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Abstract

Relapse and neurodegeneration are two of the major therapeutic targets in alcoholism. 

Fortuitously, the roles of glutamate/NMDA receptors (NMDARs) in withdrawal, conditioning and 

neurotoxicity mean that NMDAR inhibitors are potentially valuable for both targets. Preclinical 

studies further suggest that inhibitory modulators that specifically reduce the co-agonist effects of 

polyamines on NMDARs are potential non-toxic medications. Using agmatine as a lead 

compound, over 1000 novel compounds based loosely on this structure were synthesized using 

feedback from a molecular screen. A novel series of aryliminoguanidines with appropriate 

NMDAR activity in the molecular screen were discovered (US patent application filed 2007). The 

most potent and selective aryliminoguanidine, JR 220 [4(chlorobenzylidenamino)guanidine 

hydrochloride], has now been tested in a screening hierarchy for anti-relapse and neuroprotective 

activity, ranging from cell-based assay, through tissue culture to animal behavior. This hierarchy 

has been validated using drugs with known, or potential, clinical value at these targets 

(acamprosate (N-acetyl homotaurine), memantine and topiramate). JR220 was non-toxic and 
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showed excellent activity in every screen with a potency 5–200x that of the FDA-approved anti-

relapse agent, acamprosate. This chapter will present a review of the background and rationale for 

this approach and some of the findings garnered from this approach as well as patents targeting the 

glutamatergic system especially the NMDAR.
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INTRODUCTION

Alcohol Incidence and Cost:

Treating alcoholism continues to present considerable challenges. With current estimates of 

3 – 4% of the population in the US being alcohol dependent and an estimated annual cost in 

excess of $200 billion dollars [1], this is clearly a significant financial, social and health 

issue. The current treatment approaches have limited success with high levels of relapse [2] 

and there appears to be only limited interest by the pharmaceutical industry in developing 

drugs for treating alcohol dependence. The reasons for this are complex and multifold. 

Almost certainly, contributing factors include concerns about assessing clinical efficacy and 

getting regulatory approval as well as concerns about market size and profitability not to 

mention that many treatment facilities do not approve/allow for a pharmacological 

component in treating alcohol dependence. Currently, there are only three drugs that have 

received FDA approval for treating alcohol dependence; disulfirum (Antabuse), naltrexone 

(ReVia and Vivetrol) and acamprosate (Campral) although there have been numerous other 

agents and approaches recently reported to reduce alcohol relapse and/or consumption 

(many of which are discussed in this special issue).

Alcohol and Glutamate:

While it is well known that alcohol affects many neurotransmitter systems [3], there is an 

extensive literature collected over the past 20+ years documenting the role of glutamate in 

alcohol’s actions. Glutamate is the major excitatory neurotransmitter in the CNS and 

glutamatergic nerves are distributed throughout the brain. There are both metabotropic and 

ionotropic GLU receptors. To date, three groups of G-protein coupled metabotropic GLU 

receptors (mGluRs) have been identified; Group I (mGluR1 and mGluR5) activates 

phospholipase C, producing diacylglycerol and inositol triphosphate as secondary 

messengers, while Groups II (mGluR2 and mGluR3) and III (mGluR4, mGluR6, mGluR7 

and mGluR 8) are negatively coupled to adenylyl cyclase [see [4] for review]. The mGluRs 

are responsible for slow glutamate-mediated neurotransmission and modulation of 

transmitter release. These receptors couple with G-proteins and are located throughout the 

limbic and cortical brain regions that are implicated in alcoholism, and in particular, group I 

mGluRs (mGluR1 and mGluR5) appear important in regulating the effects of drugs of abuse 

[5].Acamprosate’s pharmacological targets may include mGluRs.

While mGluRs are involved in alcohol’s action, the ionotropic GLUrs have received far 

more attention. Three basic receptor families have been identified, including the N-methyl-

Barron et al. Page 2

Recent Pat CNS Drug Discov. Author manuscript; available in PMC 2019 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



D-aspartate receptor (NMDAR), the α-mino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

receptor (AMPAr) and the kainic acid receptor (KAr). All three are tetrameric complexes, 

and are inhibited by alcohol at physiologically relevant concentrations [6–8]. Fast synaptic 

transmission within this system is mediated by AMPAr and KAr, while NMDARs appear to 

mediate slower synaptic kinetics, involving Ca2+ and K+ flux [9].

AMPA receptors are composed of subunits GLUr1GLUr4, which all contain a GLU binding 

site. AMPAr are generally permeable to Ca2+, Na+ and K+, although many contain the Ca2+-

impermeable GLUr2 subunit. Alcohol inhibition of AMPArs is well noted [10–13] and 

occurs over a wide range of concentrations (10–100mM). AMPAr undergo strong 

desensitization following agonist exposure [14,15], although comparably weaker and more 

rapid desensitization occurs following AMPA or GLU exposure [15–18]. Emerging evidence 

suggests that alcohol inhibits AMPArs by stabilizing this desensitized state [19]. Such 

inhibition is thought to be noncompetitive and distinct from channel blockade [20, 21], 

although interestingly, AMPAr do not appear to undergo adaptation following chronic 

alcohol exposure [22].

KA receptors are composed of subunits GLUr5–7 and KA1–2, and can form homomeric 

(GLUr only) or heterometric (GLUr5 and KA1–2) stoichiometries [23]. While a number of 

reports suggest that the KAr is less sensitive to alcohol than either AMPAr or NMDAR [for 

review see 7], such sensitivity appears to rely heavily on receptor localization; for instance, 

KAr in hippocampal CA3 neurons appear strongly affected by alcohol exposure [22]. 

Postsynaptic KArs appear to share a primary cellular function with AMPArs in that they 

both enable the voltage-dependant functioning of the NMDAR.

NMDARs are important in a variety of functions including learning and memory, synaptic 

plasticity and CNS development [24–27]. These receptors are tetrameric ligandgated cation 

channels, composed of two NR1 and two NR2 subunits [28, 29]. The receptor contains six 

major binding domains. The GLU binding site, which also binds NMDA, is located on NR2 

subunits; the Mg2+ binding site is located within the channel which is blocked by Mg2+ 

under resting conditions; the MK801 binding site, which also binds phencyclidine-like 

compounds is found in the channel; the glycine (GLY) binding site is located on NR1 

subunits; polyamine binding sites are located densely on, but not confined to, NR2B 

subunits (discussed below); the ifenprodil binding site, which also appears to bind several 

structurally related compounds (e.g., eliprodil) and is also found on NR2B subunits. X-ray 

crystallographic studies have demonstrated that NR1/NR2 dimers form within the receptor 

complex, providing allosteric modulation of gating activity. NR1 subunits are ubiquitous in 

brain, and expressed as at least eight splice variants [30]. Four NR2 transcripts have been 

identified (NR2A-D), and are implicated in the pharmacologic specificity of the receptor 

with various subunit combinations differing widely in their pharmacology [31–33]. NR2 

subunits appear to determine the synaptic localization and function of the receptor [34].

