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Abstract

In this paper we present a method for simultaneously segmenting brain tumors and an extensive 

set of organs-at-risk for radiation therapy planning of glioblastomas. The method combines a 

contrast-adaptive generative model for whole-brain segmentation with a new spatial regularization 

model of tumor shape using convolutional restricted Boltzmann machines. We demonstrate 

experimentally that the method is able to adapt to image acquisitions that differ substantially from 

any available training data, ensuring its applicability across treatment sites; that its tumor 

segmentation accuracy is comparable to that of the current state of the art; and that it captures 

most organs-at-risk sufficiently well for radiation therapy planning purposes. The proposed 

method may be a valuable step towards automating the delineation of brain tumors and organs-at-

risk in glioblastoma patients undergoing radiation therapy.
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1. Introduction

Glioblastomas, which are the most common type of malignant tumors originating within the 

brain (Preusser et al., 2011), are commonly treated with a combination of surgical resection, 

chemo-therapy and radiation therapy. During radiation therapy, the patient is subjected to 

radiation beams, typically from different directions and with different intensity profiles, with 

the aim of maximizing the delivered radiation dose to the targeted tumor while minimizing 

the dose to sensitive healthy structures, so-called organs-at-risk (OARs) (Shaffer et al., 

2010). For the purpose of planning a radiation therapy session, these structures need to be 

delineated on computed tomography (CT) or magnetic resonance (MR) scans of the 

patient’s head (Munck af Rosenschöld et al., 2011).

In current clinical practice, delineation is performed manually with limited assistance from 

automatic procedures, which is time consuming for the human expert and typically suffers 

from high inter-rater variability (Deeley et al., 2011; Dolz et al., 2015b; Menze et al., 2015). 

These limitations are amplified in emerging techniques for image-guided radiation therapy, 

which introduce a demand for continuous delineation during treatment (Lagendijk et al., 

2014). Consequently, there is an increasing need for fast automated segmentation methods 

that can robustly segment both brain tumors and OARs from clinically acquired head scans.

Recent years have seen an influx of discriminative methods for brain tumor segmentation, 

with good – although not very robust – performance reported in the annual MICCAI Brain 

Tumor Segmentation (BRATS) challenges (Menze et al., 2015). Discriminative methods 

directly exploit the intensity information of annotated training data to discern between 

tumorous and other tissue in new images. Traditionally, they rely on user-engineered image 

features that are then fed into classifiers, such as random forests (Zikic et al., 2012; Islam et 

al., 2013; Tustison et al., 2015; Maier et al., 2016) or support vector machines (Bauer et al., 

2011). Lately, however, convolutional neural networks (CNNs), which learn suitable image 
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features simultaneously with their classifiers, have become more prominent (Pereira et al., 

2016; Kamnitsas et al., 2016; Havaei et al., 2017).

Although discriminative methods have demonstrated state-of-the-art tumor segmentation 

performance, they suffer from several drawbacks that limit their practical applicability in 

radiation therapy planning settings. In particular, what is needed in radiation therapy is an 

accurate segmentation not just of the tumor, but also of a multitude of OARs. Although 

CNNs segmenting dozens of brain substructures have recently been demonstrated (Roy et 

al., 2017; Rajchl et al., 2018), using such methods in the context of radiation therapy 

planning is complicated by their need for large annotated training datasets, as scans with 

high-quality segmentations of both tumors and OARs in hundreds of patients are not easily 

available. Further exacerbating this issue is that both the type and the number of acquired 

images often differ substantially among treatment centers, not only as a result of differences 

in imaging protocols and scanner platforms, but also because of the continuous development 

of novel MR pulse sequences for brain tumor imaging (Mabray et al., 2015; Sauwen et al., 

2016). Although an active research area in the field (Havaei et al., 2016; Ghafoorian et al., 

2017; Valindria et al., 2018), effectively dealing with the ensuing explosion of possible 

contrasts and contrast combinations remains an open problem for discriminative 

segmentation methods.

In order to sidestep these difficulties with discriminative approaches, we present a method in 

this paper for simultaneously segmenting brain tumors and OARs using a generative 
approach, in which prior knowledge of anatomy and the imaging process are incorporated 

using Bayesian statistics. Specifically, our method combines an existing contrast-adaptive 

method for whole-brain segmentation (Puonti et al., 2016) with a new spatial regularization 

model of tumor shape using generative neural networks. The OARs we consider in this 

paper are eyes, optic chiasm, optic nerves, brainstem, and hippocampi, but more structures 

can easily be added. Compared to existing work, the proposed method presents several novel 

contributions:

1. To the best of our knowledge, this is the first method that addresses the 

segmentation of both brain tumors and OARs within the same modeling 

framework. While existing generative methods for tumor segmentation typically 

also perform classification into white matter, gray matter and cerebrospinal fluid 

(Moon et al., 2002; Prastawa et al., 2003; Menze et al., 2010; Gooya et al., 2012; 

Kwon et al., 2014; Bakas et al., 2016), they do not further sub-divide these tissue 

types into OARs, nor do they segment OARs outside the brain. Conversely, with 

the exception of the optic system (Bekes et al., 2008; Noble and Dawant, 2011; 

Dolz et al., 2015a), most automated segmentation methods for OARs in radiation 

therapy applications have been concentrated on label transfer using non-linear 

registration of manually annotated template data (Dawant et al., 1999; Cuadra et 

al., 2004; Isambert et al., 2008; Bauer et al., 2013; Bondiau et al., 2005), which 

does not address the problem of tumor segmentation itself.

2. By adopting a generative approach, the proposed method makes judicious use of 

readily available training data. In particular, the approach allows merging of 

disparate models of normal head structures, learned from manually annotated 
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scans of normal subjects, with models of tumor shape derived from brain tumor 

patients, without requiring that segmentations of these two set of structures are 

available within the same set of subjects. Importantly, once trained the same 

method can be readily applied to data from different sites without retraining. As 

we will demonstrate, this is the case even when data acquisitions are 

fundamentally different from the data used to train the method, such as CT scans 

or experimental MR contrasts.

3. In contrast to discriminative methods for brain lesion segmentation, in which 

large spatial contexts are exploited to achieve state-of-the-art segmentation 

accuracy (Corso et al., 2008; Geremia et al., 2011; Karimaghaloo et al., 2016; 

Brosch et al., 2016; Kamnitsas et al., 2016), spatial regularization of lesions in 

generative methods has so far been limited to local properties, such as local 

lesion probability in lesion-seeded probabilistic atlases (Moon et al., 2002; 

Prastawa et al., 2003; Gooya et al., 2012; Kwon et al., 2014; Bakas et al., 2016) 

or first-order Markov random fields (MRFs) in which only pairwise interactions 

between neighboring voxels are taken into account (Van Leemput et al., 2001; 

Menze et al., 2010). In this paper, we explore the potential of convolutional 

restricted Boltzmann machines (cRBMs) (Lee et al., 2011) to provide long-range 

spatial regularization through MRFs with high-order clique potentials that are 

automatically learned from manual segmentations of brain tumors. We 

empirically demonstrate that these higher-order shape models yield an advantage 

in segmentation accuracy compared to first-order MRFs.

Preliminary versions of this work appeared in two conference contributions (Agn et al., 

2016a,b). Here we extend the method to handle more OARs, in particular optic nerves, optic 

chiasm, and eyes; describe the model and the statistical inference in more detail; and provide 

an in-depth validation on a large number of patients, evaluating the method’s adaptability to 

varying input data and suitability for radiation therapy planning.

2. Modeling framework

Let D = (d1,...,dI) denote the data of N co-registered medical images of a patient’s head, 

where I is the number of image voxels and di contains the log-transformed1 intensities at 

voxel i. Each voxel i has a normal label li ∈ {1,..., K} that is associated with one of K = 17 

normal head structures, detailed in Table 1, where B denotes a set of structures located 

inside the brain. A voxel i can be tumor-affected, indicated by zi = 1, where zi ∈ {0,1}. 

Within tumor-affected tissue, a voxel i can be either edema or core, indicated by yi = 0 and 

yi = 1, respectively, where yi ∈ {0,1}. Edema corresponds to the visible peritumoral edema 

surrounding the core, which corresponds to the gross tumor volume (GTV) used in radiation 

therapy. To model the labels li, zi and yi across all voxels, we build a generative model that 

describes the image formation process, seen in Figure 1. The model consists of two parts. 

The first part is a likelihood function p(D|l, z, y, θ) that links the labels to image intensities, 

where l =(l1,...,lI), z = (z1,...,zI), and y = (y1,...,yI). This likelihood function depends on a set 

1We work with log-transformed intensities to model the MR bias field effect as an additive (rather than multiplicative) process, see 
Section 2.2.
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of parameters θ, governed by a prior distribution p(θ), that allows the model to adapt to 

images with different contrast properties. The second part is a segmentation prior p(l, z, y|η) 

= ∑
Hz ∑

Hy p(l, z, y, Hz, Hy|η), where η, with prior p(η), are parameters governing the 

deformation of a probabilistic atlas, and Hz and Hy are auxiliary variables that help encode 

high-order shape models of z and y.

We use this model to obtain a fully automated segmentation algorithm by evaluating the 

posterior of the labels given the data:

p l, z, y |D ∝ p D | l, z, y p l, z, y , (1)

where p(l, z, y) = ∫η p(l, z, y|η)p(η)dη and p(D|l, z, y) = ∫θ p(D|l, z, y, θ)p(θ)dθ will be 

detailed in Section 2.1 and Section 2.2, respectively, and computationally evaluating Eq. 1 

will be addressed in Section 2.3.

