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Abstract
As populations increase their life expectancy, age-related neurodegenerative disorders such as Alzheimer’s disease have become
more common. I2-Imidazoline receptors (I2-IR) are widely distributed in the central nervous system, and dysregulation of I2-IR in
patients with neurodegenerative diseases has been reported, suggesting their implication in cognitive impairment. This evidence
indicates that high-affinity selective I2-IR ligands potentially contribute to the delay of neurodegeneration. In vivo studies in the
female senescence accelerated mouse-prone 8 mice have shown that treatment with I2-IR ligands,MCR5 and MCR9, produce
beneficial effects in behavior and cognition. Changes in molecular pathways implicated in oxidative stress, inflammation,
synaptic plasticity, and apoptotic cell death were also studied. Furthermore, treatments with these I2-IR ligands diminished the
amyloid precursor protein processing pathway and increased Aβ degrading enzymes in the hippocampus of SAMP8mice. These
results collectively demonstrate the neuroprotective role of these new I2-IR ligands in a mouse model of brain aging through
specific pathways and suggest their potential as therapeutic agents in brain disorders and age-related neurodegenerative diseases.
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Introduction

Imidazoline receptors (non-adrenergic receptors for
imidazolines) [1] have been identified as a promising biolog-
ical target that deserves further investigation using

multidisciplinary approaches to build a comprehensive under-
standing of their pharmacological possibilities. To date, three
main imidazoline receptors, I1-, I2- and I3-IR, have been iden-
tified as binding sites that recognize different radiolabeled
ligands involving different locations and physiological
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functions [2–4]. The pharmacological characterization of I1-
IR is understood the best, and they are used in the antihyper-
tensive drugs moxonidine [5] or rilmenidine [6]. To date, I2-IR
have not been structurally described, although García-
Sevilla’s group has defined distinct binding proteins corre-
sponding to subgroups of I2-IR sites [7]. I2-IR are involved
in analgesia [8], glial tumors [9], inflammation [10] and a
plethora of brain disorders, such as AD [11, 12], Parkinson’s
disease (PD) [13], and different psychiatric disorders [14–16].
The efficacy of the analgesic CR4056 in osteoarthritis has
advanced this compound in the first-in-class I2-IR ligand to
achieve phase II clinical trials [17]. I2-IR are widely distribut-
ed in the CNS, bind imidazoline-based compounds [18, 19],
such as idazoxan or valldemossine [20], and have been asso-
ciated with the catalytic site of monoamine oxidase enzyme
(MAO) [21]. A neuroprotective role for I2-IR was described
through the pharmacological activities observed for their li-
gands [22]. Idazoxan reduced neuron damage in the hippo-
campus after global ischemia in the rat brain [23] and
agmatine, identified as the endogenous I2-IR ligand [24], has
demonstrated modulatory actions in several neurotransmitters
that produce neuroprotection both in vitro and in rodent
models [25]. The compelling evidence has demonstrated that
other selective I2-IR ligands (Fig. 1) provide benefits such as
being neuroprotective against cerebral ischemia in vivo [26,
27], inducing beneficial effects in several models of chronic
opioid therapy, leading to neuroprotection by direct blocking
of N-methyl-D-aspartate receptor (NMDA) mediated intracel-
lular [Ca2+] influx [28], or provoking morphological/
biochemical changes in astroglia that are neuroprotective after
neonatal axotomy [22].

At a cellular level, I2-IR are situated in the outer membrane
of the mitochondria in astrocytes [29], and a direct physiolog-
ical function of glial I2-imidazoline preferring sites that regu-
late the level of the astrocyte marker glial fibrillary acidic
protein (Gfap) has been proposed [30]. In addition,
astrogliosis is a pathophysiological trend in brain neurodegen-
eration as in AD [31]. The density of I2-IR is markedly in-
creased in the brains of patients with AD [13], and in gliosis
associated with brain injury [32].

The pharmacological characterization of these receptors
relies on the discovery of selective I2-IR ligands devoid of a

high affinity for I1-IR and α2-adrenoceptors. The reported I2-
IR ligands are structurally restricted, featuring rigid substitut-
ed pattern imidazolines, and most of which are not entirely
selective and thus interact with α-adrenoceptors [19], which
causes side effects [33]. Our chemistry program aimed to find
new selective I2-IR ligands to increase the arsenal of pharma-
cological tools to exploit the therapeutic potential of I2-IR in
neuroprotection.

We have recently synthesized a series of new chemical
scaffolds, 2-imidazolin-4-yl)phosphonates [34], by an
isocyanide-based multicomponent reaction under microwave
irradiation to avoid using solvents. The experimental synthetic
conditions fulfill the principles of green chemistry, giving ac-
cess to novel compounds with high selectivity and affinity for
I2-IR. Among them, we testedMCR5 [diethyl (1-(3-chloro-4-
fluorobenzyl)-5,5-dimethyl-4-phenyl-4,5-dihydro-1H-
imidazol-4-yl)phosphonate] in a previous work to demon-
strate its neuroprotective and analgesic effects, and it showed
promising results in models of brain damage [35]. In particu-
lar, mechanisms of neuroprotection related to regulating apo-
ptotic pathways or inhibiting p35 cleavage mediated by this
new active compound have been found. In the present work,
we explored the behavioral and cognitive status, including
molecular changes associated with age and neurodegenerative
processes, presented by SAMP8 mice when treated with the
new highly selective I2-IR ligandsMCR5 andMCR9 [methyl
1-(3-chloro-4-fluorobenzyl)-5,5-dimethyl-4-phenyl-4,5-
dihydro-1H-imidazole-4-carboxylate] (Fig. 2). SAMP8 is a
naturally occurring mouse strain that displays a phenotype
of accelerated aging with cognitive decline, as observed in
AD, and is widely used as a feasible rodent model of cognitive
dysfunction [36]. To the best of our knowledge, this manu-
script reports the first study that includes cognitive and behav-
ioral parameters of novel I2-IR ligands in a well-characterized
animal model for studying brain aging and neurodegeneration.