The NMDAR appears to play a role in both acute and chronic effects of alcohol. In vitro 
studies have shown that acute alcohol exposure causes inhibition of NMDARmediated 

transmission [6, 35] in cortical slices [36, 37], amygdala [38], NAcc [39,40], dorsal striatum 

[41–43], and hippocampus [44–47]. Alcohol-inhibition of receptor function appears to 
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depend, at least in part, on subunit composition. NMDARs containing NR2A or NR2B 

subunits display greater sensitivity to alcohol than those containing NR2C or NR2D subunits 

[48–50 also see 51, 52].

Following chronic alcohol exposure, a compensatory response occurs resulting in an 

upregulation of NMDAR [53–57]. Of particular interest for our focus, NR2B are upregulated 

in cortex [58–60] and hippocampus [58, 61–63] although there are some discrepancies [64]. 

Related increases in NR2B-specific antagonist binding has also been observed [65], and 

while much of the literature discussed here is from rodent models, alcohol-associated 

increases in NR2B subunit receptors have been noted in alcoholdependent human 

populations undergoing alcohol withdrawal [66].

NR2A subunit receptors are also increased in hippocampus following chronic alcohol 

exposure [58, 61, 67] although again there are some discrepancies in the literature [58, 62–

64, 67, 68]. While these inconsistencies have not yet been fully explained, the basic finding 

that alcohol increases NMDAR subunit expression, resulting in enhanced NMDAR agonist 

sensitivity, is well supported. The implications of such increases are thought to be far-

reaching for alcohol dependence, relapse, and alcohol-associated neurotoxicity.

Numerous studies have also implicated many of the GLU receptor subtypes in behavioral 

phenomena associated with alcohol, although again, our focus will be on data supporting the 

role of the NMDAR. NMDAR antagonists have been shown to reduce alcohol self-

administration [69–72], the alcohol-deprivation effect”—a model of relapse [73], 

conditioned place preference (CPP) [74, 75] and sensitization to the activating effects of low 

doses of alcohol in rodents— which is thought to be important in the rewarding properties of 

alcohol [76, 77]. NMDAR antagonists have also been shown to reduce the excitotoxicity 

associated with alcohol withdrawal [78] providing support for pharmacological 

manipulations of this receptor in reducing alcohol’s rewarding and excitotoxic actions.

NMDARs and Neuroprotection:

Some of the early studies administered nonspecific NMDAR antagonists, such as the classic 

NMDAR channel-blocker, MK801 (dizocilpine). MK801 reduced seizures during alcohol 

withdrawal in rodents, [79] and both in vitro and in vivo studies have provided further 

evidence that MK801 is neuroprotective during alcohol withdrawal [80]. However, 

attenuation of alcohol effects by MK801 is highly sensitive to both timing and dose, with the 

wrong timing or dose resulting in an exacerbation of alcohol toxicity [81]. The clinical 

utility of MK801 is further limited by its lack of specificity, its abuse potential [82], its 

phencyclidine-like psychotomimetic and amnestic effects [83, 84], and potential 

neurotoxicity [85, 86]. Still, success in animal models has generated interest in alternative 

NMDAR antagonists that may be more viable. Various approaches have included the non-

competitive NMDAR channel blocker, memantine, a drug currently used clinically for 

advanced stage Alzheimer’s Disease. Memantine appears neuroprotective in both in vitro 
[87] and in vivo [88] ETOH models. While memantine has unique properties due to its fast 

dissociation and lack of selectivity, compounds working outside the channel are also 

receiving attention. One approach of particular interest is the use of antagonists that 
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demonstrate high specificity for the NMDAR subpopulations that are the most sensitive to 

ETOH withdrawal-associated damage including the NR2B subunit.

NR2B-specific Antagonism in Excitotoxic Models:

One of the most well-known and well-studied NR2B-specific antagonists is ifenprodil. 

Ifenprodil appears to act by binding to a modulatory site on the receptor reducing the affinity 

between polyamines and their binding sites [89, 90]. Bound GLU increases the affinity of 

the receptor for ifenprodil [91]. Ifenprodil appears neuroprotective during excitotoxic events, 

reducing edema and infarct volume in ischemia models [see [92]], improving outcomes in 

reserpine and MPTP models of Parkinson’s Disease [93, 94], models of neuropathic pain 

[see [95] for review], and attenuating excitotoxicity in vitro [96, 97]. In alcohol-associated 

models, ifenprodil reduces excitotoxic cell death during alcohol withdrawal in vitro [78], 

and reduces seizures during withdrawal in vivo [98]. Eliprodil is an ifenprodil analogue 

which has shown similar efficacy as a neuroprotectant in several models of excitotoxic 

injury [99–101]. While examination of both compounds returned promising results, their 

clinical development has been slowed due to secondary effects including Ca2+ channel 

blockade as well as alpha-adrenergic, 5HT1A, 5HT2, 5HT3 and sigma receptor inhibition 

[102–104].

CP-101,606 is also an ifenprodil analogue which reduces both the open dwell-time and 

frequency of channel opening of NR2B-containing receptors, but only modestly inhibits the 

channel activity of NR2A and NR2C-containing receptors [105, 106]. Interestingly, it is 

noted that among the NR2B antagonists, one class of compounds binds with high affinity as 

long as the NMDAR contains at least one NR2B subunit, however a second class binds with 

high affinity only if both NR2 subunits are NR2B subunits. CP-101,606 is a member of the 

latter class, and appears to demonstrate high affinity only for those receptors containing 

NR2B/NR2B subunits, and not NR2B combined with another NR2 subunit [107]. This high 

degree of specificity is suggested to limit its side effect profile in humans.

Thus far, CP-101,606 has received limited attention in alcohol research, but has been used in 

several other fields. CP-101,606 has shown efficacy as an antinociceptive agent [108], an 

anticonvulsant [109], and has demonstrated antiparkinsonian action [110, 111]. CP-101,606 

attenuates the effects of traumatic brain injury and focal ischemia in animal models [112–

114]. CP-101,606 also protects hippocampal neurons from glutamate toxicity in vitro [115], 

and reduces excitotoxic effects in a cortical cell culture during alcohol withdrawal [116].

Polyamines:

Polyamines are simple cationic compounds, derived from the amino acid arginine. Arginine 

can be converted into ornithine, which is then further converted to putrescine via ornithine 

decarboxylase (ODC). Alternatively, arginine can be converted to agmatine, then further 

converted to putrescine, however this pathway appears to account for only a small portion of 

polyamine production. Putrescine is the precursor for two other major polyamines, spermine 

and spermidine. These polyamines are ubiquitous in brain, and are involved in cell 

proliferation, differentiation, growth, and apoptosis [117, 118].
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The Role of Polyamines in Alcohol’s effects:

Polyamines appear to play a critical role in alcoholassociated excitotoxicity. Increased 

polyamine expression has been observed in hippocampus, striatum, cortex, and cerebellum 

during alcohol withdrawal [119, 120]. Increases in ODC expression, the rate-limiting step in 

the synthesis of polyamines, have been reported following chronic alcohol exposure in 

hippocampus, cortex, striatum, and cerebellum [119, 121, 122]. Polyamine activity is 

positively correlated with the severity of alcohol withdrawal signs including alcohol 

withdrawal -induced tremors and seizures [119, 123] and in vitro, exogenous application of 

polyamines exacerbates damage during alcohol withdrawal [124, 190], while polyamine 

antagonists [120] have the opposite effect. Other pharmacological approaches that reduce 

polyamine levels or activity have similar effects. Inhibition of polyamine synthesis via 

difluoromethylornithine, an ODC inhibitor, inhibits WD-induced seizure, improves alcohol 

WD-associated outcomes in vivo [119], and attenuates cell death in vitro [120].

