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ABSTRACT We introduce a method for registration and visualization of correlative super-resolution microscopy images from
different microscopy techniques. We established an automated registration procedure based on the generalized Hough
transform. We developed a software tool to apply this algorithm and visualize correlated images from structured illumination
microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM). To demonstrate the potential of this
super-resolution correlator, we visualize the distribution of the presynaptic protein bassoon in the active zones of synapses
in the molecular layer of the mouse cerebellum. First, a multiple labeled sample is imaged by SIM, followed by imaging of
one of the fluorescent labels by dSTORM. To avoid the use of artificial fiducial markers, we used the signal of Alexa Fluor
647 recorded in switching buffer on the two microscopes for image superposition. We recorded multicolor SIM images in
20-mm thick brain slices to identify synapses in the dendritic system of Purkinje cells and put higher-resolved dSTORM images
of the synaptic distribution of bassoon in registry.
SIGNIFICANCE We introduce a method for automated registration and visualization of correlative super-resolution
microscopy images from different microscopy techniques. The tool is applicable to correlative analysis of images acquired
on different microscopes. For example, overview images from multicolor structured illumination microscopy that provide
contextual information in a large field-of-view can be used to identify regions of interest that have been better resolved by
single-molecule localization microscopy. Registering the two images will help to identify structures within a cell or tissue
environment and provide highly resolved information at the same time.
Single-molecule localization microscopy (SMLM) has been
established as a powerful tool to visualize cellular structures
with a spatial resolution approaching the molecular level
(1,2). SMLM delivers super-resolved images of cellular
structures along with single-molecule information, even
providing estimates for absolute numbers of molecules
that are present in subcellular compartments or protein com-
plexes (2). However, data analysis within a cellular context
(e.g., the allocation of pre- and postsynaptic protein locali-
zations to special synapses and neurons in brain slices) re-
mains challenging. Often, different molecular components
(e.g., a synaptic marker and a receptor of interest) need to
be imaged independently and correlated thereafter to get
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molecular scale information on signal identity and relative
positions. It can be very helpful to identify regions of inter-
est (as for instance a synapse) through a large field-of-view,
multicolor image (e.g., recorded by correlative structured
illumination microscopy (SIM)) and correlate this with a
higher resolution but smaller field-of-view image (e.g.,
SMLM). Depending on the fluorescence signals and the
imaged structures, manual alignment might be feasible. In
most cases, however, it requires a large amount of try-and-
error alignment procedures and thus an automated registra-
tion procedure reduces data analysis effort and time and
increases accuracy and thus ensures reproducibility and
performance.

Problems arise from the fact that multicolor SMLM ex-
periments suffer from different photophysical characteris-
tics and associated photoswitching and photoactivation
rates of different fluorescent proteins and organic dyes (2).
So far, only a few dye pairs have been successfully used
for multicolor SMLM (3–7). For quantitative direct stochas-
tic optical reconstruction microscopy (dSTORM) with
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FIGURE 1 Workflow of the registration and visualization process. SIM

and dSTORM files serve as an initial input and are processed to yield an

affine transformation (solid lines). This intermediate result is then applied

to the initial dSTORM coordinates. For visualization and further analysis,

the aligned images are rendered as described (dotted line).
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organic dyes, only the carbocyanine dye Cy5 and its struc-
tural analog Alexa Fluor 647 provide reliable results (4,8).
Although other fluorophores are used in combination with
Alexa Fluor 647, the resolution and reliability in the photo-
physical properties is superior for Alexa Fluor 647 as
compared to all other dyes (see Supporting Material in (8)).

Recently, sequential SMLM techniques have been intro-
duced for multitarget SMLM using the same dye in subse-
quent labeling and imaging steps (9–11). However, the
techniques are time consuming and less suited for whole
cell or tissue imaging.