Material and Methods

Synthesis of I2-IR Ligands MCR5 and MCR9

The compounds were prepared using our previously opti-
mized conditions [34]. I2-IR pKi forMCR5 andMCR9 were

N

H

N O

2-BFI

N

H

N

BU-224

N

N

H

N

valldemossine (tracizoline)

N

H

N

benazoline

N

H

N

idazoxan

O

O

Fig. 1. Representative I2-IR ligands

N

N

Ph

(EtO)2(O)P

F

Cl

N

N

Ph

MeO2C
F

Cl

MCR5

MCR9

Fig. 2. Structure of I2-IR ligandsMCR5 andMCR9

Behavioral and Cognitive Improvement Induced by Novel Imidazoline I2 Receptor Ligands in Female SAMP8 Mice 417



determined as 9.42±0.16 nM and 8.85±0.21 nM, respectively,
showing that both compounds also had high selectivity
against α2 adrenergic receptors (457 and 1862, respectively)
[35].

The Blood-Brain Barrier (BBB) Determination Method

The in vitro permeability (Pe) of the novel compounds
through a lipid extract of the porcine brain was determined
using a mixture of PBS/EtOH 70:30. The concentration of
drugs was determined using a UV/VIS (250-500 nm) plate
reader. Assay validation was carried out by comparing the
experimental and reported permeability values of 14 commer-
cial drugs (see supporting information), which provided a
good linear correlation: Pe (exp) = 1.003 Pe (lit) _ 0.783 (R2

= 0.93). Using this equation and the limits established by Di
et al. [37] for BBB permeation, the following ranges of per-
meability were established: Pe (10-6 cm·s-1) > 5.18 for com-
pounds with high BBB permeation (CNS+); Pe (10-6 cm·s-1) <
2.06 for compounds with low BBB permeation (CNS_); and
5.18 > Pe (10-6 cm·s-1) > 2.06 for compounds with uncertain
BBB permeation (CNS±).

Measurements of Hypothermic Effects

For this study, 25 adult male CD-1 mice (30-40 g) bred in the
animal facility at the University of the Balearic Islands were
used. Mice were housed in standard cages under defined en-
vironmental conditions (22°C, 70% humidity, and a 12-h
light/dark cycle, lights on at 8:00 AM) and with free access
to a standard diet and tap water. Experimental procedures
followed the ARRIVE [38] and standard ethical guidelines
(European Communities Council Directive 86/609/EEC and
Guidelines for the Care and Use of Mammals in Neuroscience
and Behavioral Research, National Research Council 2003)
and were approved by the Local Bioethics Committee (UIB-

CAIB). All efforts were made to minimize the number of mice
used and their suffering.

Mice were handled and weighed by the same person for 2
days so they could habituate to the experimenter before any
experimental procedures were initiated. For the acute treat-
ment, mice received a single dose of MCR9 (20 mg/kg, i.p.,
n=6) or vehicle (a mixture of equal parts of DMSO and saline,
i.p., n=7). For the repeated treatment, mice were treated daily
with MCR9 (20 mg/kg, i.p., n=6) or vehicle (a mixture of
equal parts of DMSO and saline, i.p., n=6) for 5 consecutive
days. The hypothermic effect of compoundMCR9 was eval-
uated by measuring rectal temperature before any drug treat-
ment (basal value) and 1 h after drug injection by a rectal
probe connected to a digital thermometer (compact LCD ther-
mometer, SA880-1M, RS, Corby, UK). Mice were sacrificed
immediately after the last measurement of rectal temperature.

SAMP8 Mouse In Vivo Experiments

SAMP8 female mice (n=26) (12 months old) were used to
carry out cognitive and molecular analyses. We divided these
animals randomly into three groups: SAMP8 Control (n=10)
and SAMP8 treated with I2-IR ligands (MCR5, n=8 and
MCR9, n=8). Animals had free access to food and water
and were kept under standard temperature conditions (22
±2°C) and a 12-h light/dark cycle (300 lux/0 lux). MCR5
and MCR9 (5 mg/Kg/day) were dissolved in 1.8% 2-
hydroxypropyl-β-cyclodextrin and administered through
drinking water for 4 weeks. Water consumption was con-
trolled each week, and I2-IR ligand concentrations were ad-
justed accordingly to reach the optimal dose.