So, with our understanding of the effects of alcohol on NMDAR, particularly the NR2B 

subunit and the role of polyamines in modulating alcohol effects, the interaction of 

polyamines with NR2B subunits appears to be a viable target in medication development.

SPECIFIC THERAPEUTIC TARGETS

(a) Alcohol withdrawal:

Life-threatening aspects of alcohol withdrawal dissipate after one or two weeks, but less 

severe symptoms persist for months. These include anxiety, irritability, depression, 

hyperalgesia, and sleep disturbances [125]. Compensatory alterations in GABA and 

glutamate could account for symptoms of both acute and protracted withdrawal [126]. All 

these symptoms can be reversed by resumption of drinking, and so protracted withdrawal 

provides a neuropsychological “substrate” which can precipitate relapse [125]. This provides 

a target for anti-relapse drugs, thus, acamprosate inhibits acute withdrawal signs [127] and 

reverses sleep disturbances in protracted withdrawal [128]. Its mechanism is compatible 

with inhibition of the “hyperglutamatergic state” in acute and protracted withdrawal [129]. 

Withdrawal (both acute and protracted) is therefore an important therapeutic target for the 

development of antirelapse drugs.

(b) Relapse “triggers”:

The most common precipitants of relapse [130] are loosely classifiable into “priming”, 

“cues” and “stress” [131]. Priming implies that even a small “lapse” into drinking can 

provoke a major relapse by reminding the patient of the pleasurable effects of alcohol, 

causing “craving” to experience these effects again. Additionally, the taste and smell of 

alcohol act as conditioned stimuli signaling the expectation of alcohol, meaning that priming 

overlaps with cues. These are external and internal stimuli repeatedly associated with 

alcohol consumption, and which elicit conditioned responses in the brain which may be 

similar to the rewarding effects of the drug, or to the early signs of alcohol withdrawal, both 

of which can precipitate relapse [132, 133]. Finally, stress also overlaps with the other 

mechanisms, for example by interacting with protracted withdrawal to precipitate relapse 
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[134]; equally, stress may provide an “internal cue” for alcohol consumption [133]. These 

relapse triggers provide a second important therapeutic target for anti-relapse agents.

The NMDAR as a Molecular Target in Relapse:

As stated above, NMDARs are implicated in acute and protracted withdrawal [126] and they 

also play an essential role in all conditioned responses [135]. For example, NMDARs in the 

amygdala and nucleus accumbens, are implicated in conditioned fear and anxiety [135–137], 

symptoms commonly associated with relapse [125, 138]. Inhibitors of NMDARs should 

therefore reduce protracted withdrawal, and the ability of cues to induce relapse via 

conditioned responses. In addition, drugs that indirectly modulate NMDARs have been 

shown to reduce stress-induced reinstatement of alcohol seeking behavior. It is possible 

therefore, that inhibitors of the NMDAR could impact all of the therapeutic targets that 

precipitate relapse.

Current Approved Medications for Relapse:

There are two CNS-acting drugs, naltrexone and acamprosate, that are FDA-approved and 

clinically useful in helping maintain abstinence [139–141]. Naltrexone reduces the 

rewarding effects of alcohol and may reduce cue-induced anticipation of reward [142]. In 

contrast, acamprosate has little effect on reward, and reduces relapse via a different 

mechanism. Thus, in rodents, acamprosate inhibits alcohol withdrawal-induced behaviors 

and brain c-fos expression [143, 144], and reduces alcohol consumption specifically after 

periods of alcohol “deprivation” [145, 146]. Acamprosate also suppresses alcohol-

conditioned behavior [147] and inhibits cue-induced alcohol-seeking in operant models 

[148]. In patients, blunted response to cues and reductions in sleep disturbances [149] 

suggest similar mechanisms. The data suggest that the efficacy of acamprosate against 

relapse is related to inhibitory effects on protracted withdrawal and conditioned stimuli. 

While a recent meta-analysis suggests that acamprosate has only a moderate effect size 

[150], acamprosate remains one of the only two CNS acting drugs that is FDA approved for 

the clinical treatment of alcoholism.

Molecular Targets of Current Anti-Relapse Agents:

Naltrexone likely prevents relapse by antagonism of mu opioid receptors [151]. Many other 

potent mu receptor antagonists exist, so that direction in drug discovery seems superfluous, 

and medications development should probably focus on clinical efficacy of other naltrexone-

like drugs. For acamprosate, the simple amino-acid structure suggests possible interactions 

with amino acid neurotransmitters [143] and radioligand binding and electrophysiological 

studies indicate that acamprosate inhibits NMDARs [143, 152, 153]. These actions are 

consistent with reduction in the “hyperglutamatergic state” that may underlie acute and 

protracted alcohol withdrawal [129, 154]. The precise molecular mechanism is unknown, 

but interactions with polyamine coagonist sites on the NMDAR protein complex [152] or 

with metabotropic glutamate receptors (mGluRs) have been suggested. Acamprosate, being 

a conformationally flexible structure of low potency, is unlikely to be specific [154, 155] and 

is therefore a useful lead compound by virtue of its proposed novel mechanism via the 

NMDAR rather than via its structure.
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Other Glutamatergic Drugs with Anti-Relapse Potential

The low affinity uncompetitive NMDAR antagonist, memantine, is active in animal models 

in which alcohol withdrawal and conditioning are important [87, 143] and reduces cue-

induced “craving” in recovering alcoholics [156]. The similar compound, neramexane is also 

effective in animal models, but a limited clinical trial was unsuccessful, perhaps related to 

dose [157]. Drugs that target metabotropic glutamate receptors (mGluRs), which indirectly 

affect NMDAR function, also have anti-relapse potential. Thus, MPEP (a mGluR5 

antagonist) and LY379268 (a group 2 and 3 agonist) reduce alcohol consumption in animal 

models [158] and inhibit both stress and cueinduced reinstatement of alcohol-seeking 

behavior in operant models [159]. Finally, topiramate affects amino acid receptors [160] by 

actions that are superficially similar to those of acamprosate. Topiramate is active in all of 

our screens [161] including effects on stress-induced alcohol consumption, and reduces 

alcohol intake in clinical studies [162]. Thus, inhibition of the glutamatergic system, 

including the NMDAR, is a legitimate molecular target for anti-relapse agents and agents 

that are able to limit receptor activation via modulatory sites in a manner that maintains a 

basal level of function may be particularly effective therapies. This is the approach that we 

have taken.

