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Interactions between the hippocampus (area CA1) and prefrontal cortex (PFC) are crucial for memory-guided behavior. Theta oscilla-
tions (�8 Hz) underlie a key physiological mechanism for mediating these coordinated interactions, and theta oscillatory coherence and
phase-locked spiking in the two regions have been shown to be important for spatial memory. Hippocampal place-cell activity associated
with theta oscillations encodes spatial position during behavior, and theta phase-associated spiking is known to further mediate a
temporal code for space within CA1 place fields. Although prefrontal neurons are prominently phase-locked to hippocampal theta
oscillations in spatial memory tasks, whether and how theta oscillations mediate processing of spatial information across these networks
remains unclear. Here, we addressed these questions using simultaneous recordings of dorsal CA1–PFC ensembles and population
decoding analyses in male rats performing a continuous spatial working memory task known to require hippocampal–prefrontal inter-
actions. We found that in addition to CA1, population activity in PFC can also encode the animal’s current spatial position on a theta-cycle
timescale during memory-guided behavior. Coding of spatial position was coherent for CA1 and PFC ensembles, exhibiting correlated
position representations within theta cycles. In addition, incorporating theta-phase information during decoding to account for theta-
phase associated spiking resulted in a significant improvement in the accuracy of prefrontal spatial representations, similar to concur-
rent CA1 representations. These findings indicate a theta-oscillation-mediated mechanism of temporal coordination for shared
processing and communication of spatial information across the two networks during spatial memory-guided behavior.
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Introduction
The hippocampus and prefrontal cortex (PFC) are both neces-
sary for learning and memory, and their interactions are critical

for memory-guided behavior (Preston and Eichenbaum, 2013;
Shin and Jadhav, 2016; Eichenbaum, 2017). Multiple inactivation
studies in rodent spatial behavioral tasks have established a nec-
essary role for functional interactions between the two regions
(Floresco et al., 1997; Riedel et al., 1999; Wang and Cai, 2008;
Churchwell et al., 2010; Maharjan et al., 2018). The physiological
mechanisms that underlie these interactions, and how they sup-
port spatial memory processing, are thus key questions in the
field.
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Significance Statement

Theta oscillation- (�8 Hz) mediated interactions between the hippocampus and prefrontal cortex are known to be important for
spatial memory. Hippocampal place-cell activity associated with theta oscillations underlies a rate and temporal code for spatial
position, but it is not known whether these oscillations mediate simultaneous coding of spatial information in hippocampal-
prefrontal networks. Here, we found that population activity in prefrontal cortex encodes animals’ current position coherently
with hippocampal populations on a theta-cycle timescale. Further we found that theta phase-associated spiking significantly
improves prefrontal coding of spatial position, in parallel with hippocampal coding. Our findings establish that theta oscillations
mediate a temporal coordination mechanism for coherent coding of spatial position in hippocampal-prefrontal networks during
memory-guided behavior.
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Theta oscillations are prominent hippocampal local field po-
tential oscillations (�8 Hz) associated with place-cell activity
during spatial exploration in rodents, and have been established
as a key physiological mechanism for mediating hippocampal
(area CA1)–PFC interactions (Hyman et al., 2005; Jones and Wil-
son, 2005a; Siapas et al., 2005; Gordon, 2011; Shin and Jadhav,
2016). Theta-mediated CA1–PFC interactions play a crucial role
in spatial memory tasks, and manifest as oscillatory coherence
between theta rhythms in the two regions, as well as phase-locked
spiking of neurons to hippocampal theta oscillations (Jones and
Wilson, 2005a; Benchenane et al., 2010). Importantly, both oscil-
latory coherence and prefrontal phase-locked spiking have been
shown to support performance in spatial memory tasks (Jones
and Wilson, 2005a; Benchenane et al., 2010; Hyman et al., 2010;
Hallock et al., 2016).