Studies and procedures involvingmice brain dissection and
subcellular fractionation were performed by the ARRIVE [38]
and international guidelines for the care and use of laboratory
animals (see above) and approved by the Ethics Committee
for Animal Experimentation at the University of Barcelona.
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Fig. 3. Acute and repeated measurement of the hypothermic effect of
compound MCR9 in mice. a Effect of acute treatment with MCR9 (20
mg/kg, i.p.) on rectal body temperature in mice. Columns are means ±
SEM of the difference (Δ, 1 h - basal value) in body temperature (°C) for
MCR9-treated mice compared with vehicle-treated Control mice. Data
were analyzed using Student’s t-test. **p<0.01. b Effect of repeated (5

days) treatments with MCR9 (20 mg/kg, i.p., closed circles) on rectal
body temperature in mice. Circles are means ± SEM of the difference (Δ,
1 h - basal value) in body temperature (°C) for MCR9-treated mice
compared with vehicle-treated Controls. Data were analyzed using
repeated measures ANOVA followed by Sidak’s multiple comparison
test. **p<0.01, ***p<0.001; (n=6−7 animals per group)
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Open Field (OFT), Elevated Plus Maze (EPM),
and Novel Object Recognition Test (NORT)

The OFT apparatus was a white polywood box (50x50x25
cm). The floor was divided into two areas defined as center

zone and peripheral zone (15 cm between the center zone and
the wall). Behavior was scored with SMART® vers. 3.0 soft-
ware, and each trial was recorded for later analysis using a
camera situated above the apparatus. Twenty-six mice (n=8-
10 per group) were placed at the center and allowed to explore
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the box for 5 min. Afterward, the mice were returned to their
home cages and the OFT apparatus was cleaned with 70%
EtOH. The parameters scored included center staying dura-
tion, rears, defecations, and the distance traveled, calculated as
the sum of total distance traveled in 5 min.

The EMP apparatus consists of opened arms and closed
arms, crossed in the middle perpendicularly to each other, and
a central platform (5×5cm) constructed of dark and white ply-
wood (30×5×15 cm). To initiate the test session, 26 mice (n=8-
10 per group) were placed on the central platform, facing an
open arm, and allowed to explore the apparatus for 5 min. After
the 5-min test, mice were returned to their home cages, and the
EPM apparatus was cleaned with 70% EtOH and allowed to
dry between tests. Behavior was scored with SMART® vers.
3.0 software, and each trial was recorded for later analysis using
a camera fixed to the ceiling at a height of 2.1 m and situated
above the apparatus. The parameters recorded included time
spent on opened arms, time spent on closed arms, time spent
in the center zone, rears, defecation and urination.

The NORT protocol employed was a modification of that of
Ennaceur and Delacour [39]. In brief, 26 mice (n=8-10 per
group) were placed in a 90°, two-arm, 25-cm-long, 20-cm-
high, 5-cm-wide black maze. The walls could be removed for
easy cleaning. Light intensity in mid-field was 30 lux. Before
performing the test, the mice were individually habituated to
the apparatus for 10 min for 3 days. On day 4, the animals were
submitted to a 10-min acquisition trial (first trial), during which
they were placed in the maze in the presence of two identical,
novel objects (A+A or B+B) at the end of each arm. A 10-min
retention trial (second trial) was carried out 2 h and 24 h later,
with one of the two objects changed. During these second trials,
mice behavior was recorded with a camera. The time with the
new object (TN) and the time with the old object (TO) were
measured. A discrimination index (DI) was defined as (TN

−TO)/(TN+TO). The maze and the objects were cleaned with
96% EtOH after each test to eliminate olfactory cues.

Brain Processing

Mice were euthanized by cervical dislocation 1 day after the
behavioral and cognitive tests finished. Brains were immedi-
ately removed from the skull. The hippocampus of each mouse
was then isolated and frozen in powdered dry ice. Each hippo-
campus was maintained at -80°C for further use. Tissue sam-
ples were homogenized in lysis buffer containing phosphatase
and protease inhibitors (Cocktail II, Sigma-Aldrich). Total pro-
tein levels were obtained and the Bradford method was used to
determine protein concentration.

Protein Levels Determination by Western Blot (WB)

For WB, aliquots of 15 μg of hippocampal protein were used.
Protein samples from 15mice (n=5 per group) were separated by
SDS-PAGE (8-12%) and transferred onto PVDF membranes
(Millipore). Afterward, membranes were blocked in 5% non-fat
milk in 0.1% Tween20 TBS (TBS-T) for 1 h at room tempera-
ture, followed by overnight incubation at 4°C with the primary
antibodies listed in Table 1 (Supporting Information).
Membranes were washed and incubated with secondary antibod-
ies for 1 h at room temperature. Immunoreactive proteins were
viewed with a chemiluminescence-based detection kit, following
the manufacturer’s protocol (ECL Kit; Millipore) and digital im-
ages were acquired using a ChemiDoc XRS+ System (BioRad).
Semi-quantitative analyses were carried out using ImageLab
software (BioRad), and results were expressed in arbitrary units,
considering control protein levels as 100%. Protein loading was
routinely monitored by immunodetection of glyceraldehyde-3-
phosphate dehydrogenase (GAPDH).

Determination of OS in the Hippocampus

Hydrogen peroxide (H2O2) from 12 mice (n=4 per group) was
measured in hippocampal tissue protein extracts obtained as
described above. It was used as an indicator of OS and was
quantified using a hydrogen peroxide assay kit (Sigma-Aldrich,
St. Louis, MI) according to the manufacturer’s instructions.