NEUROPROTECTION AS A NOVEL THERAPEUTIC TARGET

Alcohol dependence is commonly associated with neurodegeneration and cognitive decline 

[163]. Alcohol acutely reduces neuronal viability and neurogenesis [164], but neurotoxicity 

also occurs during alcohol withdrawal [see 11]. Since alcohol withdrawal inevitably 

precedes “abstinence”, which must precede “relapse”, there are clearly potential interactions 

between neurotoxicity and relapse. First, frequent unsuccessful attempts at abstinence may 

cause cumulative neurodegeneration, and/or may “kindle” more severe seizures [165] and 

severe cognitive decline [166]. Second, neurodegeneration and cognitive deficits may 

increase the risk of relapse. Thus, even a single episode of withdrawal causes cognitive 

deficits and, because all anti-relapse treatments require “cognitive awareness”, this reduces 

the efficacy of anti-relapse treatments [167]. These interactions strongly suggest that anti-

relapse drugs should either have neuroprotective properties, or should be supplemented with 

drugs that are neuroprotective.

Neuroprotective Effects of Anti-relapse Agents:

All of the inhibitory glutamatergic drugs described above are neuroprotective. Acamprosate 

is neuroprotective against alcohol withdrawal in vitro, in animal models [127, 154, 168, 169] 

and is effective clinically against other drugs of dependence. Whether these properties 

contribute to its efficacy in relapse is uncertain, but possible [168]. Memantine is active in 

several models of excitotoxicity [170] including alcohol withdrawal-induced neurotoxicity 

[87]. Topiramate is neuroprotective in models of excitoxicity [171] and mGluR ligands that 

produce inhibition of glutamatergic transmission are also neuroprotective [172]. This 

strengthens the assertion that glutamatergic targets are relevant both to relapse and 

neurotoxicity.
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Molecular Target Selection for Neuroprotection:

There is a wealth of evidence implicating NMDARs in the neurotoxicity that is induced by 

alcohol withdrawal. Briefly, it is believed that the presence of alcohol is inhibitory to the 

function of both NMDARs and voltage operated Ca2+ channels (VOCCs). During the 

chronic presence of alcohol, neuroadaptive changes up regulate both NMDARs and VOCCs 

contributing to alcohol tolerance. On abrupt removal of alcohol, glutamate release activates 

the up-regulated NMDARs and excess Ca2+ enters neurons through these, and the 

upregulated VOCCs, causing excitotoxic neuronal damage. An additional factor is that the 

subunit expression of NMDARs is changed in favor of those including NR2B subunits, 

which are preferentially co-activated by endogenous polyamines. This is exacerbated by 

alcohol-induced fyn-kinase dependent phosphorylation of the NR2B subunit, conferring 

additionally increased sensitivity to co-activation by polyamines [42]. Chronic alcohol 

exposure also up-regulates ornithine decarboxylase (ODC), the rate-limiting step in 

polyamine synthesis, and alcohol withdrawal induces excess release of polyamines further 

activating the NMDARs to induce excitotoxicity. Inhibition of NMDARs, particularly via 

interactions with polyamines, is therefore an obvious molecular target for neuroprotection in 

alcohol withdrawal.

Molecular Target Validation for Neuroprotection:

There is considerable evidence validating NMDARs for this target in vitro, where direct 

NMDAR antagonists reduce alcohol withdrawal-induced toxicity [80], but experiments in 
vivo are equivocal, partly because these drugs are neurotoxic themselves [173]. In addition, 

the roles of NMDARs in learning and memory, and the abuse potential of NMDAR 

antagonists [174], suggest that direct antagonists of NMDARs might never be suitable as 

therapeutic agents. However, inhibitory modulators of the NMDAR inhibit function more 

subtly, ideally allowing glutamate to continue to activate the receptor normally, thus 

preserving physiological function, but inhibiting pathological over-activation. Drugs that are 

“modulators” also have much less abuse potential [174, 175]. Based on the preclinical 

findings, drugs that produce inhibitory modulation by inhibiting coactivation of the NMDAR 

by polyamines would be ideal neuroprotective candidates. However, validating this target is 

difficult because no potent or selective established drugs with this mechanism exist. Among 

the closest are agents which inhibit the synthesis of polyamines, such as 

difluoromethylornithine (DFMO). This agent has been shown to inhibit alcohol withdrawal 

neurotoxicity in vitro, but, because polyamines have many other beneficial roles in the CNS, 

DFMO and other ODC inhibitors will probably never be suitable for clinical use. An 

alternative group of agents are the NR2B-selective inhibitors of NMDARs, such as 

ifenprodil and CP-101,606, both of which inhibit alcohol withdrawal neurotoxicity in vitro. 

They are also active in many of the anti-relapse screens. However, these compounds inhibit 

the NR2B-containing sub-group of NMDARs whether polyamines are present or not, and so 

may suffer from some of the disadvantages of direct NMDAR antagonists in nerves which 

express mainly NR2B subunits (such as developing neurons). Nevertheless the efficacy of 

DFMO, ifenprodil and CP-101,606 suggests that this molecular target is legitimate. We 

therefore hypothesized that agents that inhibit the coactivation of NMDARs by polyamines 

were potentially nontoxic candidates for reducing alcohol withdrawal-induced neurotoxicity 

and preventing relapse.
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SCREENING FOR NOVEL AGENTS

Inhibition of Polyamine Co-activation of NMDARs:

There are multiple modulatory sites for polyamines on the NMDAR [176]. These may 

include a “steric hindrance” site in which polyamines directly inhibit binding of channel 

ligands such as [3H]MK801 [177], and sites which enhance channel opening in response to 

glutamate [176]. One of these sites may increase the affinity for glycine at its site on the 

NR1 subunit [178], whereas another may be associated with the ifenprodil binding site on 

the NR2B subunit [176]. It is possible to screen for these types of modulatory activity on the 

NMDAR using the binding of channel ligands because their rate of association depends on 

the proportion of channels in the open configuration [177]. Thus, the presence of a positive 

modulator for the NMDAR (such as the polyamine, spermidine) accelerates binding of the 

“open channel” ligand [3H]MK801, and compounds that cause inhibitory modulation of the 

NMDAR reduce this acceleration. Therefore, compounds which selectively reduce the 

potentiating effects of spermidine (SP) on [3H]MK801 binding (SPMKB), without affecting 

binding in the absence of polyamine (MKB), are presumed to be NMDAR modulators with 

selectivity for the sites at which polyamines increase NMDAR function. This screen has 

previously been used by others to screen polyamine analogs for NMDAR activity [177, 179–

181]. However, none of the simple polyamine-like inhibitory compounds [174, 177] are 

potent or selective and the industry has ignored them in favor of ifenprodil-like agents, 

which are more potent, with similar functional effects. Nevertheless the screen can clearly be 

used to identify lead compounds which might be modified synthetically to generate more 

selective and potent agents.