2.1. Segmentation prior

We obtain the segmentation prior p(l, z, y|η) by defining

p l, z, y, Hy, Hz |η ∝ exp − E l, z, y, Hy, Hz |η

with an energy

E l, z, y, Hy, Hz |η = Ez z, Hz + Ey y, Hy

−logq(l |η) + ∑
i

f li, zi, yi ,

(2)

where EZ(z, Hz) and Ey(y, Hy) are the energy terms of two cRBMs that model tumor shape 

in z and y, respectively, and q(l|η) is a deformable atlas that models the spatial configuration 

of the normal labels in l. Additionally, we use a restriction function defined as

f l,z,y =
∞ if z = 0 and y = 1
∞ if z = 1 and l ∉ B .
0 otherwise

(3)

This function encodes that a core voxel can never appear outside the tumor-affected region z, 

and that a tumor-affected voxel can never appear outside the brain. Note that it is only this 

restriction function that ties the labels l, z, and y to each other. Without it, the segmentation 

prior would simply devolve into p(l, z, y |η) = p(l|η) p(z) p(y).

We will now present the two types of models that are included in this prior: the cRBMs on 

tumor shape in Section 2.1.1, and the atlas on the spatial configuration of normal head 

structures in Section 2.1.2.
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2.1.1. Prior on tumor shape using cRBMs—In order to model the spatial 

configuration of tumor tissue, we use cRBMs – neural networks that can be interpreted as 

MRFs encoding high-order interactions among voxels (“visible units”) through local 

connections to latent variables (“hidden units”) (Fischer and Igel, 2014). In contrast to a 

standard restricted Boltzmann machine (Smolensky, 1986; Freund and Haussler, 1992; 

Hinton, 2002), where arbitrary weights can be assigned between the visible and the hidden 

units, the weights of the connections in a cRBM are in the form of filters that are much 

smaller than the image size and that are shared among all locations in the image (Lee et al., 

2011). This allows us to infer over large images without a predefined size. We now present 

the model in only 1D for the sole purpose of avoiding cluttered equations, but it directly 

generalizes to 3D images.

The distribution over visible units v in a cRBM is defined as

p(v) = ∑
Hv

exp − Ev v, Hv (4)

with the energy term (Lee et al., 2011)

Ev v, Hv = − ∑
m = 1

M
hm

v • wm
v * v − ∑

m = 1

M
bm
v ∑

j = 1

J
hm j
v − av ∑

i = 1

I
vi,

where Hv = hm
v

m = 1
M

 contains M hidden groups, • denotes element-wise product followed 

by summation, and * denotes spatial convolution. Each hidden group hm
v  is connected to the 

visible units in v with a convolutional filter wm
v  of size r, and contains J = I − r + 1 hidden 

units. The filter wm
v  models interactions between the hidden and visible units, effectively 

detecting specific features in v. Furthermore, each hidden group has a bias bm
v  and visible 

units have a bias av. These bias terms encourage units to be enabled or disabled when set to 

non-zero values. A small example of a cRBM can be seen in Figure 2.

The computational appeal of this model is that no direct connections exist between two 

visible units or two hidden units, so that the visible units are independent of each other given 

the state of the hidden ones, and vice versa:

p v |Hv = ∏
i

p vi |Hv and p Hv |v = ∏
m

∏
j

p hm j
v |v

with p vi |Hv ∝ exp vi ∑
m

wm
v * hm

v
i
+ av

and p hm j
v |v ∝ exp hm j

v wm
v * v

j
+ bm

v ,

(5)
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where w denotes a mirror-reversed version of the filter w. Although no direct connections 

exist among visible units, high-order connections are still obtained among them through the 

connections to the hidden units. This can be seen clearly by summing out the hidden units in 

Eq. 4 analytically (Fischer and Igel, 2014), which gives us p(v) ∝ exp[−Ev(v)] with

Ev(v) = ∑
i = 1

I − r + 1
g vi: i + r − 1 − av ∑

i = 1

I
vi, (6)

where i : i′ denotes elements from i to i′, and g(vi:i+r−1) = 

−∑m log 1 + exp wm
v • vi: i + r − 1 + bm

v  is a high-order MRF clique potential defined over 

groups of visible units as large as the filter size r. This can be contrasted to traditionally used 

MRF models for brain lesion shape, e.g., (Van Leemput et al., 1999a; Menze et al., 2010), 

where av is set to zero and the clique potentials are only between pairs of voxels in v, i.e., r = 

2, defined as g(vi:i+1) = βv|vi − vi+1|, where βv is a user-tunable hyperparameter.

In this paper, we use two separate binary cRBMs: one that models shape in the tumor-

affected map z and one that models shape in the core map y, with energies Ez(z, Hz) and 

Ey(y, Hy), defined exactly as for v. We learn suitable values for the filters and biases of these 

cRBMs by stochastic gradient descent on the log-likelihood using expert segmentations 

obtained from training data, as detailed in Section 3.2.

2.1.2. Atlas-based prior on normal head structures—To model the spatial 

configuration of normal head structures q(l|η), we use the type of probabilistic atlas 

introduced in (Van Leemput, 2009) and further validated in (Puonti et al., 2016). It is based 

on a deformable tetrahedral mesh, where the parameters η are the spatial positions of the 

mesh nodes and p(η) is a topology-preserving deformation prior (Ashburner et al., 2000). 

Each mesh node in the atlas is associated with a probability vector containing the 

probabilities of the K normal head structures to occur at that node; for a given mesh 

deformation, these vectors are interpolated using barycentric interpolation to yield 

probabilities πi (k|η) for each structure k in all voxels i. Assuming that structure labels at 

different voxels are conditionally independent given the node positions, this finally yields

q(l |η) = ∏
i = 1

I
πi li/η .

As described in (Van Leemput, 2009), the atlas can be trained by a non-linear, group-wise 

registration of expert segmentations obtained from training data. The node positions in atlas 

space with associated label probabilities are optimized during this training process, as well 

as the topology of the mesh, where the mesh resolution adapts to be sparse in large uniform 

regions and dense at label borders. Figure 3 shows the atlas that we built for the current 

paper; more details will be given in Section 3.1.
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2.2. Likelihood

To link the labels l, z and y to image intensities, we use X = 12 Gaussian mixture models 

(GMMs) in the likelihood function p(D|l, z, y, θ), where each GMM models the intensity 

distribution of certain label combinations. Some GMMs are connected to several label 

combinations, e.g., left and right hippocampus are modeled by the same GMM as both 

hippocampi have the same intensity properties, and any voxel i that belongs to edema (i.e., zi 

= 1, yi = 0 and li ∈ B) is modeled by a single GMM. In order to map a voxel i with li, zi and 

yi to a specific GMM, we therefore introduce a mapping function x(li, zi, yi), which is 

detailed in Table 2. Additionally, we model so-called bias fields that typically corrupt MR 

scans as additive effects by linear combinations of spatially smooth basis functions. A bias 

field is a multiplicative low-frequency imaging artifact, so to model it as an additive effect 

we work with log- transformed intensities throughout this paper, as in (Wells et al., 1996; 

Van Leemput et al., 1999b).

Specifically, we define the likelihood function as

p(D | l, z, y, θ) = ∏
i

pi di | x li, zi, yi , θ

with pi di | x, θ = ∑
g = 1

Gx
γxg𝒩 di | μxg + Cϕi, Σxg ,

where 𝒩(d|μ, ∑) denotes a multivariate normal distribution with mean μ and covariance ∑; 

Gx is the number of components in the xth GMM; and γxg, μxg and ∑xg are the weight, 

mean and covariance matrix of component g. The weights satisfy the constraints γxg, ≥ 0 

and ∑g = 1
Gx γxg = 1. Furthermore, the bias fields corrupting MR scans are modeled by ϕi and 

C. The column vector ϕi ϵ ℝP evaluates P spatially smooth basis functions at voxel i and C = 

(c1,..., cN)T denotes the parameters of the bias field model, where cn ϵ ℝP are the parameters 

for image contrast n. Finally, all likelihood parameters are jointly collected in θ = {{γxg, 

μxg, ∑xg}∀xg, C}.

We use a restricted conjugate prior p(θ) on the likelihood parameters:

p(θ) ∝
Πx Dir γx |α0 ∏g = 1

Gx IW Σxg |vx
0, Sx

0

if constraints on μxg are satisfied
0 otherwise,

(7)

where we have used uniform priors on the bias field parameters C and the mean vectors 

{μxg}, and conjugate priors on the covariance matrix of each component and mixture 

weights of each GMM following the definitions in (Murphy, 2012). To avoid extreme 

numerical values in Gaussian components representing only a handful of voxels, we 
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regularize the covariance matrices using inverse-Wishart distributions IW Σ |vx
0, Sx

0 , where 

Sx
0 is a prior scatter matrix with strength vx

0 . Further-more, to discourage numerical removal 

of components, we use symmetric Dirichlet distributions Dir(γ|α0) where α0 > 1, since 

these have their mode at γxg = 1/Gx, ∀x, g. Finally, we add certain linear constraints on 

{μxg} to encode prior knowledge about overall tumor appearance relative to normal brain 

tissue in typical MR sequences for brain tumor imaging. These constraints allow for a wide 

variability of tumor appearance across subjects, while imposing plausible limits on how 

similar to normal tissue tumors can look. Tuning of the likelihood function and its parameter 

prior is detailed in Section 3.3.

2.3. Inference

Exact inference of the posterior p(l, y, z|D) in Eq. 1 is computationally intractable because it 

marginalizes over all of the uncertainty in the model parameters and the hidden units of the 

cRBM models. We therefore resort to Markov chain Monte Carlo (MCMC) techniques to 

sample from all unknown variables (except the atlas node positions η, as detailed below), 

followed by voxel-wise majority voting on the segmentation samples to obtain the final 

segmentation. This procedure is detailed in Section 2.3.1.