RNA Extraction and Gene Expression Determination

Total RNA isolation was carried out using the TRIzol® re-
agent according to manufacturer’s instructions. The yield, pu-
rity, and quality of RNAwere determined spectrophotometri-
cally with a NanoDrop™ ND-1000 (Thermo Scientific) appa-
ratus and an Agilent 2100B Bioanalyzer (Agilent
Technologies). RNAs with 260/280 ratios and RIN higher
than 1.9 and 7.5, respectively, were selected. Reverse
Transcription-Polymerase Chain Reaction (RT-PCR) was
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�Fig. 4. Behavioral and cognitive improvement in 12-month-old treated
SAMP8 mice with both I2-IR ligands. a A significant increase in the
distance traveled in the open field test in the I2-IR ligand treated groups
compared with the Control group. b A significant increase in the
percentage of time in the center zone of the opened field test in the
MCR5 treated group compared with the Control group, and no
significant difference between the MCR9 and Control groups. c A
significant increase in the number of total rears of the opened field test
among groups. d The time spent in the opened arms of the EPM did not
differ among groups. e A significant increase in the time spent in the
closed arms among the Control group compared with the treated
groups. f A significant increase in the number of total rears of the EPM
in the MCR5 group compared with the Control group. g The results of
the NORT in the short-term memory (2 h) revealed a significant increase
in both I2-IR ligand treated groups compared with the Control group as
well as a significant reduction in the DI of the MCR9 group compared
with MCR5 group, and (h) a significant increase in the DI of the long-
term memory (24 h) in both I2-IR ligand treated groups compared with
theControl group. Data expressed as means ± SEM (n=8-10 animals per
group) and analyzed using one-way ANOVA followed by Tukey’s post
hoc test for multiple comparisons. *p<0.05, **p<0.01, ***p<0.001 and
****p<0.0001
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performed as follows: 2 μg of mRNAwas reverse-transcribed
using the high capacity cDNA reverse transcription kit
(Applied Biosystems). Real-time quantitative PCR (qPCR)
was employed to quantify the mRNA expression of OS genes
heme oxygenase (decycling) 1 (Hmox1), aldehyde oxidase 1
(Aox1), cyclooxygenase 2 (Cox2), inflammatory genes inter-
leukin 6 (Il-6), interleukin 1 beta (Il-1β), tumor necrosis factor
alpha (Tnf-α), amyloid processing gene disintegrin, and me-
talloproteinase domain-containing protein 10 (Adam10) and
amyloid degradation gene neprilysin (NEP). The primers are
listed in Table 2 (Supporting Information).

SYBR® Green real-time PCR was performed in a Step
One Plus Detection System (Applied-Biosystems) employing
SYBR®Green PCRMaster Mix (Applied-Biosystems). Each
reaction mixture contained 7.5 μL of cDNA (a 2-μg concen-
tration), 0.75 μL of each primer (a 100-nM concentration,
each), and 7.5 μL of SYBR® Green PCR Master Mix (2X).

TaqMan-based real-time PCR (Applied Biosystems) was
also performed in a Step One Plus Detection System
(Applied-Biosystems). Each 20 μL of TaqMan reaction
contained 9 μL of cDNA (25 ng), 1 μL 20X probe of
TaqMan Gene Expression Assays and 10 μL of 2X TaqMan
Universal PCR Master Mix.

Data were analyzed using the comparative cycle threshold
(Ct) method (ΔΔCt), where the housekeeping gene level was
used to normalize differences in sample loading and prepara-
tion. Normalization of expression levels was performed with
actin for SYBR® green-based real-time PCR results and Tbp
for TaqMan-based real-time PCR. Each sample (n=4-5 per
group) was analyzed in duplicate, and the results represent the
n-fold difference of the transcript levels among different groups.

Statistical Analysis

The statistical analyses were conducted using GraphPad Prism
ver. 6 statistical software. Data were expressed as the mean ±

standard error of the mean (SEM).Means were comparedwith
one-way analysis of variance (ANOVA) and Tukey’s post hoc
test or two-tailed Student’s t-test when necessary. Statistical
significance was considered when p values were <0.05.
Statistical outliers were performed out with Grubbs' test and
were removed from the analysis.

Results

BBB Permeation Assay for I2-IR Ligands MCR5
and MCR9

The tested compounds MCR5 and MCR9 had Pe values of
13.5±0.9 and 26.9±1.7, respectively, well above the threshold
for high BBB permeation, so they were predicted to be able to
cross the BBB and reach their biological target in the CNS.
Supplementary information on results analysis can be found in
the supporting material (Table 3).

Hypothermic Effects of MCR9 in Mice

Selective I2-IR ligands induce hypothermia in rodents [4]. In
particular, the hypothermic effect of compound MCR5 in
mice was evaluated in a recent study from our research group
(results for compound 2c in ref 35) [35]. Similar to MCR5,
MCR9 induced mild hypothermia as assessed by a moderate
reduction (-2.3°C) in rectal temperature 1 h after injection at
the tested dose of 20 mg/kg in adult CD-1 mice and as com-
pared with vehicle-treated controls (Fig. 3a, day 1). While
repeated (5 days) administration (20 mg/kg) revealed persis-
tently the hypothermic effects of MCR9 from days 1 to 4
(range from -2.3 to -3.2°C), on day 5 no significant change
was observed in body temperature (-1.8°C change) as com-
pared with vehicle-treated controls (Fig. 3b).

Beneficial Effects on Behavior and Cognition Induced
by MCR5 and MCR9 in SAMP8 Mice