Interpretation of Molecular Screens:

Compounds which show approximately equal effects on SPMKB and MKB, with 

monophasic inhibition curves, are assumed to act via direct competitive inhibition and/or 

steric hindrance. These include MK801, memantine, dextrorphan, ketamine, 

dextromethorphan, and putrescine as well as known glycine site inhibitors. Ifenprodil and 

eliprodil produce biphasic curves in which around 20% of both SPMKB and MKB are 

inhibited at concentrations in the low nM range (high affinity NR2B binding) whereas the 

remainder of the inhibition curve requires concentrations around 1uM. Polyaminedependent 

effects on [3H]MK801 binding are illustrated in the radioligand binding curves below. These 

show effects of compounds on SPMKB (upper curve) and [3H]MK801 binding alone (lower 

curve). Memantine produces a similar decrease in [3H]MK801 binding in the presence and 

absence of spermidine at all concentrations Fig (1). However, “positives” (e.g., VJ275 and 

JR220 in Fig. (1) completely prevent the potentiation of [3H]MK801 binding by spermidine 

at concentrations below those that have any significant effect on [3H]MK801 binding alone. 

Thus these compounds may selectively prevent polyamines from interacting with NMDARs 

at site(s) responsible for enhancing channel opening and accelerating [3H]MK801 binding.

IDENTIFICATION OF NOVEL LEAD COMPOUNDS

We first investigated the effects of acamprosate in this screen because previous studies had 

suggested that it was active. However, acamprosate is probably a “false positive” because 
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Ca2+ ions from the commercially available calcium salt of acamprosate interfered with the 

screen (the sodium salt was inactive). Nevertheless, in functional studies, the indirect 

modulation of the NMDAR by acamprosate was observed to be polyamine dependent [154] 

confirming that this is a legitimate molecular target. We next tested approximately two 

hundred miscellaneous known NMDARactive compounds unsuccessfully for their suitability 

as leads. None of these, including several polyamine analogs, were positive. However, we 

then found that the guanidinopolyamine natural product, agmatine, required ~5x lower 

concentrations to inhibit [3H]MK801 binding in the presence of spermidine compared with 

inhibition in the absence of spermidine [182]. Structurally, agmatine has similar flexibility, 

promiscuous binding, and low potency to spermidine, and is therefore not an ideal lead 

compound. However, it is neuroprotective [183], reduces self-administration of opiates and 

cocaine [184] and a simple analog has been reported to suppress alcohol intake in rats. We 

therefore chose agmatine as a lead compound and a large library of agmatine-like derivatives 

were synthesized and assessed in our molecular screen. In addition, plant indole alkaloids 

such as ibogaine inhibit NMDARs and are of potential value in drug dependence and 

alcoholism [185, 186]. A previously uninvestigated indole, 5-methoxy-tryptamine (D33) 

showed a small differential effect on [3H]MK801 binding in the presence of spermidine but, 

unlike agmatine, this effect was insensitive to pH [187]. This is typical of a polyamine 

interaction with the glycine site (177) and, in any event, suggests a subtle difference in 

mechanism to that of agmatine. We therefore chose 5-methoxy-tryptamine as a second lead 

compound.

The approach then was to generate a synthetic compound library that could be modified and 

screened based on feedback from the molecular screen. The agents that met screening 

criterion (i.e., the active compounds) would then be studied in cell–based assays for 

NMDAR modulation. Compounds with activity at the molecular and cellular level were 

tested in consecutively higher and more complex in vivo screens starting with a simple 

toxicological assay followed by behavioral screens of increasing complexity using rodent 

models that assessed neuroprotection during alcohol withdrawal, relapse and voluntary 

alcohol consumption as described below.

The Compound Library

Only the structures loosely based on the agmatine molecule are described here Fig. (2). The 

other series of active compounds from the “indole” series are not yet fully characterized. 

Aromatic analogs of agmatine synthesized from the reaction of arylalkylamines with S-

methylisothiopseudourea were active, but did not discriminate between the two binding 

conditions, i.e. the presence or absence of spermidine. We therefore synthesized a broader 

range of analogs, which included the aryliminoguanidines. These compounds were prepared 

from the condensation of aromatic and heteroaromatic aldehydes with aminoguanidine. 

Within this sublibrary of compounds, 7 analogs discriminated between the two differential 

binding conditions. Five of these analogs JR- 218, JR-220, JR-223, IG-14, and IG-18 

inhibited the effect of spermidine (i.e., putative inhibitory modulation), e.g., JR- 220 was a 

potent analog with an IC50 of 3.6 mM in the spermidine-potentiated [3H]MK801 assay. 

However, JR-132 and JR126 enhanced the effect of spermidine. The concentration response 

curves indicate at least a 20-fold selectivity for inhibition of the polyamine-induced 
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enhancement of NMDA function relative to direct (or steric hindrance) inhibition of 

[3H]MK801 binding. The most active aryliminoguanidine was JR-220, (>200x the potency 

of agmatine) which is now the lead compound for further investigation.

IN VITRO SCREENS

Design of Cell-Based Screens for Functional Activity at NMDARs Using Differentiated SH-
SY5Y Neuroblastoma Cells.

Differentiated SH-SY5Y cells express polyaminesensitive NMDARs. This cell line is useful 

for screening large libraries of compounds [188] and was used as our initial in vitro assay to 

examine the following: 1) Inhibition of NMDAR function as measured by Ca2+ entry. 

Briefly, the cells were pretreated for 5 min in a Ca2+ free buffer with the novel compound 

and then were exposed to NMDA in the presence of added glycine and spermidine in buffer 

containing CaCl2. Ca2+ uptake was terminated by rapid removal of the buffer by washing 

with ice-cold aliquots of buffer without NMDA or 45Ca2+. The cells were then lysed with 

0.5M NaOH and 45Ca2+ entry was assessed using a scintillation plate counter. 2) Inhibition 
of NMDAR-mediated neuro- toxicity: The same cell line was used in a screen that 

assessed cell viability/damage estimated by MTT staining using a commercial kit (ATCC) 

with absorbance measured in a microplate reader; 3) Inhibition of NMDAR-mediated 
neurotoxicity when enhanced by alcohol withdrawal: (the presumed basis for alcohol-

withdrawal -induced neurotoxicity). In primary neuronal cultures, alcohol withdrawal 

enhances NMDA-induced toxicity [e.g., 189]. In our screen chronic alcohol exposure to SH-

SY5Y cells was followed by 200 M NMDA challenge during alcohol withdrawal. 

Neurotoxic effects of NMDA (using the MTT staining as above) was enhanced, and the 

effects of novel compounds or positive controls added 5 min prior to NMDA challenge were 

evaluated on this alcohol withdrawal enhanced neurotoxicity screen.