On the other hand, SMLM can be correlated with electron
microscopy (EM). Correlative light and EM (12–14) can be
used to visualize the distribution of specifically targeted pro-
teins or organelles in cells and tissue. Here, EM enables a
structural overview with nanometer resolution, whereas
fluorescence microscopy allows specific molecular labeling
with a higher affinity (4,5,15–18). Importantly, fluorescence
imaging enables higher labeling efficiencies than immuno-
gold EM using fluorophore-tagged antibodies facilitating
structure determination by SMLM. Thus, localization mi-
croscopy and EM are complementary methods that can be
combined advantageously to determine molecular positions
in the context of the cellular ultrastructure. However, correl-
ative light and EM approaches remain challenging because
of the vastly different requirements for the sample prepara-
tion of SMLM and EM.

Technically less demanding is to correlate confocal or
widefield fluorescence imaging and SMLM enabling quan-
titative super-resolved imaging of proteins in the context
of other subcellular structures imaged at diffraction-limited
spatial resolution (5,19,20). Also, SIM and SMLM can serve
as complementary approaches with SIM being superior in
terms of speed, field-of-view, multicolor imaging, fluoro-
phore availability, and photophysical requirements but
SMLM excelling at resolution and quantification (21–23).

Here, we present an optimized workflow for correlative
three-dimensional (3D)-SIM (24) and 3D-dSTORM (25),
together with a new algorithm for automated registration
of a pixel-based fluorescence image and localization data.
The optimized workflow enables dSTORM visualization
of the distribution of labeled molecules in cells and tissue
in the context of other cellular markers imaged with SIM
resolution (about twofold improved). To avoid the use of
artificial fiducial markers, we aimed at imaging the same
dye first by SIM and then by dSTORM. Fiducial markers
in general are helpful for registration and drift correction.
However, it can also be challenging to introduce artificial fi-
ducials in sample tissue because they tend to accumulate on
cell membranes or sample dish surfaces. Fiducials with an
emission wavelength different to the imaged fluorophores
require registration of spectrally distinct channels. There-
fore, we focused on demonstrating a registration procedure
without fiducials. We tested different buffer and embedding
conditions and identified a switching buffer containing
2074 Biophysical Journal 116, 2073–2078, June 4, 2019
100 mM mercaptoethylamine and PBS (pH 7.4) without
an oxygen scavenger as a sufficient buffer to preserve the
fluorescence signal of Alexa Fluor 647 in both imaging
modes. Because efficient photoswitching of organic dyes
to off states requires irradiation intensities in the kW/cm2

range (7,25,26), Alexa Fluor 647 does not show pronounced
blinking in SIM experiments using irradiation intensities of
�100W/cm2. Hence, the main effect of the switching buffer
in SIM experiments is minimization of photobleaching.
Correspondingly, the fluorescence signal and localizations
of Alexa Fluor 647 in the SIM and SMLM image modes,
respectively, can be used to overlay the images.

We present registration of images from SMLM and alter-
native widefield microscopy based on the GHT. To align
super-resolution images from different microscopy modal-
ities, we established suitable image representations to
compute overlay characteristics and search for optimal
alignment of selected image regions (workflow outlined in
Fig. 1). We will demonstrate the procedure with dSTORM
and SIM images, noting that other image-based techniques
can be used instead.

The experimental workflow (illustrated in Fig. 2) typi-
cally provides SIM images of larger regions for the field-
of-view (target) and dSTORM images of smaller regions



FIGURE 2 Principle of the super-resolution cor-

relation procedure, including imaging on two

microscopes, registration, and visualization. (A)

Shown is a three-color 3D-SIM (left) at a different

magnification (10� and 63�) and 3D-dSTORM

(right) image of a selected area in the 20-mm thick

brain slice. Climbing fibers (CF) are labeled by

GFP (cyan), calbindin in Purkinje cells are labeled

by Alexa Fluor 568 (green), and bassoon are

labeled by Alexa Fluor 647 (magenta). The 3D

bassoon distribution is color coded over an axial

range of 600 nm. The inset (right lower corner)

shows the x-z and x-y image of two synapses. Scale

bars, 50 mm (10�, SIM), 5 mm (63�, SIM and

dSTORM). (B) Schematic workflow of the super-

resolution correlator software is shown. (C) Func-

tions of the super-resolution correlator are shown.

Localization- and pixel-based information are dis-

played in 3D. Scale bars, 1 mm. (D) Selected planes

are aligned, and the quality of alignment is moni-

tored by Pearson correlation coefficient analysis.