Results obtained in OFT demonstrated that both compounds
increased locomotor activity and time spent in the center zone
(Fig. 4a and b). Furthermore, a significant increment in the
vertical activity, quantified by the number of total rears, was
observed in mice treated with MCR5 or MCR9 in OFT and
the EPM (Fig. 4c and f). EPM data indicated a reduction in
anxiety-like behavior by a significant decrease in time spent in
closed arms for treated animals compared with controls (Fig.
4e). These results are supported by a preference for opened
arms, although not significant, for MCR5 (Fig. 4d).
Moreover, a significant increase in the DI indicates an im-
proved performance in recognition of the new object in the
NORT between MCR5- and MCR9-treated SAMP8 mice
compared with the control group. A robust effect in short (2
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�Fig. 5. Reduced OS and inflammatory markers in 12-month-old treated
SAMP8mice with both I2-IR ligands. a There was a significant reduction
in the hydrogen peroxide concentration in both I2-IR ligand treated
groups compared with the Control group in homogenates of the hippo-
campus tissue. b A significant reduction in SOD1 protein levels in the
MCR5 group compared with the Control group and no difference be-
tween theMCR9 and Control groups. c A significant reduction in Gfap
protein levels in the MCR5 and MCR9 groups compared with the
Control group. d Gene expression of antioxidant enzymes in the mouse
hippocampus. A significant increase in Hmox1 gene expression, but not
for Aox1 and Cox2, among both I2-IR ligand treated groups and the
Control group. e A significant reduction in gene expression of Il-1β
and Tnf-α in the MCR5 group compared with the Control group, and
a tendency for the same genes to reduce in theMCR9 group. However, Il-
6 gene expression did not differ among groups. Values in bar graphs are
adjusted to 100% for protein level of theControl group. Gene expression
levels were determined by real-time PCR. Data are expressed as means ±
SEM (n=4-5 animals per group) and analyzed using one-way ANOVA
followed by Tukey’s post hoc test for multiple comparisons. *p<0.05



0

50

100

150

%
 v

s.
 C

on
tro

l

Caspase-3

*
*

0

50

100

150

%
 v

s.
 C

on
tro

l

Bcl-2

**
**

0

50

100

150

%
 v

s.
 C

on
tro

l

Bax

*

*

Control MCR5                    MCR9 
(5mg/Kg)               (5mg/Kg)

Control MCR5                   MCR9 
(5mg/Kg)               (5mg/Kg)

Control                 MCR5                  MCR9 
(5mg/Kg)              (5mg/Kg)

Control MCR5  MCR9 
(5mg/Kg) (5mg/Kg)

d

SBDP15
0

SBDP12
0

0

50

100

150

%
 v

s.
 C

on
tro

l

Spectrin cleavage

Control

MCR5 (5mg/Kg)

MCR9 (5mg/Kg)

*
*

SYN   38 kDa

-Tubulin 37 kDa

0

50

100

150

%
 v

s.
 C

on
tro

l

SYN 

Caspase-3 35 kDa

GAPDH 37 kDa

c

e

Bcl-2 26 kDa

GAPDH 37 kDa

f

Bax 21 kDa

GAPDH 37 kDa

PSD95   95 kDa

GAPDH 37 kDa

SPBD150 kD

SPBD 120 kDa

GAPDH 37 kDa

0

50

100

150

%
 v

s.
 C

on
tro

l
PSD95

* **

a

Control                 MCR5                 MCR9 
(5mg/Kg)            (5mg/Kg)

b

Control                 MCR5  MCR9 
(5mg/Kg) (5mg/Kg)

Behavioral and Cognitive Improvement Induced by Novel Imidazoline I2 Receptor Ligands in Female SAMP8 Mice 423



h) and long-term (24 h) memory was found for the two tested
compounds (Fig. 4g and h).

OS and Inflammatory Markers Reduced by MCR5
and MCR9 in SAMP8 Mice

OS and neuroinflammation are thought to be key risk fac-
tors in the development of neurodegeneration. The hydro-
gen peroxide levels in the hippocampus were significantly
reduced in brains of mice treated with either MCR5 or
MCR9 compared with the control group (Fig. 5a). Of note,
superoxide dismutase 1 (SOD1) protein levels in treated
mice were reduced by MCR5 but not by MCR9 (Fig.
5b). Moreover, Hmox1 gene expression, an important key
enzyme in cellular antioxidant-defense, was also signifi-
cantly increased with both MCR5 and MCR9 (Fig. 5d).
Other OS markers, such as Aox1 or Cox2, were not signif-
icantly altered (Fig. 5d). Regarding the inflammation
markers, no changes were observed in Il-6 gene expression
for tested compounds, but a significant decrease in Il-1β
and Tnf-α forMCR5 treated SAMP8 mice was found (Fig.
5e). Moreover, a significant diminution in Gfap gene ex-
pression was determined, reinforcing the prevention of in-
flammatory processes by MCR5 and MCR9 (Fig. 5c).

Changes in Synaptic Markers and Apoptotic Factors
Induced by MCR5 and MCR9 in SAMP8 Mice

MCR5, but not MCR9, induced an increase in postsynaptic
density protein 95 (PSD95) protein levels (Fig. 6a). Protein
levels for synaptophysin (SYN), a presynaptic protein,
showed a slight increase for both compounds, although it
did not reach significance (Fig. 6b). To determine the impli-
cation of proteolytic processes in theMCR5 andMCR9 com-
pounds, we found reduced levels of calpain (data not shown)
with a significant diminution in 150 α-spectrin breakdown
fragment (SPBD) (Fig. 6c). Furthermore, MCR9 and

MCR5 reduced caspase-3 activity in SAMP8 mouse hippo-
campi, because of the diminution of caspase-3 protein levels
and 120 SPBD fragments, which reached significance for
MCR9 (Fig. 6c and d). Moreover, B-cell lymphoma 2 (Bcl-
2) levels were diminished, and Bcl-2-associated X (Bax), a
key protein in the apoptotic cascade, was reduced by MCR5
(Fig. 6e and f), supporting a possible implication of I2-IR in
apoptosis processes.