Results:

The use of 96 well plates containing SH-SY5Y neuroblastoma cells enabled 8 wells to be 

dedicated to each of 8 “unknown” compounds, with 8 wells for untreated controls, 8 wells 

for a standard concentration of NMDA (500μM), 8 wells for NMDA plus MK801 (20μM) 

and 8 wells for vehicle plus NMDA. Two concentrations of each novel compound 

(determined by “potency” in the molecular screen) were run in quadruplicate. Compounds 

that reduced neurotoxicity were then tested in the more complex in vitro organotypic 

hippocampal slice cultures.

Organotypic Hippocampal Cultures:

The organotypic hippocampal slice culture (OHC) model uses slices of hippocampus 

(typically 200 – 400 μm) from neonatal rats. The section contains an intact, living portion of 

hippocampus with its heterogeneity of neurons and glial cells. Thus, this model maintains a 

high level of complexity in regards to intact neuronal connections and is well suited as a 

model for predictions in vivo. This model is used in several neurotoxicity paradigms 

including that induced by NMDA. OHCs are the only in vitro models in which we have 

found reproducible “spontaneous” neurotoxicity during alcohol withdrawal (after 10 days 

exposure) [78, 80]. This alcohol withdrawal screen has been validated with NMDAR 
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modulators, memantine [87], acamprosate [78] and agmatine [120]. Neurotoxicity is 

evaluated by propidium iodide (PI) uptake, and compounds are routinely screened for 

evidence of neurotoxicity alone, for inhibition of NMDA (5 M)-induced toxicity, and for 

inhibition of alcohol-withdrawal -neurotoxicity [see 78, 80, 190].

Results from the OHC Screen:

Alcohol-withdrawal induced toxicity was prevented by 10 M MK801, or memantine, 30μM. 

Acamprosate was also active against alcohol withdrawal, but exhibited a threshold of 200 M. 

Of interest, acamprosate was inactive against NMDA-induced toxicity, whether alone or 

enhanced by ethanol withdrawal [78] as would be predicted by an indirect action. Many 

novel compounds have been screened, including VJ156 (sulfur isostere of tryptamine) and 

VJ170 (harmine-beta-carboline) which were inhibitory to NMDAR function in the 

molecular screen. Both compounds were protective against NMDA and alcohol withdrawal 

as predicted. However, both were also neurotoxic alone at 250μM (similar to findings with 

MK801). In contrast, two aryliminoguanidine compounds (JR 223 and JR220) were 

protective against NMDA and ethanol withdrawal, but did not show any signs of 

neurotoxicity alone at 250μM (or 500 M). All of the aryliminoguanidines that were positive 

in the molecular screens produced the appropriate responses in the cell based screens.

BEHAVIORAL SCREENS

Criteria for Design of Behavioral Screens:

There are many excellent “models” of alcoholism that could be developed into “behavioral 

screens” but for this project there were two overriding criteria. The first was that the screens 

must ultimately predict clinical value, and therefore naltrexone and/or acamprosate should 

be active in the original models, and in the screens developed from these models. However, 

naltrexone and acamprosate have completely different mechanisms and the screens chosen 

must be compatible with the activity predicted by the molecular target. In this case, 

compounds targeted on NMDARs were predicted to have effects on alcohol withdrawal, 

conditioning and stressinduced consumption (i.e., effects similar to acamprosate, and other 

inhibitors of NMDAR function). It was also desirable that the screens have some face 

validity to relapse, but, in contrast to models, the major criteria for the value of screens were 

simplicity, reproducibility and potential predictive validity.

Some of the Behavioral Screens Used:

Seizure Susceptibility during Alcohol Withdrawal in Mice—Acamprosate [80] and 

all NMDAR antagonists and modulators previously tested including MK801, ifenprodil, 

cycloserine, and agmatine inhibited alcohol withdrawal induced seizures (“handling-induced 

convulsions”-HICs) in mice. Thus these models have predictive validity, but most require 

inhalation of ethanol to produce the long-lasting blood levels necessary for physical 

dependence [e.g., 191]. This makes them unsuitable as a rapid screen. Consequently, we 

used a simpler method that has some face validity to acute and protracted alcohol 
withdrawal.
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Swiss Webster mice received daily injections of ethanol with 4-methylpyrazole (4MP) which 

inhibits alcohol dehydrogenase on 3 consecutive days. Thus, the mice treated with 4MP 

showed significantly increased blood alcohol levels and duration of exposure over the 3 days 

of treatment resulting in alcohol dependence and an increased susceptibility to HICs during 

alcohol withdrawal with only 3 days of treatment. This treatment produced consistent mild 

HICs (on an established 5 point scale) [191, 192] while alcohol administration alone had no 

effect on HIC scores.

Results:

This screen was validated with several compounds known to inhibit alcohol withdrawal 

HICs including diazepam, acamprosate, MK801 and memantine [87]. Acamprosate was 

active at doses of 100mg/kg IP and above. Other agents potentially valuable for clinical 

treatment (i.e., topiramate, memantine) also reduced alcohol withdrawal HICs. The 

NMDAR/NR2B-selective compounds, e.g., CP- 101,606, were also active and this is of 

particular interest because these compounds should exhibit very similar functional effects to 

the putative polyamine-dependent NMDAR inhibitory modulators. The majority of the novel 

compounds tested gave results as predicted by the primary molecular and cellular screens. 

However, some compounds that appeared to be inhibitors of the NMDAR actually increased 

seizure-like activity (e.g., VJ156 and VJ170). These differences can probably be explained 

by known tremorigenic and/or neurotoxic effects of these types of compound. Of the active 

aryliminoguanidines, the novel agent which appeared by far the most effective to date was 

JR220. JR220 significantly inhibited HICs at doses as low as 1 mg/kg IP (100x more potent 

than acamprosate, and similar to MK801 and CP- 101,606).

The Alcohol Deprivation Effect (ADE):

The ADE is the temporary increase in voluntary alcohol consumption (VAC) that occurs in 

rats when alcohol is available following a period of deprivation [145, 146]. The ADE has 

predictive validity since naltrexone and acamprosate can reduce or block the ADE. The ADE 

was endorsed as a potential screen at an NIAAA-sponsored workshop in 2002. It includes 

elements of alcohol withdrawal, as well as conditioning (the smell and taste of alcohol) and 

should therefore be sensitive to compounds acting on GLU and the NMDAR. Indeed, all 

NMDAR inhibitors have been reported to inhibit the ADE regardless of mechanism [73]. 

The ADE has been claimed to have face validity to craving [193] but its major value here is 

as a screen with potential predictive validity. SpragueDawley rats were trained to drink 

alcohol by a gradual “sucrose-fading” procedure in which the rats were exposed to 

decreasing levels of sucrose concurrently with increasing levels of ethanol up to 12%, in 

sipper tubes made from graduated cylinders. When ethanol consumption had stabilized, the 

drug was removed and, after 3 – 7 days ethanol was reintroduced. The ethanol consumed at 

this time was compared to the average stable baseline consumption with a statistically 

significant increase in VAC indicating an ADE. Drugs were injected once, immediately 

before the reintroduction of ethanol.

Results:

Acamprosate (100 or 200 mg/kg IP) significantly and consistently reduced the ADE. 

