Skip to main content
. 2019 Jun 6;10:2485. doi: 10.1038/s41467-019-10431-6

Fig. 3.

Fig. 3

SCM of order D = 2 on a synthetic random simplicial complex (RSC). The RSC is generated with the procedure described in this manuscript, with parameters N = 2000, p1 and pΔ tuned in order to produce a simplicial complex with 〈k〉 ∼ 20 and 〈kΔ〉 ∼ 6. a The average fraction of infected obtained by means of numerical simulations is plotted against the rescaled infectivity λ = βk〉/μ for λΔ = 0.8 (white squares) and λΔ = 2.5 (filled blue circles). The light blue circles give the numerical results for the standard SIS model (λΔ = 0) that does not consider higher-order effects. The red lines correspond to the analytical mean field solution described by Eq. (3). For λΔ = 2.5 we observe a discontinuous transition with the formation of a bistable region where healthy and endemic states co-exist. b Effect of the initial density of infected nodes, shown by the temporal evolution of the densities of infectious nodes (a single realization is shown for each value of the initial density). The infectivity parameters are set within the range in which we observe a bistable region (λ = βk〉/μ = 0.75, λΔ = βΔkΔ〉/μ = 2.5). Different curves—and different colors—correspond to different values for the initial density of infectious nodes ρ0 ≡ ρ(0). The dashed horizontal line corresponds to the unstable branch ρ2-* of the mean field solution given by Eq. 4, which separates the two basins of attraction