Changes in Mitogen-Activated Protein Kinase (MAPK)
Signaling Pathways Reduced Hyperphosphorylation
of Tau Induced by MCR5 and MCR9 in SAMP8 Mice

Key proteins associated with molecular pathways disturbed in
brain disorders and neurodegeneration were evaluated byWB.
Interestingly, MCR5, but not MCR9, increased the p-AKT/
AKT ratio (protein kinase B) (Fig. 7a). Accordingly, higher
levels of inactivated glycogen synthase kinase 3 beta
(GSK3β), phosphorylated in Ser9, were determined (Fig.
7b). Extracellular signal-regulated kinase (ERK½) inhibition
byMCR5 andMCR9was demonstrated by a reduction of the
p-ERK½ ratio (Fig. 7c). Furthermore, cyclin-dependent ki-
nases 5 (CDK5) measured by the p-CDK5/CDK5 and p25/
p35 ratios were also reduced (Fig. 7d and e). Taking into
account the results obtained on kinases CDK5, GSK3β,
AKT, and ERK½, we studied Tau hyperphosphorylation
levels in the hippocampi of SAMP8 mice. A significant re-
duction in Tau phosphorylation in treated SAMP8 mice was
found, specifically for the Ser404 phosphorylation site,
whereas the Ser396 phosphorylation site was reduced without
reaching significance (Fig. 7f).

Changes in APP Processing and Aβ Degradation
Induced by MCR5 and MCR9 in SAMP8 Mice

We found a significant increase in sAPPα protein levels in
MCR9 treated SAMP8mice (Fig. 8a) and a significant reduc-
tion in sAPPβ protein levels in MCR5 treated SAMP8 mice
(Fig. 8b). Furthermore, a significant increase in gene expres-
sion for Adam10, an α-secretase that cleaves APP and NEP,
an Aβ degrading enzyme (Fig. 8c and d), was observed in
both treated mice groups compared with that in non-treated
animals.

Discussion

I2-IR are related to several physiological and pathological
processes, including those of the CNS, such as pain [8], neu-
ropathic pain [40], seizures [41, 42], and neurodegenerative
diseases such as AD [14, 43]. Our lab has a research line on
developing new high affinity and selectivity I2-IR ligands,
maintaining the imidazoline scaffold and incorporating
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�Fig. 6. Changes in synaptic markers and apoptotic factors in 12-month-
old treated SAMP8 mice with both I2-IR ligands. a A significant increase
in PSD95 protein levels in theMCR5 group compared with the other two
groups. b A tendency for SYN protein levels to increase in both I2-IR
ligand treated groups compared with theControl group. cA tendency for
a reduction in the spectrin fragment SPBD 150, and a significant
reduction in the spectrin fragment SPBD 120 in the MCR9 group
compared with the Control group. d A significant reduction in
Caspase-3 protein levels in both I2-IR ligand groups compared with the
Control group. eA significant reduction in Bcl-2 protein levels in both I2-
IR ligand groups compared with the Control group. f A significant
reduction in Bax protein levels in the MCR9 group compared with the
other groups. Values in bar graphs are adjusted to 100% for protein level
of the Control group. Representative WB for each protein in the mouse
hippocampus is shown.Data are expressed as means ± SEM (n=5 animals
per group) and analyzed using one-way ANOVA followed by Tukey’s
post hoc test for multiple comparisons. *p<0.05, **p<0.001
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several substituents in the imidazoline ring. Some of these
were previously tested for their neuroprotective role [35].

Given the enormous potential of I2-IR and their implica-
tions in brain disorders and neurodegenerative diseases such
as AD, we set out to explore whetherMCR5 andMCR9, two
members of a structurally new family of I2-IR ligands, might
improve the behavioral and cognitive status in SAMP8 model
mice. The main chemical structural differences were a phos-
phonate substituent on the imidazoline ring forMCR5 in con-
trast with an ester group for MCR9 (Fig. 2).

Published results from our lab demonstrated that MCR5
presented a pKi for the I2-IR of 9.42±0.16 and high selectivity
when compared with the α2 receptor affinity [35]. Likewise,
MCR9 is a high-affinity I2-IR ligand (pKi 8.85±0.21) but with
a higher selectivity against α2 receptors. Both MCR5 and
MCR9 were predicted to be able to cross the BBB, an impor-
tant drug characteristic when action is expected in the CNS.

Previous studies have evaluated the effects of selec-
tive I2-IR ligands on inducing hypothermia in rodents
[e.g., idazoxan or BU224] [44]. Accordingly, MCR5
can induce hypothermia in mice, and showed a neuro-
protective role in kainate-induced seizures, modifying
levels of a Fas-associated protein with death domain
(FADD) receptor [35]. While acute MCR5 (5 and 20
mg/kg) induced mild hypothermia, repeated (20 mg/kg,
5 days) administration of MCR5 revealed significantly
attenuated hypothermic effects from day 2, which indi-
cated the induction of tolerance to the hypothermic ef-
fects of the drug [35]. For MCR9, repeated (20 mg/kg,
5 days) administration revealed persistent hypothermic
effects up to day 4. These results suggest that the slow
induction of tolerance to the hypothermic effects caused
by MCR9 might be started following 5 days of drug
administration, although a more extended treatment par-
adigm might be needed for confirmation.

The hypothermic effects exerted by MCR5 and MCR9
might be relevant to induce neuroprotection because it was

previously proposed for some of the neuroprotective effects
induced by the I2-IR selective ligand idazoxan. Several exper-
iments have ascertained a possible role for hypothermia in
mediating neuroprotection. For example, small drops in tem-
perature exerted neuroprotection in cerebral ischemia [45] and
are typically used in the clinic to improve the neurological
outcome under various pathological conditions (e.g., stroke,
brain injury). Although the mechanisms explaining the neuro-
protective effects mediated by hypothermia are not well un-
derstood, some researchers have suggested that they might be
related to the inhibition of glutamate release [46].