Topiramate (10mg/kg IP) also reduced the ADE [161] without affecting total fluid intake in 
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the ADE screen. In repeated tests, JR220 consistently reduced VAC upon the re-institution 

of alcohol access after a period of alcohol deprivation. Saline injection did not affect the 

ADE which commonly results in an almost 100% increase in alcohol consumption above 

baseline during the 24h following re-introduction of the alcohol drinking bottle.

Conditioned Behavior in the Elevated Plus Maze (EPM):

The EPM is commonly used in screening for anxiolytic or anxiogenic activity in the 

pharmaceutical industry. Consequently, there is a large background literature on analysis of 

drug-induced behavior in the EPM [194]. It has been reported that repeated association 

between daily alcohol injections and the EPM can generate a characteristic anxietylike 

behavioral response (“stretched attend postures”) in mice in response to a saline injection in 

the same environment [147]. The potential predictive validity is supported by inhibition of 

the behavior by acamprosate (although not, as predicted, by naltrexone) [195]. Other 

interpretations are possible but based on its contingence to the EPM environment, this 

behavior has been suggested to be a consequence of conditioning between the EPM and the 

alcohol cue [147]. If this is correct, it has some face validity to “cue-induced relapse”, and 

the known roles of NMDARs in conditioning suggest that drugs with the mechanism sought 

should be active in this screen.

Swiss Webster mice received nine daily IP injections of saline or ethanol and were then 

placed on the EPM for 5 min daily. On day 10, ethanol (or saline) injection was replaced by 

the drug of interest or vehicle and the mouse returned to the maze for a 5 min videotaped 

session. The behaviors examined include number of closed or open arm entries, time spent 

in the central square, and number of “stretched attend postures” (SAPs). Substitution of 

saline for ethanol in the EPM-exposed animals produces anxiety-like behaviors (specifically 

SAPs) contingent on the EPM environment.

Results:

Acamprosate reduced this response at 200 mg/kg IP [195], and was used as the positive 

control. Topiramate (at both 10 mg/kg and 20 mg/kg IP) was also effective in inhibiting 

alcohol-conditioned SAPs [161]. The positive effects of these drugs suggest that the screen 

has some predictive validity. Acamprosate reduced the putatively alcohol-conditioned SAPs 

without having a significant effect on unconditioned (saline) SAPs, or on any other 

parameter in the EPM. The higher dose of topiramate (20mg/kg IP) also did show anxiolytic 

effects (increased entries into the open arms in controls) illustrating the value of the EPM 

screen. Because there is such a wealth of data on the effects of anxiolytic/sedative agents in 

this type of maze, considerable information on behavioral effects of novel potential 

antirelapse drugs can be obtained in a single screen. JR 220 also reduced conditioned SAPs 

relative to controls although it also reduced activity suggesting it could cause a sedative 

effect at the doses tested.

Drinking in the Dark by C57/Bl Mice:

Rodent models of voluntary alcohol consumption (VAC) are very common in alcohol 

research, but it is rare for animals to drink to intoxication; reducing face-validity for 

modeling human alcohol abuse. However, a model based on genetically-determined high 
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VAC, referred to as “drinking in the dark” (DID) paradigm has been developed using 

C57BL/6J mice [196]. These mice are given access to a 20% v/v ethanol solution for a 

limited number of hours (typically 2–4h/day) daily during the dark cycle. With this schedule, 

these mice will drink to the point of behavioral impairment, consuming 2–3 g/kg ethanol 

resulting in average BACs over 100mg% [196]. The value of this model of high VAC as a 

screen is supported by the observation that both naltrexone and acamprosate [197] are active 

and reduce DID, so that DID may have predictive validity for anti-relapse agents. C57BL/6J 

male mice were placed on a reverse light dark cycle and given access to 20% ethanol for 4 

hours into the dark cycle daily. Mice consistently drank comparable amounts of alcohol (3–4 

g/kg in 4 hour access) and drugs of interest were injected 5 minutes before the 4hr alcohol 

access.

Results:

Acamprosate has been shown to reduce DID [197]. In addition, the novel NR2B-selective 

NMDAR inhibitor CP-101,606 and JR 220 both significantly reduced VAC at 10 mg/kg IP.

Summary:

Our findings provide compelling support for the role of polyamine antagonists and 

modulation of NMDARs in reducing neurotoxicity during alcohol withdrawal as well as 

relapse and voluntary alcohol consumption in a number of rodent models (see Table 1 for a 

summary of the results discussed). Furthermore, the development of a novel 

aryliminoguanidine compound JR 220 is particularly exciting given that the compound 

appears to be effective in numerous screens related to alcohol dependence. While JR 220 

does not affect ETOH pharmacokinetics, additional information on this promising drug 

candidate is still needed and the plan is to submit this compound to the “rapid access to 

investigational drug” (RAID) program at NIH to determine the potential value of JR 220 as a 

therapeutic agent.

TERATOGENIC SCREENS

Additional Studies with Developmental Alcohol Exposure and Polyamine Manipulations:

Fetal alcohol exposure is the leading preventable cause of mental retardation in the Western 

world, affecting up to 9.1 of every 1000 live births in the U.S. and Canada, with higher 

estimates for specific vulnerable populations [198,199]. Fetal alcohol-related healthcare 

costs amount to approximately 3.4 billion dollars annually, although if variables such as 

residential care and lost productivity are included, estimates rise to 11 billion dollars [200], 

making the consequences of FASD a serious socioeconomic concern, as well as a significant 

health and societal issue.

As we gain a better understanding of how alcohol affects the developing brain, there have 

been many approaches including pharmacological, nutritional and environmental 

manipulations that attempt to reduce some of the consequences of alcohol on the developing 

brain. At least in animal models, these have met with some success [see 201–203 for 

examples]. Considering the role that polyamines typically play in normal brain development 

and the effects that alcohol has on polyamines, a natural offshoot of the medication 
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development project was to examine how known and novel compounds that modulate 

NMDAR function via the polyamine site could aid the developing brain exposed to alcohol.

Polyamines are ubiquitous during early brain development, playing an important and 

complex role in cell proliferation, differentiation, growth, communication and apoptosis [for 

review see 117,204]. High levels of ODC are associated with periods of cellular proliferation 

and differentiation. In the rat brain, regions that mature relatively early (midbrain and 

brainstem) experience peaks in ODC activity prenatally, while regions that mature later 

(cortex and cerebellum) peak peri/postnatally and then decline over the neonatal period [for 

review see 117]. During this perinatal period, polyamines influence the developmental 

plasticity of the NMDAR [205], suggesting a critical role in CNS development.