Although it is possible to also sample from η, as shown in (Iglesias et al., 2013), this is 

considerably more computationally expensive and was not implemented in this paper. 

Instead, we ignore the uncertainty on deformations and use a suitable point estimate of the 

atlas node positions η obtained with a simplified model, which we describe in Section 2.3.2. 

We also obtain an initial state of the sampler from this simplified model.

2.3.1. MCMC sampler—Given a point estimate of the atlas node positions η, we 

generate samples of the labels l, z and y from p(l, z, y|D, η) by sampling from p(l, z, y, Hz, 

Hy, θ|D, η) using a blocked Gibbs sampler, and discarding the samples of Hy, Hz and θ. The 

sampler, which is illustrated in Algorithm 1, iteratively draws each set of variables from its 

conditional distribution given the other variables; with the exception of θ this is 

straightforward to implement as each conditional distribution factorizes over its components. 

The hidden units Hz and Hy are sampled as in Eq. 5, and the labels are sampled from

p l, z, y |D, Hz, Hy, θ, η = ∏
i

pi li, zi, yi |di, Hz, Hy, θ, η (8)

with

pi li, zi, yi |di, Hz, Hy, θ, η ∝

pi di | li, zi, yi, θ πi li exp zi ∑
m

wm
z * hm

z
i

+ az

exp yi ∑
m

wm
y * hm

y
i
+ ay exp − f li, zi, yi .
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Sampling from the conditional distribution p(θ|D, l, z, y) is more difficult due to 

interdependencies among the various components of θ (including those imposed by the 

linear constraints on the Gaussian means {μxg}), and is detailed in Appendix A.

We obtain the final estimate of the labels l, z, and y by voxel-wise majority voting, 

separately on each variable, over S collected samples after an initial burn-in period of 

Sburn-in samples.

Algorithm 1

MCMC sampler to obtain l, z, y

Input: I(0), z(0), y(0), η

Output final estimates of labels l, z, y
for s = 1 to (Sburn-in + S)

 Sample θ from p(θ|D, l(s−1), z(s−1), y(s−1)), detailed in Appendix A

 Sample Hz from p(HZ|z(s−1)), see Eq. 5

 Sample Hy from p(Hy|y(s−1)), see Eq. 5

 Sample l(s), z(s), y(s)

  from p(1, z, y|D, Hz, Hy, θ, η) in Eq. 8

end for

Final l, z, y obtained by voxel-wise majority voting of samples in I(s)z(s), y(s) Sburn−in + S

s = Sburn−in + 1

2.3.2. Simplified model to obtain atlas node position estimates and initial 
state of sampler—For the purpose of estimating appropriate atlas node positions η and to 

obtain an initial state {l(0), z(0), y(0)} for the MCMC sampler, we use a simplified model in 

which the non-local dependencies among the voxels introduced by the cRMB shape models 

are removed. In particular, we set the filter weights wm
z

m = 1
M

 and wm
y

m = 1
M

 to zero values, 

effectively removing the hidden units from the model, and set the visual bias values so that a 

fraction w = 0.1 of normal voxels is expected to be tumorous, and within these voxels a 

fraction u = 0.5 is expected to be tumor core. We achieve this by setting the visual biases 

ay = log u
1 − u  and az = log w − wu

1 − w . This reduces the model to the same form as in (Puonti et 

al., 2016), and we can therefore use the same approach for optimization, i.e., by alternating 

between optimizing the likelihood parameters θ with a generalized expectation-

maximization (GEM) algorithm (Dempster et al., 1977) and optimizing the atlas node 

positions η with a general-purpose gradient-based optimizer.

Algorithm 2 illustrates this approach, which is implemented as in (Puonti et al., 2016) with a 

few exceptions. In particular, for the atlas node positions a more efficient optimizer is used 

(limited-memory BFGS (Liu and Nocedal, 1989)). Furthermore, the linear constraints in the 

prior p(θ) (Eq. 7) alter the relevant update equations in the GEM algorithm to involve a so-

called quadratic programming problem, a detailed in Appendix B. Finally, as in (Puonti et 

al., 2016), all Gaussian component parameters in θ are initialized based on the atlas prior 
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after affine registration, except the mean values for the tumor GMMs. These are instead 

initialized based on prior knowledge about overall tumor appearance in typical MR 

sequences for brain tumor imaging, as detailed in Section 3.3.

After convergence of the parameter optimization with this simplified model, we record η and 

compute the maximum a posteriori segmentation

I(0), z(0), y(0) = arg max
l, z, y

p(l, y, z |D, θ , η)

= argmax
li, zi, yi

∏
i

p li, zi, yi |di, θ , η ,

which is used as the initial state for the MCMC sampler.

Algorithm 2

Initial algorithm to obtain l(0), z(0), y(0), η

Input: D, initial affine transformation of atlas η

Output: l(0), z(0), y(0), η
Change tumor prior to a simplified version

Initialize θ
until convergence

  Optimize θ = arg maxθ p( θ |D, η )

  Optimize η = arg maxη p( η |D, θ )

end until

Record η

Compute maximum a posteriori segmentation {l(0), z(0), y(0)} = arg maxl,z,y p(1, z, y|D, θ, η)

3. Training and tuning of the model

In this section, we describe how we trained the deformable atlas q(l|η) (in Section 3.1) and 

the two cRBMs modeling z and y (in Section 3.2), which together make up the segmentation 

prior in our model. Furthermore, we describe overall tuning of the method in Section 3.3.

To train the deformable atlas, we used the same training dataset as in (Puonti et al., 2016), 

which is also the training data of the publicly available software package FreeSurfer (Fischl, 

2012). This dataset consists of 39 subjects (without any tumors) with dozens of 

neuroanatomical structures within the brain segmented by experts, following a validated 

semi-automated protocol developed at the Center for Morphometric Analysis (CMA), MGH, 

Boston (Caviness et al., 1989, 1996; Kennedy et al., 1989). We call this dataset the atlas 
training dataset.

For all other parts of the model, we used the training dataset of the brain tumor segmentation 

(BRATS) challenge that was held in conjunction with the BrainLes workshop at the 2015 
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MICCAI conference. This dataset consists of 220 high-grade gliomas and 54 low-grade 

gliomas of varying types, with publicly available ground truth segmentations of tumor, 

which include annotations of four tumor regions: edema and three regions inside tumor core. 

30 subjects were manually segmented (20 high-grade, 10 low-grade), while the rest have 

fused segmentations from highly ranked algorithms from previous editions of the BRATS 

challenge. The included MR sequences are T2-weighted FLAIR (2D acquisition), T2-

weighted (2D acquisition), T1-weighted (2D acquisition), and T1-weighted with contrast 

enhancement (T1c, 3D acquisition). The scans have been acquired at different centers, with 

varying magnetic field strength and resolution. All data were resampled to 1 mm isotropic 

resolution by the challenge organizers. We call this dataset the BRATS 2015 training dataset.

3.1. Training the deformable atlas

We automatically trained the tetrahedral mesh atlas, shown in Figure 3 and described in 

Section 2.1.2, from expert segmentations from the atlas training dataset. We emphasize that 

only the manual segmentations are needed for this purpose, and that the intensity 

information of the original MR scans from which these were derived was not used.

As we are specifically interested in structures applicable to radiation therapy, we merged 

some of the manually segmented structures into larger labels before building the atlas. 

Specifically, we kept the segmentations for the OARs brainstem, optic chiasm and left and 

right hippocampus; as well as the background label. We merged all other structures into the 

following catch-all labels: cerebrospinal fluid (CSF), and remaining white matter (WM) and 

gray matter (GM). Two important OARs were not included in the available expert 

segmentations, as they are located outside of the brain – namely optic nerves and eyes. We 

therefore performed additional manual delineations for the left and right structures of these 

two extra OARs. To provide some context around these structures, we also delineated the 

muscles and fat in the eye sockets into two separate labels. We further separated the left and 

right eye into two labels each: eye fluid describing the fluid and gel inside an eye and eye 
tissue describing the lens and the solid outer layer of an eye.

To build the atlas, we chose the resulting segmentations of a representative subset of 10 

subjects. We selected 10 subjects as manual delineations are time consuming and we have 

previously shown that adding more subjects does not substantially increase the average 

segmentation performance (Puonti et al., 2016). After building the atlas, we added an 

unspecified brain tissue label designed to capture normal structures that are not specified in 

the atlas, such as blood vessels. Towards this end, we added a constant prior probability of 

0.01 for this label in each mesh node’s probability vector and re-normalized the probability 

vector to ensure that the values sum to one. Overall, we use K = 17 normal head structure 

labels, listed in Table 1.

3.2. Training the cRBMs

To learn suitable values for the filters and biases of the cRBMs modeling z and y, described 

in Section 2.1.1, we used the 30 manual tumor segmentations from the BRATS 2015 training 

dataset, again without using any associated intensity information. As the number of 

segmentations is small, we augmented the dataset by flipping the segmentations in eight 
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different directions, yielding a dataset of 240 tumor segmentations. To form binary 

segmentations corresponding to z and y, we merged tumor regions in the manual 

segmentations: all four regions for z and the three tumor core regions for y. We learned the 

filters and bias terms through stochastic gradient ascent on the log-probability of the tumor 

segmentations under the cRBM model. To efficiently approximate the gradients, we used the 

contrastive divergence (CD) approximation with one block-Gibbs sampling step (Hinton, 

2002) together with the so-called enhanced gradient which has been shown to improve 

learning (Cho et al., 2013; Melchior et al., 2013). Each cRBM was trained with 9600 

gradient steps of size 0.1. A subset of 10 randomly selected segmentations (a so-called mini-

batch) was used to approximate the gradient at each step.