SAMP8 mice have been studied as a non-transgenic mu-
rine mouse model of accelerated senescence and late-onset
AD. These mice exhibit cognitive and emotional disturbances,
probably due to the early development of pathological brain
hallmarks, such as OS, inflammation, and activation of neu-
ronal death pathways, which mainly affect the cerebral cortex
and hippocampus [47, 48]. To date, this rodent model has not
been used to test I2-IR ligands. Thus, this work is the first
investigation of the effects of the improvement of cognitive
impairment and behavior in this mouse model after treatment
with I2-IR ligands.

Behavioral and cognitive effects were investigated through
three well-established tests in SAMP8mice: the OFT, which is
an experiment used to assay general locomotor activity and
anxiety in rodents [49]; the EPM, one of the most widely used
tests for measuring anxiety-like behavior [50]; and the NORT,
as a standard measure of cognition (for short- and long-term
memory) [51].

The OFT and EPM parameters indicated a reduction in
cognitive impairment through showing improved locomotor
activity jointly with an anti-anxiousness effect. Likewise, the
NORT results demonstrated an improvement in cognitive and
short- and long-term learning capabilities in hippocampal
memory processes. Therefore, all the assessed parameters
showed robust beneficial effects on cognition and behavior
after MCR5 and MCR9 treatment in SAMP8 mice.

The results in cognitive and behavioral effects were sup-
ported by a cellular and biochemical assessment of charac-
teristic parameters related to cognitive decline and AD. The
compelling evidence demonstrated a neuroprotective role
for I2-IR. The neuroprotective role can be related to OS
and inflammation [52] by measuring OS indicators and in-
flammation markers in SAMP8 mouse brain tissue treated
with the I2-IR ligands,MCR5 and MCR9. Results showed
significant reduced hydrogen peroxide levels in hippocam-
pal tissue and increased Hmox1 gene expression in treated
MCR5 and MCR9 SAMP8 mice, but not in other sensors
for OS, such as Aox1 or Cox2. SOD1 protein levels were
reduced by MCR5 but not by MCR9. Regarding inflam-
mation markers, no changes were observed in Il-6 gene
expression for tested compounds, but a significant decrease
in Il-1β and Tnf-α for MCR5 treated SAMP8 mice was
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�F ig . 7 . Changes in kinase s igna l ing pa thways reduced
hyperphosphorylation of Tau in 12-month-old SAMP8 mice treated
with both I2-IR ligands. a A significant increase in the p-AKT ratio in
the MCR5 group compared with the other two groups. b A significant
increase in inactive p-GSK3β (Ser9) protein levels in both I2-IR ligand
treated groups compared with the Control group. c A significant
reduction in p-ERK½ in both I2-IR ligand treated groups compared
with the Control group. d Changes in the p-CDK5/CDK5 ratio induced
by MCR5 and MCR9 treatment. e Changes in the p25/p35 ratio in the
MCR5 and MCR9 groups compared with the Control group.
Representative WB are shown. f A reduction in p-Tau (Ser396), as well
as a significant reduction in p-tau (Ser404) in both I2-IR ligand treated
groups compared with the Control group. Values in bar graphs are
adjusted to 100% for protein level of the Control group. Data are
expressed as means ± SEM (n=5 animals per group) and analyzed
using one-way ANOVA followed by Tukey’s post hoc test for multiple
comparisons. *p<0.05, **p<0.01, ***p<0.001



found. In addition, reduced astrogliosis was found in treat-
ed animals, corroborating a reduced inflammatory environ-
ment in hippocampi of MCR5 and MCR9 treated SAMP8
mice. Altogether these results showed a relatively weak
influence in OS and inflammation mechanisms by I2-IR
ligands in SAMP8 mice [53–57]. However, a role for those
two pathological conditions related to I2-IR ligand interac-
tion cannot be discarded because MCR5 elicited beneficial
effects despite the old age of the SAMP8 mice. Aged
SAMP8 mice present lower inflammation and OS due to

being at the endpoint of the senescence process [56, 57].
Therefore, it can be challenging to determine drug effects
on these processes in aged SAMP8 mice.

MCR5 and MCR9 effects on key molecular markers for
synapsis and apoptosis were studied to unravel the prevention
of cognitive decline by I2-IR ligands in SAMP8 mice, which
is characterized by alterations in those processes. In conso-
nance with better cognitive performance, the compounds test-
ed increased synaptic markers such as SYN and PSD95, indi-
cating a neuroprotective role for MCR5 and MCR9.
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Fig. 8. Changes in APP processing and Aβ degradation enzymes in 12-
month-old SAMP8 mice treated with both I2-IR ligands. Representative
WB of the APP and its fragments. a A significant increase in sAPPα
protein levels in the MCR9 group compared with the Control group,
and no significant difference between the MCR5 and Control groups.
b A significant reduction in sAPPβ protein levels in the MCR5 group
compared with the Control group, and no significant difference between
theMCR9 andControl groups. cA significant increase in Adam10 gene
expression in theMCR5 group comparedwith theControl group, and no