The upper image shows the 3D visualization of

the combined registered images. Images and local-

ization data of interest can be exported.
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(source) such that the source image overlaps with a subre-
gion in the target image. For automated alignment, we
need to identify a mapping from the dSTORM (source)
space to the SIM (target) space in the form of an affine trans-
formation that brings the source features in registry with the
target features. However, finding a subset of corresponding
points in both images is challenging because of the differ-
ences in field-of-view, imaging aberrations, resolution, and
signal-to-noise for different microscope modalities. We
found a robust solution to this problem by representing
dSTORM data (i.e., the individual localizations represented
by two-dimensional (2D) or 3D points) as a-shapes that are
rendered with SIM pixel size. The a-shapes represent a
concave hull of the point data that depends on a single
parameter (a value). The a-shapes can be computed from
a Delaunay triangulation of point data according to the
Edelsbrunner algorithm (27). Other representations as, for
instance, being derived from a Voronoi tessellation (being
dual to the Delaunay triangulation) are feasible.

The rendered dSTORM representation is then partitioned
into several smaller, equally sized segments (typically 16)
that are all aligned with the SIM image using an adaptation
of the generalized Hough transform (GHT). The GHT is a
robust way to detect arbitrary shapes that correlate in
different images (28). The general procedure consists of
the following computation steps (details in the Supporting
Materials and Methods). First, edges are detected for both
source and target image using a Canny edge detection algo-
rithm. Second, a gradient representation is computed for
both images using a convolution with 2D-Sobel filter ker-
nels in x and y direction. All nonzero pixels in the edge im-
age of the source data are then defined as edge points and
represented as a vector relative to a predefined arbitrary
origin. This list of edge point vectors is grouped by the
orientation angle of the corresponding gradient vector
defining the so-called r-table. In a similar way, edge and
gradient images are computed for the target image. In addi-
tion, an accumulator array with the same size as the target
image is created and initially filled with zeros. Then, for
each pixel in the target gradient image, the corresponding
slice of the r-table is selected. For each vector in each r-table
slice, the position of the corresponding source pixel is
shifted by the current vector, and the accumulator array is
incremented by one at the resulting point. The resulting
accumulator array is a rating of the likelihood for each pixel
of the target image to be an origin point of the segment.

Because the standard GHT did not provide sufficient
matching accuracy for a proper alignment of dSTORM
and SIM data, a weighting scheme was developed following
the suggestions by Ballard et al. (28). It was noticed that,
depending on the imaged structure, the local density of iden-
tified edges might strongly vary. By not taking the edge den-
sity into account, a random feature overlay between source
and target structures will influence the GHT algorithm and
Biophysical Journal 116, 2073–2078, June 4, 2019 2075
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favor random correspondence in dense regions over true
correspondence in sparse regions (Fig. S3). We modified
the GHT by introducing a normalization procedure. A per-
formant solution was found by thresholding the accumulator
array and scaling the accumulator array values with the
number of target edge points in a local region of a size
that corresponds to the segment size. This weighted GHT
is repeated for each segment, and the optimal transformation
is identified from the maximal weighted accumulator array
values.

We accounted for differences in orientation between
source and target images by rotating each segment by a
discrete set of angles 4 (typically with �20� < 4 < 20�

with D4 ¼ 1�) and repeating the weighted GHT. We
compared all segment transformations and identified those
that are similar for at least three segments of a given source
image. This grid consistency of the segment transformations
was used to reject possible mismatches by an error handling
algorithm (see Supporting Materials and Methods and
Fig. S4 for an error estimate of a false positive match in mul-
tiple segment transformations). If grid consistency was
assured, we constructed the total affine transformation for
registering the complete source image with the target image.
From the group of points (source segments and the corre-
sponding target points) that represent valid segment trans-
formations and that were identified through the GHT
algorithm, the optimal affine transformation (including
translation, rotation, and shear) was constructed by opti-
mizing transformation parameters.