We used the same settings for both cRBMs. The filter size and number of filters were set by 

pilot experiments on a separate subset of the BRATS 2015 training dataset. Choosing a 

larger filter size would increase the number of parameters which may result in overfitting, 

while a smaller filter size might not capture long-range features. Empirically, we found that 

by tying neighboring parameters in a filter we can reduce the number of parameters while 

still capturing long-range features. Specifically, we tied filter parameters in (2 × 2 × 2) 

blocks of voxels, effectively treating each block as one parameter. We used M = 40 filters of 

size (14 ×14 ×14) (i.e., 7 × 7 × 7 blocks) corresponding to 40 hidden groups. In our pilot 

experiments, this configuration performed better than other combinations of 20, 30 and 40 

filters of sizes between 10 and 18.

3.3. Tuning

The tuning of the model described in this section is based on initial experiments on the full 

BRATS 2015 training dataset. We use S = 50 samples from the MCMC sampler, after an 

initial burn-in period of Sburn-in = 200 (cf. Algorithm 1). In the likelihood function p(D|l, z, 
y, θ), described in Section 2.2, we associate three Gaussian components (i.e., Gx = 3) with 

the GMMs of core, eye socket muscle, and background; two components with the GMMs of 

eye socket fat, CSF, and GNE (global optic nerves/eye tissue); and one component with all 

other GMMs (cf. Table 2). Additionally, we use the 64 lowest frequencies of the 3D DCT as 

bias field basis functions, i.e., P = 64.

In the likelihood parameter prior p(θ) defined in Eq. 7, the linear constraints on the Gaussian 

means {μxg} were set by building statistics of their values in the BRATS 2015 training data. 

Specifically, we estimated the average Gaussian mean values using automatic segmentations 

produced by our method, but with the tumor labels fixed to the ground truth. Based on the 

resulting statistics, we set constraints for the Gaussian mean values relating to edema and 

enhanced core in the MR sequences FLAIR and T1c. Enhanced core, which is the core 

region that is enhanced in T1c, is specifically targeted by setting constraints on only one of 

the Gaussian components associated with core. Additionally, we set constraints on the mean 

values relating to the unspecified brain tissue and optic chiasm as to ascertain that these 

labels will not interfere with the tumor segmentation. All constraints are in relation to the 

mean values of global WM (GWM) and global GM (GGM), and are shown in Table 3. Note 

that the image intensities are log-transformed, so an added logarithm of a value is equivalent 

to that value being multiplied by the original intensities.
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For the inverse Wishart distribution in Eq. 7, we set the scatter matrix 

Sx
0 = vx

0X−2diag ∑i di − d di − d T /I , with d = ∑i di/I and strength vx
0 = N + 10−1Ix/Gx,

where Ix is the expected number of voxels for each GMM, obtained from the atlas for 

normal structures and from the BRATS 2015 training data for tumor. Because the 

unspecified brain tissue label should catch any unspecified brain tissue, we use a wider 

scatter matrix for the GMM of this label, with X replaced by 1. Finally, we set α0 = 1 

+ 10−4I in the Dirichlet prior of Eq. 7 for each GMM.

Initialization of the simplified model of Algorithm 2.—As described in Section 

2.3.2, all Gaussian component parameters are initialized based on the atlas prior, except the 

mean values associated with tumor. If the flat tumor prior in the simplified model of 

Algorithm 2 would be used, these mean values would be initialized as the average intensities 

within the brain, which are far away from typical tumor intensities. Therefore, we instead 

initialize each of these mean values a certain distance (measured in standard deviations) 

away from the average data intensity in the corresponding image. Based on initial pilot 

experiments on the BRATS 2015 training data, we set the distances as in Table 4, e.g., the 

T2 mean value for edema is initialized 0.7 standard deviations above the average T2 data 

intensity.

Specific settings for tumor core.—The GMM connected to tumor core needs special 

care due to the flat tumor prior used in the simplified model of Algorithm 2. Tumor core 

regions can vary widely in their intensity distribution and can also have a similar intensity 

distribution to edema and normal tissue. This fact creates challenges when estimating the 

parameters of the core GMM during inference in Algorithm 2, as the flat tumor prior has no 

notion of tumor shape. The easiest region to recognize only by intensity is the region that is 

enhanced in T1c. Thus, we temporarily restrict all three Gaussian components associated 

with core to have identical mixture parameters while using the simplified model, and 

specifically target the enhanced region. We then release the restriction before starting the 

sampler (Algorithm 1). Additionally, to help the full cRBM-based model to capture other 

core regions in the vicinity of the enhanced region, we randomly change a fifth of the edema 

voxels (zi
0  = 1 and yi

0  = 0) in the initial state to core voxels (zi
0  = 1 and yi

0  = 1).

4. Experiments and results

To evaluate our method, we conduct experiments on three different datasets from different 

imaging centers with varying input data, including CT images and several MR sequences. 

The varying input data enables us to assess our method’s ability to handle images from 

different modalities, MR sequences and scanner platforms. In Section 4.1, we test our 

method on a dataset of 70 glioblastoma patients that have undergone radiation therapy 

treatment at Rigshospitalet in Copenhagen, Denmark. We call this dataset the Copenhagen 
dataset. It includes all data needed for a radiation therapy session, which enables us to test 

our method’s performance on both tumor and OAR segmentation, as well as to conduct a 

dosimetric evaluation. In this dataset, we will also vary the input data to the method from the 

available images to test the effect this has on the segmentation performance. Furthermore, 

we will compare our cRBM-based method to that of the same method but instead using first-
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order MRFs. In Section 4.2, we compare our method’s performance on segmenting tumors 

to that of top-performing methods in the 2015 BRATS challenge, using the challenge’s test 

dataset of 53 patients from varying centers, which we call the the BRATS 2015 test dataset. 
Lastly, in Section 4.3, we further test our method’s ability to adapt to varying input data by 

using a dataset of seven patients with a different set of acquired images, including an MR 

sequence not present in the other datasets, scanned at the National Hospital for Neurology 

and Neurosurgery, UCLH NHS Foundation Trust, London, UK. We call this dataset the 
London dataset.

Throughout this section, we employ two widely used metrics – Dice score and Hausdorff 

distance – to compare our method’s segmentations to the manual segmentations in the 

datasets. A Dice score measures overlap between two segmentations, where a score of zero 

means no overlap and a score of one means a perfect overlap. In contrast, a Hausdorff 

distance evaluates the distance between the surfaces of two segmentations. As in the BRATS 

challenges, we use a robust version of this metric. A further description of these two metrics 

can be found in the BRATS reference paper (Menze et al., 2015).

The entire algorithm was implemented in MATLAB 2015b, except for the atlas mesh 

deformation which was implemented in C++. Segmenting one subject takes around 40 

minutes on a Core i7-5930K CPU with 32 GB of memory, with roughly equal time spent on 

Algorithm 1 and 2 described in Section 2.3.

4.1. Results for Copenhagen dataset

To evaluate our method’s performance on segmenting both OARs and tumors, we use the 

Copenhagen dataset, which consists of 70 glioblastoma patients that have undergone 

radiation therapy treatment at Rigshospitalet in Copenhagen, Denmark, in 2016 (GTV size 

range: 5–205 cm3). As part of their radiation therapy workup, these patients have been 

scanned with a CT scanner and a Siemens Magnetom Espree 1.5T MRI scanner. The dataset 

includes three MR sequences: T2-weighted FLAIR (transversal 2D-acquisition), T2-

weighted (T2, transversal 2D- acquisition) and T1-weighted with contrast enhancement 

(T1c, 3D-acquisition); with a voxel size of (1 × 1 × 3), (1 × 1 × 3) and (0.5 × 0.5 ×1) mm3 

respectively. The CT scans have a voxel size of (0.5 × 0.5 × 1) mm3. As part of the treatment 

planning, the GTV (corresponding to tumor core) and several OARs (including hippocampi, 

brainstem, eyes, optic nerves and chiasm) have been manually delineated in CT-space, with 

the MR sequences transformed to this space. As the only pre-processing step for our 

method, we co-register the MR and CT scans and resample them to 1 mm isotropic 

resolution.

4.1.1. Evaluation of results on three data combinations—To test the ability of 

our method to adapt to varying input data, we evaluate the segmentation results obtained 

with three different data combinations. In the first combination, we use all available data, 

i.e., {T1c, FLAIR, T2, CT}. We include CT scans as they are used in manual delineation of 

the optic system. CT scans do not exhibit bias field artefacts, so we clamp the bias field 

parameters in our model to zero for this image type. Additionally, as CT scans have a low 

contrast within the brain, we can initialize the tumor-associated mean values in the same 
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way as for normal labels. In the second combination, we only use the MR sequences, i.e., 

{T1c, FLAIR, T2}. In the last combination, we use T1c and a new combinatory sequence 

named FLAIR2 that is designed to improve lesion detection (Wiggermann et al., 2016). This 

image is computed by multiplying FLAIR with T2. For this image, we use the same settings 

in our model as for FLAIR. We emphasize that some of the modalities under consideration – 

in particular CT and FLAIR2 – were not included in any training data available to the 

proposed segmentation algorithm. We start with an overall visual inspection of the 

segmentations and then analyze the performance scores, followed by a more in-depth visual 

inspection of some of the segmentations.