significant difference in the MCR9 group. d A significant increase in
NEP gene expression in the MCR5 group compared with the Control
group, and no significant difference in the MCR9 group. Values in bar
graphs were adjusted to 100% for protein level of the Control group.
Gene expression levels were determined by real-time PCR. Data are
expressed as means ± SEM (n=4-5 animals per group) and analyzed
using one-way ANOVA followed by Tukey’s post hoc test for multiple
comparisons. *p<0.05
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There are several cellular and molecular pathways related to
better synaptic performance, including proteolytic and phos-
phorylation activities or apoptotic processes. Regarding proteo-
lytic processes, calpain is an intracellular protease that cleaves
the CDK5 activator p35 to a p25 fragment. MCR5 andMCR9
diminished calpain levels and its activity with a reduced 150
SPBD fragment. Moreover, a significant reduction in p25 pro-
tein levels was found in treated SAMP8 mice. A decrease in
p25 can also influence CDK5 activity, as implicated in Tau
phosphorylation [58, 59]. These results indicate that CDK5
phosphorylation activity should be diminished after I2-IR li-
gand treatment, corroborating results obtained previously for
MCR5 in a kainate model of neuronal damage [60].

Caspase 3 mediated apoptosis was also addressed. A sig-
nificant reduction of caspase 3 activity and diminution of Bax
protein were found in MCR9 treated SAMP8 mice. Because
Bax is described as a pro-apoptotic protein, its diminution
indicates a possible protective role for I2-IR ligands in neurons
[61]. By contrast, reduced levels of Bcl-2, considered an anti-
apoptotic protein, deserve further studies. Several authors
have indicated that when Bax is reduced, Bcl-2 is less neces-
sary for blocking Bax dimer to form the mitochondrial pore; in
this situation cells reduce the Bcl-2 levels as a control mech-
anism [62].

An increase in p-AKT was induced by the I2-IR ligands,
whereas a decrease in ERK½ activation was observed. p-AKT
inactivated GSK3β, a key kinase involved in the process of
Tau hiperphosphorylation, by phosphorylation in Ser9. To this
point, MCR5- and MCR9-treated SAMP8 mice showed an
increase of Ser9 phosphorylated GSK3β and reduced Tau
hyperphosphorylation.

ERK½ inhibition (that reduction of p42/p44) by MCR5
and MCR9 can contribute to the beneficial effect elicited by
I2-IR on synaptic markers and Tau phosphorylation processes.
ERK½ belongs to a subfamily of MAPKs and plays diverse
roles in the CNS, such as neuronal survival or death, synaptic
plasticity, and learning and memory through phosphorylation
of regulatory enzymes and kinases [63, 64]. Although crucial
for neuronal survival, there is some evidence that prolonged
activation of the ERK pathway can induce a deleterious effect
to the cell [65, 66]. Interestingly, long-lasting ERK activation
in neurons has been demonstrated in neurodegenerative dis-
eases such as AD [67, 68] and PD [69]. Here, the inhibition of
this kinase participates in post-translational modifications in
cytoskeletal proteins such as Tau, ameliorating the neuronal
network functioning, as demonstrated with an increase in syn-
aptic markers.

The relationship among MAPKs, such as ERK½ [70], and
PI3K, such as AKT, and imidazoline receptors is well defined
[71, 72]. In this respect, it has been described that either ERK or
AKTcan be associated with themultifunctionalFas/FADD com-
plex [73, 74]. Apoptosis is an important contributor to neurode-
generation [75], and in this regard, the FADD protein has been

suggested as a putative biomarker for pathological processes
associated with the course of clinical dementia [76]. It has been
reported that total FADD has a central role in promoting apopto-
sis [77, 78] and its phosphorylation at Ser191/194 mediates non-
apoptotic actions such as cell growth and differentiation [79]. In
our previous work, we demonstrated that MCR5 modified
FADD phosphorylation (i.e., it increased the p-FADD/FADD
ratio) in a kainate-treated rat model [35]. These results could
explain the modulation of proteins from the apoptotic pathway
mentioned before (e.g., a diminution in caspase 3 activation and
significant changes in Bcl-2 andBax), which seems to favor anti-
apoptotic actions mediated through I2-receptors, and especially
byMCR5.

Tau hyperphosphorylation is a histological trend in
many neurodegenerative diseases characterized by cog-
nitive decline, including AD. Therefore, we studied APP
processing pathways. Aberrant APP processing is a hall-
mark of cognitive decline diseases [80]. To assess the
capacity of the tested compounds to modify this patho-
logical hallmark, we evaluated APP fragments, specifi-
cally, sAPPα and sAPPβ. Despite neither APP fragment
reaching significance in either I2-IR ligand-treated
SAMP8 mice group, we found a clear tendency that
indicates the non-amyloidogenic pathway preference.
Moreover, sAPPα is described as a neuroprotective,
neurotrophic and cell excitable regulator with synaptic
plasticity [81]. Adam10 [82] and NEP [83] gene expres-
sion were higher in MCR5 and MCR9 treated mice
groups than in non-treated animals. In sum, I2-IR li-
gands foster a diminution in the amyloidogenic pathway
and higher degradation of β-amyloid in the SAMP8
mice model.

In conclusion, the effectiveness of the two new I2-IR li-
gands in an in vivo female model for cognitive decline was
demonstrated in this study. SAMP8 model mice are gated to
neurodegenerative processes, such as AD, and our research
has shown thatMCR5 and MCR9 can open new therapeutic
avenues against these pathological conditions that currently
have unmet medical needs. Although different authors have
previously indicated the relationship between I2-IR and cog-
nitive decline, this study is the first experimental evidence that
demonstrates the possibility of using this receptor as a target
for cognitive impairment. Here, we demonstrate that this strat-
egy could represent a future approach to treating devastating
conditions such as AD.
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