, Patton JT, MacDonald D,
Simpson AHRW, Howie CR. What determines patient satisfac-
tion with surgery? A prospective cohort study of 4709 patients
following total joint replacement. BMJ Open. 2013;3:e002525.

21. Hao S,Wang Y, Jin B, Shin AY, Zhu C, HuangM, Zheng L, Luo
J, Hu Z, Fu C, Dai D,Wang Y, Culver DS, Alfreds ST, Rogow T,
Stearns F, Sylvester KG, Widen E, Ling XB. Development,
validation and deployment of a real time 30 day hospital read-
mission risk assessment tool in the Maine healthcare information
exchange. PLoS One. 2015;10:e0140271.

22. Harris AHS, Kuo AC, Weng Y, Trickey AW, Bowe T, Giori NJ.
Can machine learning methods produce accurate and easy-to-use
prediction models of 30-day complications and mortality after
knee or hip arthroplasty. Clin Orthop Relat Res. 2019;477:
452-460.

23. Ho B, Houck JR, Flemister AS, Ketz J, Oh I, Digiovanni BF.
Preoperative PROMIS scores predict postoperative success in
foot and ankle patients. Foot Ankle Int. 2016;37:911–918.

24. Horng S, Sontag DA, Halpern Y, Jernite Y, Shapiro NI,
Nathanson LA. Creating an automated trigger for sepsis clinical
decision support at emergency department triage using machine
learning. PLoS One. 2017;12:e0174708.

25. Keurentjes JC, Van Tol FR, Fiocco M, Schoones JW, Nelissen
RG. Minimal clinically important differences in health-related
quality of life after total hip or knee replacement: A systematic
review. Bone Joint Res. 2012;1:71–77.

26. Khor S, Lavallee D, Cizik AM, Bellabarba C, Chapman JR,
Howe CR, Lu D, Alex Mohit A, Oskouian RJ, Roh JR, Shonnard
N, Dagal A, Flum DR. Development and validation of a pre-
diction model for pain and functional outcomes after lumbar
spine surgery. JAMA Surg. 2018;153:634–642.

27. Leopold SS, Porcher R. Editorial: the minimum clinically im-
portant difference—the least we can do. Clin Orthop Relat Res.
2017;475:929–932.

28. Lyman S, Lee YY, McLawhorn AS, IslamW,MacLean C. What
are the minimal and substantial improvements in the HOOS and
KOOS and JR versions after total joint replacement?Clin Orthop
Relat Res. 2018;476:2432–2441.

29. Malley J, Kruppa J, Dasgupta A, Malley K, Ziegler A. Proba-
bility machines: consistent probability estimation using non-
parametric learning machines.Methods Inf Med. 2012;51:74–81.

30. Maltenfort M, Dı́az-Ledezma C. Statistics in brief: minimum
clinically important difference—availability of reliable esti-
mates. Clin Orthop Relat Res. 2017;475:933–946.

31. McGirt M, Bydon M, Archer K, Devin C, Chotai S, Parker S,
Nian H, Harrell FJ, Speroff T, Dittus R, Philips S, Shaffrey C,
Foley K, Asher A. An analysis from the quality outcomes data-
base, part 1. Disability, quality of life, and pain outcomes fol-
lowing lumbar spine surgery: predicting likely individual patient
outcomes for shared decision-making. J Neurosurg Spine. 2017;
27:357–369.

32. McGirt MJ, Sivaganesan A, Asher AL, Devin CJ. Prediction
model for outcome after low-back surgery: individualized like-
lihood of complication, hospital readmission, return to work, and
12-month improvement in functional disability. Neurosurg Fo-
cus. 2015;39:E13.

33. Murray D, Frost S. Pain in the assessment of total knee re-
placement. J Bone Joint. Surg Br. 1998;80:426–431.

34. National Health Service England. National patient reported out-
come measures (PROMs) programme consultation. 2016. Avail-
able at: https://www.engage.england.nhs.uk/consultation/proms-
programme/. Accessed August 31, 2018.

35. Nemes S, Rolfson O, Garellick G. Development and validation
of a shared decision-making instrument for health-related quality
of life one year after total hip replacement based on quality
registries data. J Eval Clin Pract. 2018;24:13–21.

36. Poplin R, Varadarajan A V., Blumer K, Liu Y, McConnell M V.,
Corrado GS, Peng L, Webster DR. Prediction of cardiovascular
risk factors from retinal fundus photographs via deep learning.
Nat Biomed Eng. 2018;2:158–164.