Figure 4 shows slices of the segmentations using the three data combinations for four 

representative subjects. We can see that the method in general seems to work well and 

consistently across all three data combinations. The atlas deforms well to fit subjects with 

varying shapes, and the method is capable of segmenting tumor cores of varying size, shape 

and intensity profile; although it underestimates the tumor size in some cases. Eyes, 

hippocampi and brainstem seem to be consistently well-captured, while optic nerves and 

chiasm are less well-captured, but better for the data combination including CT, which is 

because the difference in intensity between the optic nerves and surrounding tissue is larger 

in CT than MR. Finally, as can be noticed in the last subject, many subjects show some 

ambiguity in the intensity profile of the optic nerves.

Figure 5 shows box plots of the Dice scores and Hausdorff distances for the three data 

combinations, with the following structures: tumor core (TC), brainstem (BS), hippocampi 

(HC), eyes (EB), optic nerves (ON), and chiasm (CH). The left and right structures are 

included as separate scores in the plots for hippocampi, eyes, and optic nerves. As can be 

seen, the method readily adapts to the various included and excluded images in the three 

data combinations without the need for adjustment. The scores are consistent across the 

three data combinations for all regions except optic nerve and chiasm. The average Dice 

scores for tumor core are fair, but the range of scores is large. However, this is consistent 

with the state of the art in brain tumor segmentation, as will be shown in Section 4.2. 

Furthermore, this dataset includes a number of difficult subjects with large resections, small 

and thin contrast-enhanced tumor regions in T1c and small bright tumor regions in FLAIR.

The Dice scores for brainstem are high and consistent across the subjects and comparable to 

the ones obtained with the healthy whole-brain segmentation method that our method is 

based on (Puonti et al., 2016). Furthermore, the Hausdorff distances are low and consistent 

as well. For eyes, the Dice scores are generally high, except for a few outliers that were 

affected by a very thin outer eye wall, and the Hausdorff distances are generally low, 

indicating a good performance. Hippocampi, on the other hand, have a range of generally 

lower Dice scores than in (Puonti et al., 2016). Their Hausdorff distances are also fairly 

large. In the majority of the outliers, the method has segmented the hippocampus near to the 

tumor border while the manual segmentations either lack that hippocampus or have 

undersegmented it. Finally, the Dice scores for optic nerves and chiasm are generally low 

and with a large range. These structures are very small and thin, which significantly affects 

this metric. The Hausdorff distances for these structures are reasonably low however, which 

indicates that the manual and automatic segmentations are in fact fairly close. The Dice 
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scores for the data combination including CT are higher, due to the better contrast in CT 

between the optic nerve and surrounding structures.

Figure 6 shows sagittal slices of two representative segmentations of hippocampi, together 

with surface plots of the manual and automatic segmentation (for {T1c, CT, FLAIR, T2}). In 

both cases, the automatic segmentations are larger and seem to capture the hippocampi 

somewhat better than the manual segmentations. As can be seen in the surface plots, the 

manual segmentations are not very consistent with each other. The head and subiculum of 

the hippocampi are also excluded, due to a difference in segmentation protocol compared to 

the healthy segmentations used to build the method’s atlas. To a large extent, this explains 

the fairly low and inconsistent Dice scores. Another reason for the lower Dice scores 

compared to (Puonti et al., 2016) could be the large slice thickness in FLAIR and T2, which 

introduces large partial volume effects.

Figure 7 shows slices of two representative segmentations of the optic system (including 

eyes, optic nerves and chiasm), together with surface plots of the manual and automatic 

segmentation (for {T1c, CT, FLAIR, T2}). The method captures the eyes well, although in 

some cases the wall of the eye is slightly oversegmented. By visual inspection, we found that 

the method has some difficulties when a subject has the eye lids open, as the solid wall 

between eye and air becomes very thin. Furthermore, when guided by CT, the method 

captures the optic nerve (the thin nerve going from an eye in one end to the chiasm in the 

other end) reasonably well. However, the method has problems in the region where the nerve 

goes through the skull, as the nerve is especially thin in this region. Because the nerve is 

thin, the method is also sensitive to intensity ambiguities in the data, such as artifacts or 

movement of the optic nerve between image acquisitions. In general, the method finds the 

location of chiasm, but because this structure is so small, the segmentation is to an even 

larger extent affected by partial volume effects and intensity ambiguities. Finally, the manual 

segmentations are quite variable in where the borders are placed between the optic nerves 

and chiasm, as well as between chiasm and the optic tracts (the continuation of the optic 

system into the brain).

Figure 8 shows slices of two problematic tumor core segmentations (for data combination 

{T1c, FLAIR, T2}) that are representative of cases when the method struggles. The first case 

includes a very large resection at the border of the brain, which the method has difficulty to 

adapt to for three main reasons: (1) resectioned tumor regions close to the border of the brain 

can be interpreted as CSF by the method; (2) the method relies on the contrast-enhanced 

tumor region, which in this case is thin and with weak contrast-enhancement; (3) the method 

also relies on a bright tumor region in FLAIR, which in this case is small and only slightly 

brighter than surrounding tissue. In the second case, the method struggles to fill in the inner 

part of the tumor core. This is an issue in a few cases where the intensity profile of the inner 

part of the core is similar to that of edema or healthy tissues.

4.1.2. Dosimetric evaluation—To estimate whether the use of automatic, rather than 

manual, segmentations introduces any differences in metrics typically reviewed when 

planning a radiation therapy session, we conduct an additional dosimetric evaluation of our 

results.
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During radiation therapy planning, the segmentations of tumor core (clinically defined as 

GTV) and OARs are used to optimize a radiation dose distribution that will be used during 

treatment. Figure 9 shows an example of such a radiation dose plan. Note that, to form the 

target to be irradiated, a margin is added around the tumor core to cover likely subclinical 

spread of tumor cells, which is defined as the clinical target volume (CTV). Finally, a margin 

stemming from any geometrical uncertainties adhering to the treatment planning and 

radiation delivery is added, and this volume is defined as the planning target volume (PTV). 

During the treatment planning process, each OAR and target structure (usually only the 

PTV) is given a dose-volume objective and a priority that varies with the clinical relevance. 

A more detailed explanation of the dose plan optimization is given in (Munck af 

Rosenschöld et al., 2011).

To assess the delivered dose to different structures, cumulative dose-volume histograms 

(DVHs) are often used. Each bin in a DVH represents a certain dose and shows the volume 

percentage of a structure that receives at least that dose. Figure 10 shows the DVHs of all 

relevant structures for the example in Figure 9, i.e., tumor core (GTV), brainstem (BS), 

hippocampi (HC), eyes (EB), optic nerves (ON), and chiasm (CH). We show DVHs for both 

the manual and the automatic segmentations for the data combination {T1c, CT, FLAIR, 

T2}. Although ideally the DVHs for the automatic segmentations would be obtained by 

recalculating the dose distributions based on these automatic segmentations and then 

superimposing the manual segmentations on the resulting distributions (Kieselmann et al., 

2018), for the current study we simply superimposed the automatic segmentations on the 

original dose plan instead. The wide margin added around the tumor core means that the 

hippocampus in the same hemisphere is frequently located almost completely inside the 

tumor target. This is the case for the example we show, which is why almost half of the 

hippocampi volume is irradiated as much as the tumor core, as can be seen in Figure 10. The 

maximum accepted dose to the optic chiasm and optic nerves during the treatment planning 

phase is generally 54 Gy, though small volumes may exceed that dose occasionally. Using 

the automatic segmentation of the optic chiasm, the radiation dose maximum is somewhat 

above 54 Gy, suggesting some clinically relevant disagreement between the manual and 

automatic chiasm segmentations.

To ease the comparison of the DVH results of the automatic and manual segmentations for 

all subjects, we summarize them as in (Conson et al., 2014) by using three points in the 

histograms. To cover a large part of the cumulative histograms, we use the dose at 5% of 

volume (D5), 50% of volume (D50), and 95% of volume (D95). Figure 11 shows the 

summarized results for all structures, with values for the manual segmentations plotted 

against values for the automatic segmentations. In the plots, the closer a point is to the 

diagonal line, the closer the results of the manual and automatic segmentations are. For 

tumor core, most points are very close to the line, which is unsurprising considering the 

wide margin added around tumor. The four D95 outliers belong to subjects where small 

regions in the brain were erroneously segmented as tumor core by our method, for some 

cases because of co-occurring pathologies. The results for the organs-at-risk largely confirm 

the findings using Dice scores and Hausdorff distances. Brainstem and eyes are delineated in 

close agreement, and the issue with oversegmentation when the outer eye wall is very thin 

does not affect the dosimetric measure, because that region will always be far away from 
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tumor. The results for hippocampi are varying for subjects where a hippocampus is on the 

border of the tumor target, mainly due to the difference in protocol between the manual and 

automatic segmentations. Furthermore, the results for optic nerves vary widely for a few 

subjects. However, at the maximum dose target of 54 Gy the results of the manual and 

automatic segmentations match fairly well. For the optic chiasm, on the other hand, some 

results for the automatic segmentations are significantly beyond its dose objective of 

maximum 54 Gy. This suggests that significant differences to treatments could be expected 

if the automatic segmentation of this structure would be used instead of the manual 

segmentation when optimizing the radiation dose plan.

4.1.3. Comparing our tumor prior to first-order MRFs—To demonstrate the 

benefits of modeling high-order interactions with the cRBM-based tumor prior, we will 

contrast it to a tumor prior based on more traditional first-order MRFs. As mentioned before, 

first-order MRFs only have pairwise clique potentials, compared to the potentials in cRBMs 

that are defined over groups of voxels as large as the size of the convolutional filters. The 

inference of the model is kept exactly the same except for the tumor prior in Algorithm 1: 

there are no hidden units to sample and therefore the labels in a voxel i are sampled from

pi li, zi, yi |di, θ, η ∝

pi di | li, zi, yi, θ πi li exp −βz ∑
j ∈ ℜi

|zi − z j|

exp −βy ∑
j ∈ ℜi

|yi − y j| exp − f li, zi, yi ,

where ℛi. is the set of 26 voxels that form neighboring pairs with voxel i.