Chronic fetal alcohol exposure can result in persistent, widespread disruptions in ODC/

polyamine activity, however these effects appear to be dependent on the timing of the 

exposure, severity of withdrawal and brain region [206,207]. As mentioned earlier in this 

article, polyamine levels are elevated in neonatal hippocampal slices during alcohol 

withdrawal corresponding with increased cell damage/death [120]. Certain brain regions 

such as the cerebellum and hippocampus are particularly sensitive to alcohol and to 

polyamines during the neonatal period and these regions are rich in NR2B subunits [49,208–

210]. Alcohol also increases NR2B subunit expression in the hippocampus, cortex, and 

cerebellum, while delaying the developmental transfer from NR2B to NR2A subunits, which 

may make these cells more vulnerable to alcohol’s effects, [58,210]. The combination of 

increased NR1:NR2B expression and elevated polyamine levels during this period may 

contribute to fetal alcohol neurotoxic effects, suggesting that pharmacological modulation of 

polyamines during this period should be beneficial.

Preliminary Studies on Screens for Neuroprotection against Alcohol Withdrawal Toxicity in 
Neonates

Examination of Alcohol and Polyamine Modulation In vitro as a Developmental 
Model.—The organotypic hippocampal slice preparation serves as a very useful model to 

study the effects of alcohol on the developing brain. The majority of studies that have looked 

at alcohol exposure and/or withdrawal in this model use hippocampal slices derived from 

neonatal rats although only occasionally is the developmental aspect of the results 

considered. There are definite age dependent differences in sensitivity to the damaging 

effects of alcohol and/or polyamines even between hippocampi within the first neonatal 

week [211]. As discussed above and as predicted, the neurotoxicity observed following 

alcohol withdrawal can be potentiated by exogenous polyamines [120,190,211] and reduced 

by agents that directly or indirectly reduce polyamine activity including agmatine, [120], 

ifenprodil, [78,120, 211], CP-101,606 [212], and of particular interest for us, our novel 

compound JR 220 [submitted].

Examination of Alcohol and Polyamine Modulation In vivo in our Developmental Model

Alcohol Exposure:

The usual exposure period used in our laboratory involves exposure to alcohol during the 

first weeks after birth as a model to overlap the CNS “brain growth spurt” that occurs during 
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the 3rd trimester of human pregnancy. Sprague Dawley rat pups are intubated with either 

alcohol or a control diet usually from postnatal days (PND) 1 – 7 in two daily 

administrations. A non-intubated control group is also included. After chronic alcohol 

exposure, within the first 24 hr of alcohol withdrawal, the pup receives a single treatment of 

the drug or vehicle. Behavioral assessments are then conducted at various time points to 

assess activity, learning and memory, motor coordination and/or other behaviors shown to be 

sensitive to prenatal/neonatal alcohol exposure.

Pharmacological Manipulations in the Neonatal Alcohol Exposure Model.—
With our neonatal exposure model, we have shown that DFMO, which blocks the synthesis 

of polyamines, and agmatine, which modulates NMDAR activity, eliminates deficits in 

isolation-induced ultrasonic vocalizations in neonatal rats and reduces balance deficits in 

adolescent rats – deficits that are typically observed following neonatal alcohol exposure 

[214–216]. CP-101,606 also reduced a variety of behavioral deficits following neonatal 

alcohol exposure including hyperactivity, balance deficits and spatial memory [212]. Perhaps 

the most interesting and exciting data stems from our recent work with JR 220. A single 

administration of JR 220 approximately 10 hours after the last alcohol administration on 

PND 7 results in improvements in all of the behavioral endpoints examined thus far 

including isolation-induced ultrasonic vocalizations, hyperactivity, balance and spatial 

learning and memory [213].

Overview of existing patents:

As reviewed in the present chapter, the glutamatergic/NMDA system is a key player in 

alcohol’s deleterious effects and a number of patents have been granted for the treatment of 

alcoholism. Patents for precursors of acamprosate have increased substantially in the last 

few years [221–225]. As discussed above, endogenous polyamines (putrescine, spermidine, 

spermine), 1,3propanediamine including bioprecursor amides have been patented for 

treating alcohol abuse and dependence [226–228]. In addition, general NMDA antagonists 

such as pyrido (4,3-B) indole derivatives [229, 230], as well as treatments targeting 

NR1and/or NR2[231–233] associated receptors also have been patented for treating alcohol 

addiction. Given the basic research indicating mGluR5’s role in alcohol addiction, 

antagonists for this receptor have been patented as well [234–236]. A number of pyrrolidine 

derivatives act as powerful glutamate uptake blockers, with specificity for certain EAAT 

subtypes across the compounds [237]. These pyrrolidine derivatives also have been patented 

for treating alcoholism [238–245]. Similarly, benzoyl piperidines and pyrrolidines, as 

functional agonists via enhancement of synaptic responses mediated by AMPA receptors, 

have been patented to treat alcohol dependence [246, 247]. AMPA receptor antagonists, 

atropisomers of 3-aryl-4(3H)-quinazolinones [248] or thieno-pyrimidin-4-one [249], also 

have been patented for treating alcohol dependence. Adenosine receptors appear to control 

glutamatergic transmission [250] and treatments targeting the A2a receptor [251, 252] have 

been patented to treat alcohol addiction. Also, a number of patents to reduce extracellular 

glutamate [253–255], reduce presynaptic glutamate release [256] or modulate glutamate 

carboxypeptidase [257] have been patented.
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CURRENT AND FUTURE DEVELOPMENTS

In this article, we have presented the rationale and some background literature for our 

underlying hypothesis that novel NMDAR modulators that work via the polyamine site on 

the NMDAR may be a useful medication development approach for alcohol dependence. We 

have also discovered a novel aryliminoguanidine, JR220, that appears to be beneficial in 

screens ranging from molecular all the way to complex in vivo behavioral screens. The 

potential value of compounds such as JR 220 in preventing those aspects of FASD which are 

a consequence of alcohol withdrawal is an unexpected bonus. Whether this basic research 

can be translated into a therapeutic intervention remains to be seen but in any event the 

availability of compounds with this degree of selectivity should facilitate research that 

addresses the role(s) of polyamines and NMDARs in FASD. Given the wide spectrum of 

glutamatergic modulators that have been patented, a combinational approach that includes 

polyamine modulators appears to be a promising treatment strategy targeting alcohol abuse 

and dependence.
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Fig. (1). 
Typical data from the “differential” molecular screen showing inhibition of [3H]MK801 

binding in the presence (upper curves) and absence (lower curves) of potentiation by 100μM 

spermidine. The data are presented as untransformed DPM rather than as % specific binding, 

because the upper curves represent inhibition of time-dependent potentiation of [3H]MK801 

binding by spermidine.
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Fig. (2). 
Structures of Agmatine (a), Arylalkylguanidine (b), Aryliminoguanidines (c)
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Table 1.

Summary of Behavioral Studies (our work and others using similar paradigms)

Agent SS1 ADE2 EPM3 DID4

Acamprosate +[190] +[145,146] +[194] +[196]

Agmatine +[219] ? - ?

CP 101,606 + ? ? +

Ifenprodil + +[73] ? ?

Memantine +[87] +[220] ? ?

MK-801 + ? ? ?

Naltrexone ? +[217] −[194] +[195]

Topiramate +[160] + +[160] +[218]

JR 220 + + + +
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