37. Quintana JM, Escobar A, Bilbao A, Arostegui I, Lafuente I,
Vidaurreta I. Responsiveness and clinically important differ-
ences for the WOMAC and SF-36 after hip joint replacement.
Osteoarthritis Cartilage. 2005;13:1076–1083.

38. Rajkomar A, Oren E, ChenK, Dai AM,Hajaj N, HardtM, Liu PJ,
Liu X, Marcus J, SunM, Sundberg P, Yee H, Zhang K, Zhang Y,
Flores G, Duggan GE, Irvine J, Le Q, Litsch K, Mossin A,
Tansuwan J, Wang D, Wexler J, Wilson J, Ludwig D, Vol-
chenboum SL, Chou K, Pearson M, Madabushi S, Shah NH,
Butte AJ, Howell MD, Cui C, Corrado GS, Dean J. Scalable and
accurate deep learning with electronic health records. NPJ Digit
Med. 2018;1:18.

39. Ramkumar PN, Navarro SM, Haeberle HS, Karnuta JM, Mont
MA, Iannotti JP, Patterson BM, Krebs VE. Development and
validation of a machine-learning algorithm after primary total hip
arthroplasty: applications to length of stay and payment models.
J Arthroplasty. [Published online ahead of print Decebmer 27,
2018]. DOI: 10.1016/j.arth.2018.12.030.

40. Sahni N, Simon G, Arora R. Development and validation of
machine learning models for prediction of 1-year mortality

1278 Fontana et al. Clinical Orthopaedics and Related Research®

Copyright © 2019 by the Association of Bone and Joint Surgeons. Unauthorized reproduction of this article is prohibited.

https://www.engage.england.nhs.uk/consultation/proms-programme/
https://www.engage.england.nhs.uk/consultation/proms-programme/
http://dx.doi.org/10.1016/j.arth.2018.12.030


utilizing electronic medical record data available at the end of
hospitalization in multicondition patients: a proof-of-concept
study. J Gen Intern Med. 2018;33:921–928.

41. Sanchez-Santos MT, Garriga C, Judge A, Batra RN, Price AJ,
Liddle AD, Javaid MK, Cooper C, Murray DW, Arden NK.
Development and validation of a clinical prediction model for
patient-reported pain and function after primary total knee re-
placement surgery. Sci Rep. 2018;8:3381.

42. Scott CEH, Howie CR, MacDonald D, Biant LC. Predicting dis-
satisfaction following total knee replacement: a prospective study
of 1217 patients. J Bone Joint Surg Br. 2010;92:1253–1258.

43. SooHoo NF, Li Z, Chenok KE, Bozic KJ. Responsiveness of
patient reported outcome measures in total joint arthroplasty
patients. J Arthroplasty. 2015;30:176–191.

44. Tong L, Erdmann C, Daldalian M, Li J, Esposito T. Comparison
of predictive modeling approaches for 30-day all-cause non-
elective readmission risk. BMC Med Res Methodol. 2016;16:26.

45. Van S, Van Der Straeten C, Arnout N, Deprez P, Van Damme G,
Victor J. A new prediction model for patient satisfaction after
total knee arthroplasty. J Arthroplasty. 2016;31:2660–2667.

46. Vovsha I, Salleb-Aouissi A, Raja A, Koch T, Rybchuk A,
Radeva A, Rajan A, Huang Y, Diab H, Tomar A, Wapner R.
Using kernel methods and model selection for prediction of
preterm birth. Proc Mach Learn Healthc. 2016. Available at:
http://proceedings.mlr.press/v56/Vovsha16.html. Accessed
August 31, 2018.

47. Warner JL, Zhang P, Liu J, Alterovitz G. Classification of hos-
pital acquired complications using temporal clinical information
from a large electronic health record. J Biomed Inf. 2016;59:
209–217.

48. Wylde V, Blom AW, Whitehouse SL, Taylor AH, Pattison GT,
Bannister GC. Patient-reported outcomes after total hip and knee
arthroplasty: comparison of midterm results. J Arthroplasty.
2009;24:210–216.

Volume 477, Number 6 Machine Learning and PROM MCIDs Post-TJA 1279

Copyright © 2019 by the Association of Bone and Joint Surgeons. Unauthorized reproduction of this article is prohibited.

http://proceedings.mlr.press/v56/Vovsha16.html