To find suitable values for the user-tunable hyperparameters βz and βy, we performed a grid 

search with steps of 0.5 using the same 30 manually segmented BRATS training subjects 

that we used for training the cRBMs (see Section 2.1.1). For each hyperparameter 

combination, we segmented the subjects using the method with first-order MRFs. By 

comparing the average performance (using Dice scores and Hausdorff distances) we found 

the combination {βz = 4, βy = 1} to have the best overall performance. With these optimized 

hyperparameter values, we compare the tumor core segmentation performance on the data 

combination {T1c, FLAIR, T2} when using the two different priors. The average and 

median Dice score for the cRBM-based method is 0.67 and 0.74 respectively, compared to 

0.58 and 0.57 when using the first-order MRFs described here. Furthermore, the average and 

median Hausdorff distance for the cRBM-based method is 14 mm and 10 mm respectively, 

compared to 23 mm and 17 mm when using first-order MRFs. This demonstrates the benefit 

of modeling high-order interactions among voxels.

4.2. Results for 2015 BRATS test dataset

To further evaluate our method’s performance on segmenting tumors and compare it to that 

of other methods, we use the test dataset of the 2015 BRATS challenge – at the time of 
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writing the latest edition with datasets available to us.2 We participated in this challenge and 

were among the top-performing methods out of a total of 12 methods. This dataset includes 

non-enhanced T1 scans, which the dataset in Section 4.1 lacks, and data with varying 

magnetic field strength and resolution from several imaging centers. The dataset is skull-

stripped, so we merge all non-brain labels used in our method into the background label. We 

stress that we did not need to change anything else in our method.

The dataset is publicly available at the virtual skeleton online platform (Kistler et al., 2013). 

It consists of 53 patients with varying high- and low-grade gliomas, and a mix of pre-

operative and post-operative scans. The included MR contrasts are T2-weighted FLAIR (2D 

acquisition), T2-weighted (2D acquisition), T1-weighted (2D acquisition) and T1-weighted 

with contrast enhancement (T1c, 3D-acquisition). All data were resampled to 1 mm 

isotropic resolution, aligned to the same anatomical template and skull-stripped by the 

challenge organizers. The dataset includes manual annotations of four tumor regions, which 

are not publicly available. Instead, the performance of a method can be evaluated by 

uploading segmentations to the online platform. On the online platform and during the 

challenge, scores are reported on enhanced core, core (which includes enhanced core and 

other core regions), and whole tumor (which includes core and edema).

Figure 12 shows slices of three representative segmentations with: T1c, FLAIR, T2 and T1, 

and the segmentation by our method as presented in this paper. Note that the manual 

segmentations compared against are not publicly available. We can see that the atlas deforms 

well to the subjects, and brainstem and hippocampi are well-captured. Furthermore, our 

method can segment brain tumors with large variations in size, location and appearance. 

Also note the low resolution and image quality in some of the images.

For the purpose of comparing against the manual segmentations, we focus on the core 

region, as this corresponds to the GTV used in radiation therapy. We compare the 

performance of our method to that of three other top-performing tumor segmentation 

methods that also participated in the 2015 BRATS challenge.

1) GL/STRboost (Bakas et al., 2016): This semi-automated method is based on a modified 

version of the generative atlas-based method GLISTR (Kwon et al., 2014; Gooya et al., 

2012), which uses a tumor growth model. The method requires manual input of a seed-point 

for each tumor center and a radius of the extent of the tumor. To increase the segmentation 

performance, the method is extended with a discriminative post-processing step using a 

gradient boosting multi-label classification scheme followed by a patient-wise refinement 

step.

2) Grade-specific CNNs (Pereira et al., 2016): This semi-automated method uses a 

discriminative 2D Convolutional Neural Network (CNN) approach. The method takes 

advantage of the fact that high- and low-grade tumors exhibit differences in intensity and 

spatial distribution. To do this, it uses two CNNs: one trained on high-grade tumors and one 

2We note that the more recent BRATS 2017 and 2018 editions have since released new training and benchmark datasets; in Section 5 
we will briefly discuss the results we report here in the context of these more recent challenges.
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trained on low-grade tumors. The CNN to use for a specific subject is then chosen manually 

based on visual assessment, which is the only manual step in the method.

3) Two-way CNN (Havaei et al., 2017): This fully automated method uses a similar 

discriminative 2D CNN approach to the previous method. The method forms a cascaded 

architecture with two parts, where the voxel-wise label predictions from the first part are 

added as additional input to the second part. Each part has two pathways, where intensity 

features are automatically learned: one learning local details of tumor appearance and one 

learning larger contexts.

Figure 13 shows box plots of the Dice scores and Hausdorff distances for tumor core. We 

show scores for our method and the three benchmark methods as reported at the challenge. 

The scores for our method are for the version we participated with in the challenge, as 

presented in (Agn et al., 2016b). The main difference, compared to the current version, is the 

use of an affinely registered atlas, instead of the mesh-based deformable atlas presented in 

this paper to enable a detailed segmentation of normal head structures. This, however, does 

not significantly affect the tumor segmentation; we also segmented the dataset with our 

current version and obtained similar Dice scores from the online platform, with just a 4 % 

increase in the average Dice score. As seen in the figure, the range of Dice scores is similar 

to our results in Section 4.1 (Figure 5), which shows that our method readily adapts to the 

included non-enhanced T1 scans and data from different imaging centers. Comparing to the 

other benchmark methods, our method performs significantly better on tumor core when 

considering Dice scores. The range of values are large for all methods, illustrating the 

difficulty of segmenting tumors. This dataset includes a number of subjects with large 

resections and a wide variety of tumors, e.g., low- grade tumors that have been shown to be 

difficult to segment in (Menze et al., 2015). The Hausdorff distances for our method are 

somewhat worse than for the other methods, which could be explained by a better capability 

of their methods to remove small erroneous tumor clusters, e.g., because of the deep 

architecture in a CNN. The Hausdorff distances for our method are also worse for this 

dataset than for the dataset in Section 4.1 (cf. Figure 5), which is explained by the generally 

lower resolution and image quality.

4.3. Results for London dataset

As a final experiment, we investigate the ability of our method to adapt to yet a different set 

of acquired images using the London dataset. In contrast to the other datasets, this one 

completely lacks T1-weighted images and includes a new MR sequence: double inversion 

recovery (DIR). The data set consists of seven patients with varying low- and high-grade 

gliomas, which were scanned with a Siemens Trio 3T scanner at the National Hospital for 

Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, as part of a registered 

clinical audit. The following MR images were acquired with 1 mm isotropic resolution: T2-

weighted (3D acquisition) and T2-weighted DIR (3D-acquisition). We use exactly the same 

settings in our method for the DIR images as we would for FLAIR, without any changes. As 

no manual segmentation has been performed on this dataset, we only perform a qualitative 

analysis of the results.
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Figure 14 shows slices for three representative subjects with DIR, T2 and the method’s 

segmentation. As seen in the Figure, our method can easily segment datasets that lack T1-

weighted images and include a DIR image instead of FLAIR without any changes to the 

method. Visual inspection of all seven segmentations revealed no significant deviations from 

other results presented in this paper.

5. Discussion and conclusion

In this paper, we have presented a generative method for simultaneous segmentation of brain 

tumors and an extensive set of organs-at-risk (OARs) applicable to radiation therapy 

planning for glioblastomas. To the best of our knowledge, this is the first time a 

segmentation method has been presented that encompasses both brain tumors and OARs 

within the same modeling framework. The method combines a previously validated atlas-

based model for detailed segmentation of normal brain structures with a model for brain 

tumor segmentation based on convolutional restricted Boltzmann machines (cRBMs). In 

contrast to generative lesion shape models proposed in the past, cRBMs are capable of 

modeling long-range spatial interactions among tumor voxels. Furthermore, by completely 

separating the modeling of anatomy from the modeling of image intensities, the method is 

able to adapt to heterogeneous data that differs substantially from any available training data, 

including unseen (e.g., CT or FLAIR2) or missing (e.g., T1) contrasts.

Although the method we propose is demonstrated to be applicable across data with various 

image contrast properties without retraining, it does rely on contrast-specific settings to 

constrain and to initialize tumor-specific appearance parameters, especially in the MR-

sequences FLAIR and T1c (see Table 3 and Table 4, respectively). We found that this was 

necessary to guide the model to the correct intensities for tumor in these sequences, which 

are typically acquired for brain tumor imaging. Ideally, such hand-crafted rules would be 

replaced by a prior on model parameters that can be learned automaticaly from example 

cases; however, because tumor appearance can vary widely across subjects, robustly 

establishing such a prior may be challenging. With the current set-up, oui results 

demonstrate that the same settings work robustly across FLAIR and T1c images acquired 

with a variety of scanners and imaging protocols, and even when FLAIR is replaced with 

FLAIR2 or DIR. In data where FLAIR and/or T1c is entirely missing, however, the method 

may need to be adjusted by modifying the corresponding lines in Tables 3 and 4.