The quality of registration was estimated by computing
the Pearson correlation coefficient (29) from the registered
source and the target image. The Pearson correlation
image allows comparing the registration under various
parameters and in comparison to manual registration and
confirmed a superior performance of the automated proced-
ure based on the weighted GHT on all the presented images
(see Supporting Materials and Methods). The precision for
2D registration depends strongly on the image features
(Fig. S5). In addition, it is limited by the pixel size of
the target image or the SIM image resolution. In all our
presented example data, the SIM resolution is the limiting
factor for the alignment precision to be on the order of
100 nm.

We increased computation performance by implementing
the GHT for graphical processing unit-based computation
using a Python-based (using scipy libraries) cuda-acceler-
ated implementation (30) (for details see Supporting
Materials and Methods). A Delaunay triangulation was con-
structed. The Edelsbrunner algorithm (27) was implemented
in python to compute 2D a-shapes. Here, performance was
enhanced by using parallel computation in PyCUDA. The
Python implementation was compared with a Python bind-
ing of CGAL:a_shape_2 (31) (CGAL being a state-of-the-
art Cþþ library) to confirm that both implementations yield
identical results for the same a and with Boundary set to
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REGULAR in the CGAL implementation. The runtime of
GHT was significantly improved by outsourcing the critical
computation step of incrementing the accumulator array to
the graphical processing unit.

To perform the superposition of the two images, we devel-
oped a super-resolution correlator software that is based
on vividSTORM, an open-source software for correlative
confocal and SMLM (19). The super-resolution correlator
is a Python-based program enabling the registration and
high-performance visualization of big localization data files.
It implements visualization of 3D localization-based
dSTORMdata and pixel-based SIM information and enables
fast image rendering and alignment (Fig. 1 B). The quality of
the registration can bemonitored by quantifying the co-local-
ization of the dSTORM image and the chosen SIM z-layer us-
ing Pearson coefficient (Fig. 1 C).

To demonstrate the universal applicability of the registra-
tion procedure, we imaged the distribution of the presynap-
tic protein bassoon in active zones affiliated to Purkinje
cells and climbing fibers in 20-mm thick cryosectioned brain
slices. Bassoon was marked by immunolabeling using a
secondary Alexa Fluor 647 antibody. For visualization of
Purkinje cells, dendritic spines were identified by calbindin
staining immunolabeled using secondary Alexa Fluor 568
antibodies. Climbing fibers were identified by transgenic
GFP expression. Three-color 3D-SIM images were acquired
on an ELYRA S.1 using a 63� objective at an axial step
size of 150 nm (Fig. 1 A). To identify and select the
region of interest in the brain slice, a fluorescence image
with a 10� objective was acquired first at a low irradiation
intensity. After the SIM measurement, the sample was
moved to a widefield microscope for biplane temporal
radial-aperture-based intensity estimation (TRABI) 3D-
dSTORM (32) (Supporting Materials and Methods). The
intensity was increased to 4–5 kW/cm2 to induce the photo-
switching required for the dSTORM imaging of bassoon
(Fig. 1 A).

In summary, we presented a registration algorithm that
performs well on different super-resolution imaging modal-
ities. We demonstrated the performance with SIM and
dSTORM images of bassoon signals recorded from Purkinje
cells in thin brain slices. The experiment illustrates the
advantage of using SIM to gain a large field-of-view over-
view together with additional information about the
SMLM-recorded region from additional color channels,
albeit at a lower resolution. From the overview, it is possible
to identify the overall brain region as well as individual cells
within a specific tissue structure. The SMLM image, on the
other hand, gives us the ability to analyze the bassoon
distribution pattern in a specific cell at the highest resolu-
tion. Registration and visualization was carried out with
the newly developed super-resolution correlator software,
which visualizes 3D-dSTORM data sets, containing a
million localizations, in large 3D-SIM image areas acquired
on two different microscopes.
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The open-source programming code together with test
data is available for the registration algorithm at https://
github.com/super-resolution/Impro (https://doi.org/10.5281/
zenodo.2275436) and for the super-resolution correlator
at https://github.com/super-resolution/Super-resolution-
correlator (https://doi.org/10.5281/zenodo.2275730).
SUPPORTING MATERIAL

Supporting Material can be found online at https://doi.org/10.1016/j.bpj.
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