Our experiments show that the method’s performance in segmenting tumors is comparable 

to that of some of the best methods benchmarked by the BRATS 2015 challenge. We note 

that, since the time of writing, the more recent BRATS 2017 and 2018 editions have released 

new training and benchmark datasets, and that top-performing methods in these challenges 

obtain significantly better Dice and Hausdorff scores than the ones reported here. However, 

some care is needed when comparing the results of the various BRATS challenges. Unlike 

the 2015 edition, which contained a mix of pre- and post-operative scans including several 

cases with large resections, the more recent editions only involve pristine, pre-operative 

cases which are arguably more uniform and somewhat easier to segment. This difference is 

especially important in the given context of radiation therapy planning of glioblastoma 

patients, where the vast majority of patients has undergone resective surgery (Davis, 2016; 
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Munck af Rosenschold et al., 2014) so that segmentation performance on pre-operative 

scans only (as benchmarked by BRATS 2017 and 2018) is less relevant. A second difference 

between older and newer BRATS challenges is that the number of manually annotated 

subjects available for training models differs by almost an order of magnitude (285 in 2017–

2018, vs. the 30 from 2015 we used for the current paper), making the obtained numerical 

scores difficult to compare directly. While the cRBM tumor shape model proposed in the 

current paper is still fairly local, a ten-fold increase in manually annotated training data 

should allow one to use generative shape models with a deeper structure, such as variational 

autoencoders (Kingma and Welling 2013 which could potentially eliminate the occasional 

false-positive tumor detections that remain for the current method. Nevertheless, within the 

given application area of radiation therapy planning, it is worth remembering that further 

increases in segmentation overlap scores may not necessarily translate into meaningful 

improvements in radiation therapy delivery, given the wide margins that are added around 

the tumor to obtain final radiation target volumes. Indeed, the results shown in Figures 10 

and 11 (top left) indicate that, with the exception of a few outliers, tumor segmentation 

performance of the current method may already be quite adequate for this specific purpose.

In addition to delineating tumors, the proposed method is also capable of segmenting the 

OARs hippocampi, brainstem, eyes, optic nerves and optic chiasm. We quantitatively 

evaluated out method’s OAR segmentation performance in 70 patients with manual 

segmentations used when planning a radiation therapy session. The evaluation showed a 

generally good performance in segmenting hippocampi (HC), brainstem (BS) and eyes (EB); 

but lower performance in segmenting the very small structures optic nerves (ON) and 

chiasm (CH). The overall performance of our method (average Dice scores for BS: 0.86, EB: 

0.86, ON: 0.56, CH: 0.39 when using the image combination {CT, T1c, FLAIR,T2}) is 

comparable to the human inter-rater variability reported in (Deeley et al., 2011), where eight 

experts segmented OARs in 20 high-grade glioma patients, with average Dice scores BS: 

0.83, EB: 0.84, ON: 0.50, CH: 0.39. It is clear that the Dice scores for optic nerves and 

chiasm can be low even for experts. Nevertheless, the dosimetric evaluation and visual 

inspection of our automated segmentation of these structures point to the need for further 

research to obtain better results. An improvement could possibly be achieved by 

incorporating dedicated geometrical information in the prior, e.g., about the tubular structure 

of the optic system which was successfully used in (Noble and Dawant, 2011).

Using manual segmentations from radiation therapy planning as ground truth complicates 

our findings, as these segmentations themselves might be suboptimal with large inter-rater 

variability. Different clinics might also use differing delineation protocols. In our 

experiments, the Dice score for hippocampi was significantly affected by differing 

delineation protocols between the experts at the clinic and the expert segmentations used to 

train the atlas in our method. The manual segmentations at the clinic were also found to be 

of variable quality in regions where the segmented structures have a similar intensity profile 

to neighboring structures - such as the chiasm and brainstem compared to neighboring white 

matter structures. Additionally, structures far away from a tumor are sometimes not carefully 

delineated because they will not significantly affect the radiation therapy plan anyway.
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The segmentation method we proposed in this paper can be further extended in a number of 

ways. First, the original segmentations we used to train our atlas for normal brain structures 

include dozens of segmented structures. The method could directly handle any of these 

structures by simply retraining the atlas on segmentations in which these structures have not 

been merged into global catch-all labels as we did in the current paper. This may be helpful 

if additional OARs need to be segmented or for automating CTV decisions based on 

anatomical context (Unkelbach et al., 2014). A detailed whole-brain segmentation can also 

be useful for training outcome prediction models, e.g., to study the effect of the radiation 

received by various structures on cognition (Conson et al., 2014). A second aspect that we 

did not explore in the current work is the method’s innate ability to quantify uncertainty in 

the produced segmentations, by analyzing the variation across the MCMC segmentation 

samples instead of simply retaining the mode in each voxel. As shown in (Le et al., 2016) 

and (Le et al., 2017), uncertainty in segmentation boundaries of tumors and OARs can be 

propagated onto uncertainty in radiation dose distributions, which has interesting potential 

applications in the optimization and the personalization of radiation therapy planning. In 

such applications, however, it will likely be imperative to also take into account the 

uncertainty on atlas deformations instead of using a point estimate for the atlas node 

positions n, as we did in the current work, for instance by using the Hamiltonian Monte 

Carlo (Duane et al., 1987) technique we used for this purpose in (Iglesias et al., 2013).

Segmenting one subject with the proposed method currently takes around 40 minutes. 

Although a manual delineation procedure is typically faster, the method can still be a useful 

aid in the clinical work flow, as no manual input is needed before or during the segmentation 

procedure. A further speed-up would be necessary to use the method for continuous 

segmentation during an image-guided radiation therapy session (Lagendijk et al., 2014). 

Since the implementation used in this paper has mainly been focused on demonstrating the 

feasibility of the method rather than optimizing speed, a further speed-up would be expected 

with a more efficient implementation, especially with one that utilizes GPUs.
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Appendix A.: Sampling from p(θ|l z, y, D)

Here we describe how we sample from p(θ|l, z, y, D) in the blocked Gibbs sampler used in 

Section 2.3.

Table 3 specifies a number of linear constraints on the Gaussian means {μxg} in the prior 

p(θ), encoding prior knowledge about tumor appearance relative to normal brain tissue. 

Stacking all Gaussian means into a single vector μ = …, μxg
T , … T

 allows us to express these 

constraints in the form
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Aμ ≤ b,

where the values in each row of A and b are chosen to match the corresponding line in Table 

3.

Introducing the “one-hot” auxiliary variable ti = ti
xg  to indicate which individual Gaussian 

component the ith voxel is associated with (ti
xg has value one when the voxel belongs to the 

gth component of the xth GMM, and zero otherwise) the target distribution is obtained as a 

marginal distribution of p(θ, {ti}|l, z, y, D): p(θ|l, z, y, D) = ∑{ti} p(θ, {ti}|l, z, y, D). 

Therefore, samples of p(θ, {ti}|l, z, y, D) can be obtained with a blocked Gibbs sampler of 

p(θ, {ti}|l, z, y, D), cyclically sampling from the following conditional distributions and 

subsequently discarding the samples of {ti}:

p ti |θ, l, z, y, D = ∏
i

p ti/θ, x li, zi, yi , di (A.1)

with p ti |θ, x, di =
∑g = 1

Gx ti
xgγxg𝒩 di | μxg + Cϕi, Σxg

∑g = 1
Gx γxg𝒩 di | μxg + Cϕi, Σxg

,

p γx |θ\ γx
, t, I, z, y, D = ∏

x
Dir γx | αxg g = 1

Gx , (A.2)

p μxg |θ
\ μxg

, t, l, Z, y, D

∝ 𝒩 μ |mμ, Sμ if A μ ≤ b
0 otherwise,

(A.3)

p( ∑
xg

∣ θ
\ ∑xg

, t, 1, Z, Y , D) = ∏
x

∏
g

IW(∑
xg

∣ Sxg, υxg), (A.4)

and finally
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p C |θ\C, t, l, z, y, D = 𝒩 c |mc, Sc with c =
c1
⋮

cN

. (A.5)

Here we have defined the following variables:

αxg = α0 + Nxg with Nxg = ∑
i

ti
xg

Sμ =

⋱

Nxg
−1∑xg

⋱

mμ =
⋮

mxg
⋮

with mxg =
∑i ti

xg di − Cϕi
Nxg

Sxg = Sx
0 + ∑

i
ti
xg di − Cϕi − μxg di − Cϕi − μxg

T

vxg = vx
0 + Nxg

Sc =
ΦTW11Φ ⋯ ΦTW1NΦ

⋮ ⋱ ⋮

ΦTWN1Φ ⋯ ΦTWNNΦ

−1

and mc = Sc

ΦT ∑n = 1
N W1nr1n

⋮

ΦT ∑n = 1
N WNnrNn

,

where Φ =

ϕ1
1 ⋯ ϕP

1

⋮ ⋱ ⋮

ϕ1
I ⋯ ϕP

I
and Wmn = diag wi

mn
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with wi
mn = ∑

x
∑

g = 1

Gx
wixg

mn, wixg
mn = ti

xg ∑xg
−1

mn
,

rmn = r1
mn, ..., rI

mn T , ri
mn = di

n −
∑x ∑g = 1

Gx wixg
mn μxg n

wi
mn .

In order to sample from the truncated multivariate Gaussian distribution in Eq. (A.3), we use 

the Gibbs sampling approach proposed in (Kotecha and Djuric, 1999) and (Rodriguez-Yam 

et al., 2004), which cycles through the conditional distributions of each component of μ and 

samples from the corresponding truncated univariate normal distributions using inverse 

transform sampling.

In our implementation, rather than repeating the Gibbs sampler steps described in Eq. (A.1), 

(A.2), (A.3), (A.4), and (A.5) until the Markov chain reaches equilibrium and an 

independent sample of θ is obtained, we only make a single sweep before obtaining new 

samples of Hy, Hz, and {l, z, y} in the main loop described in Algorithm 1, effectively 

implementing a so-called partially collapsed Gibbs sampler (Van Dyk and Park, 2008).

Appendix B.: Optimizing likelihood parameters in GEM algorithm

Here we describe how we optimize the likelihood parameters θ for a given value of the atlas 

node positions η in the simplified model of the label prior described in Section 2.3.2.

We use a generalized expectation-maximization (GEM) algorithm (Dempster et al., 1977) 

that is very similar to the ones proposed in (Van Leemput et al., 1999b) and (Puonti et al., 

2016). In short, the algorithm iteratively updates the various components of θ to the mode of 

the conditional distributions given by Eq. (A.1), (A.2), (A.3), (A.4), and (A.5):

γxg
αxg − 1

∑g′ = 1
Gx αxg′ − 1

, ∀x, g

μ arg max
μ

μ − mμ
TSμ

−1 μ − mμ s.t. Aμ ≤ b (B.1)

Σxg
Sxg

vxg + N + 1, ∀x, g

c mc
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where the “one-hot” auxiliary variables {ti} are replaced by their expected values:

ti
xg =

γxg𝒩 di | μxg − Cϕi, Σxg pi(x |η)

∑x′ = 1
X pi di | x′, θ pi x′ |η

, ∀x, g, i .

Solving Eq. (B.1) is a so-called quadratic programming problem, for which an 

implementation is directly available in MATLAB.
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Highlights

• A method for segmenting brain tumors and an extensive set of organs-at-risk.

• The method is applicable to radiation therapy planning of glioblastomas.

• A generative whole-brain segmentation model combined with a new tumor 

shape model.

• The tumor shape model uses convolutional restricted Boltzmann machines.

• The method can adapt to image acquisitions that differ from available training 

data.
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Figure 1: 
Graphical representation of the model. The atlas-based prior on l is defined by parameters η 
governing the deformation of the atlas. The tumor-affected map z and the tumor core map y 
are connected to auxiliary variables Hz and Hy, respectively. The variables l, z and y jointly 

predict the data D according to the likelihood parameters θ. Shading indicates observed 

variables.
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Figure 2: 

A small 1D example of a cRBM with v = (v1,…,v7) and Hv = hm
v

m = 1
3 . Visible units 

(image voxels) are connected to hidden units in a hidden group hm
v  through a convolutional 

filter wm
v  of size 3. All locations in v share the same filter weights. The connections are 

exemplified by the three central visible units which are connected to the central hidden unit 

in each group.
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Figure 3: 
The built atlas in axial, sagittal, and coronal view; shown in atlas space. Nodes and 

connections between nodes are shown in light green and probabilities of normal labels, 

interpolated between the nodes, are shown in varying colors (yellow = eye fluid, orange = 

eye tissue, red = optic nerves, green = brainstem, lilac = hippocampi, shades of blue = other 

normal labels).
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Figure 4: 
Segmentations of four representative subjects in the Copenhagen dataset. For each subject, 

the top row shows slices of the data (from left to right: T1c, CT, FLAIR, FLAIR2 and T2), 

whereas the bottom row shows, from left to right, the manual segmentation and automatic 

segmentations for data combinations {T1c, FLAIR, T2, CT}, {T1c, FLAIR, T2} and {T1c, 

FLAIR2}. Label colors: white = TC, lilac = edema, green = BS, dark orange = HC, yellow/

light orange = EB, red = ON/CH, shades of blue = other normal labels. For TC in order of 
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appearance: Dice score: {0.68,0.67,0.62}, {0.93,0.93,0.91}, {0.86,0.85,0.85}, 

{0.61,0.72,0.73}, Hausdorff distance: {10,10,10}, {2,3, 5}, {7,7,6}, {42,25,8}.
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Figure 5: 
Boxplots of Dice scores (left) and Hausdorff distances (right) for structures in the 

Copenhagen dataset, for three data combinations in blue, red and green, respectively. 70 

subjects in total. On each box, the central line is the median, the circle is the mean and the 

edges of the box are the 25th and 75th percentiles. Outliers are shown as dots. Black dots at 

the bottom of the Hausdorff distance boxplot indicate structures for which scores could not 

be calculated due to missing ground truth. Note that scores for the left and right structures 

are included separately in the box plots for HC, EB and ON.
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Figure 6: 
Hippocampi on two representative subjects in the Copenhagen dataset. Automatic 

segmentations (for {T1c, CT, FLAIR, T2}) in red and manual segmentations in green. Slice 

of segmentation overlaid on the T1-weighted scan and 3D surface plot of full structure. For 

left and right hippocampus: Dice score: {0.54,0.58},{0.63,0.67}; Hausdorff distance: 

{13,10}, {8,7}.
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Figure 7: 
Optic system on two representative subjects in the Copenhagen dataset. Automatic 

segmentations (for {T1c, CT, FLAIR, T2}) in red and manual segmentations in green. Slice 

of segmentation overlaid on the CT scan and 3D surface plot of full structure. For right and 

left eye; right and left optic nerve; and chiasm: Dice score: {0.91,0.89}, {0.91,0.87}, 

{0.67,0.67}, {0.48,0.55} and {0.49,0.44}; Hausdorff distance: {2,2}, {2,2}, {4,4}, {4,6} 

and {4,6}.

Agn et al. Page 41

Med Image Anal. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8: 
Two problematic tumor core segmentations in the Copenhagen dataset. Data slices shown 

together with automatic segmentation (for {T1c, FLAIR, T2}) and manual segmentation. 

For tumor core: Dice score: {0.04,0.45}, Hausdorff distance: {41,28}.
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Figure 9: 
A radiation dose plan overlaid on a T1c image slice for a representative subject. The dose is 

measured in Gy.
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Figure 10: 
Dose volume histogram (DVH) of several structures for the representative subject in Figure 

9, i.e., tumor core (GTV), brainstem (BS), hippocampi (HC), eyes (EB), optic nerves (ON), 

and chiasm (CH). Solid lines and broken lines correspond to automatic and manual 

segmentations, respectively. Note that all DVHs were computed using the original treatment 

dose plan, which was based on the manual segmentations.
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Figure 11: 
Summary statistics of DVH results for all subjects and structures, showing 5% volume (D5), 

50% volume (D50), and 95% volume (D95), for manual versus automatic segmentations. 

Note that left and right hippocampus, eye and optic nerve are included as separate points in 

their respective plots.
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Figure 12: 
Three representative segmentations in the BRATS test dataset. Slices of T1c, FLAIR, T2, 

T1, and automatic segmentation. Label colors: white = TC, lilac = edema, green = BS, dark 

orange = HC, shades of blue = other brain tissues. Note that the images are skull-stripped by 

the BRATS challenge organizers.
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Figure 13: 
Box plots of Dice scores and Hausdorff distances for tumor core on the BRATS 2015 test 

dataset. 53 subjects in total. Scores are as reported in the challenge. On each box, the central 

line is the median, the circle is the mean and the edges of the box are the 25th and 75th 

percentiles. Outliers are shown as dots.
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Figure 14: 
Three representative segmentations in the London dataset. Slices of DIR, T2 and automatic 

segmentation.

Agn et al. Page 48

Med Image Anal. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Agn et al. Page 49

Table 1:

Labels associated with normal head structures, with brain structures in B.

l ∈ B {white matter (WM), grey matter (GM), cerebrospinal fluid (CSF), brainstem, unspecified brain tissue, and left and right hippocampus}

l ∉ B {background, eye socket fat, eye socket muscles, optic chiasm; and left and right optic nerve, eye tissue and eye fluid}
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Table 2:

Mapping function x(l, z, y) that maps combinations of l, z and y to 12 distinct GMMs in the model. Note that 

combinations {z = 1, ∀y, l ∉ B} and {z = 0, y = 1, ∀l} will never occur due to the restriction function in Eq. 

3. The right column shows the number of components Gx in each GMM – these values are based on pilot 

experiments detailed in Section 3.3.

Combinations of l, z, and y x(l, z, y) Gx

z = 1, y = 1, and l ∈ B core 3

z = 1, y = 0, and l ∈ B edema 1

z = 0, y = 0, and l ∈

 {GM, L/R hippocampus} global gray matter (GGM) 1

 {WM, brainstem} global white matter (GWM) 1

 {L/R optic nerve, L/R eye tissue} global nerves/eye tissue (GNE) 2

 {L/R eye fluid} global eye fluid 1

 CSF CSF 2

 background background 3

 unspecified brain tissue unspecified brain tissue 1

 optic chiasm optic chiasm 1

 eye socket fat eye socket fat 2

 eye socket muscles eye socket muscles 3
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Table 3:

Constraints on mean values of Gaussian components.

Edema (TE)

μTE
FLAIR ≥ max μGWM

FLAIR, μGGM
FLAIR + log1.15

Core, Gaussian component relating to enhanced core (denoted TC1)

μTCl
FLAIR ≥ max μGWM

FLAIR, μGGM
FLAIR

μTCl
TIc ≥ max μGWM

Tlc , μGGM
Tlc + log1.10

Unspecified brain tissue (US)

μUS
FLAIR ≤ min μGWM

FLAIR, μGGM
FLAIR − log1.05

μUS
Tlc ≤ min μGWM

Tlc , μGGM
Tlc − log1.05

Chiasm (CH)

μCH
FLAIR ≤ min μGWM

FLAIR, μGGM
FLAIR
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Table 4:

Distances used to initialize tumor GMMs, in standard deviations away from the average image intensity.

x FLAIR T2 T1 T1c

core 1 0.7 0.2 1.5

edema 1 0.7 0.2 0.2
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