Theta oscillation-mediated hippocampal–prefrontal syn-
chrony is therefore important for memory, but how this syn-
chrony supports shared information processing to enable spatial
memory behavior is still under investigation. There is evidence to
suggest these interactions play a role in maintaining task-related
representations for neurons in both regions (Jones and Wilson,
2005a; Hyman et al., 2011; Spellman et al., 2015), but several
important questions about theta-mediated spatial representa-
tions remain unresolved. First, although spatial position is the
most fundamental feature represented by hippocampal place-cell
activity during theta oscillations (O’Keefe and Recce, 1993),
whether spatial information is coherently encoded in the
hippocampal-prefrontal network is not known. Spatial position
during behavior can be accurately decoded from hippocampal
ensemble activity (Wilson and McNaughton, 1993; Brown et al.,
1998; Jensen and Lisman, 2000), and prefrontal neurons are
known to have spatially selective representations (Hyman et al.,
2010; Guise and Shapiro, 2017). However, no study has used
simultaneous recordings and ensemble decoding to investigate
whether hippocampal and prefrontal populations can coherently
encode spatial position, given the evidence for strong theta-
mediated interactions. Second, the role of theta phase-associated
PFC spiking in spatial coding is not clear. It is known that in
addition to a place-cell firing rate code in CA1, theta oscillations
further underlie a temporal code for space based on theta phase
precession, with the timing of a CA1 spike relative to the ongoing
theta phase conveying finer information about where an animal
is within a place field (O’Keefe and Recce, 1993; Skaggs et al.,
1996; Harris et al., 2002; Schmidt et al., 2009). This phase-based
temporal code significantly improves the encoding of spatial po-
sition by CA1 ensembles when theta phase is taken into account
(Jensen and Lisman, 2000). Theta phase-locking as well as theta
phase precession has been reported in prefrontal neurons (Jones
and Wilson, 2005a,b; Hyman et al., 2010), but whether this
phase-associated spiking leads to a similar improvement in spa-
tial coding by prefrontal ensembles is not known.

We therefore addressed these questions using simultaneous
hippocampal–prefrontal ensemble recordings and decoding
analyses in rats performing a spatial memory task that requires
their interactions (Maharjan et al., 2018). We find that prefrontal
population activity can indeed encode the animal’s current posi-
tion on a theta-cycle timescale coherently with CA1 coding, with
correlated representations of position in the two regions. Further,
we find that similar to CA1 representations, incorporation of
theta phase also significantly improved prefrontal coding of spa-
tial position, while maintaining coherent CA1–PFC coding. Our
findings thus establish that theta oscillations mediate temporal

coordination of hippocampal–prefrontal activity for coherent
coding of spatial position during memory-guided behavior.

Materials and Methods
Animals and experimental design. Five adult male Long–Evans rats (450 –
550 g, 4 – 6 months; RRID:RGD_2308852) were used in this study. All
procedures were conducted in accordance with the guidelines of the
National Institutes of Health and approved by the Institutional Animal
Care and Use Committee at Brandeis University. Animals were individ-
ually housed and kept on a standard 12 h light/dark cycle, with initial ad
libitum food and water before training and experimental protocols. Ex-
perimental protocols were performed during animals’ light cycles. As
previously described (Jadhav et al., 2016; Tang et al., 2017), after daily
habituation and handling, animals were food deprived to 85–90% of
their ad libitum weight and trained to seek liquid food reward (con-
densed milk) alternating between ends on an elevated linear track (80 cm,
7 cm wide track sections). Animals were also exposed and habituated to
an elevated rest box during this training period. After animals reached a
criterion level (50 rewards in 15–20 min linear track sessions), they were
taken off food restriction and subsequently, chronically implanted with a
multitetrode drive (see Surgical procedures, euthanasia, and histology).
Following recovery, animals were again food deprived to 85–90% of
their ad libitum weight and rehabituated to the training task described
above. Animals were then trained on the W-track continuous alter-
nation behavioral task (see Behavioral task), and electrodes were po-
sitioned appropriately.

Behavioral task. Rats performed a continuous W-track spatial alterna-
tion task that requires hippocampal–prefrontal interactions, as previ-
ously described (Jadhav et al., 2012, 2016; Tang et al., 2017; Maharjan et
al., 2018). An experimental day consisted of multiple interleaved behav-
ioral sessions on the W-track and rest box, consisting of 15–20 min
sessions and 30 – 40 min rest periods, respectively. The W-track (�80 �
80 cm) consists of elevated track sections (7 cm wide) with reward wells
situated at the end of each of the three arms. The three arms were con-
nected with two short sections (�40 cm long; Fig. 1). Calibrated evapo-
rated milk rewards were delivered automatically via infrared detectors
integrated in reward wells on correct trials. Rats were tasked with learn-
ing a continuous spatial alternation strategy (starting from the center
arm), alternating visits to either side well (outbound component) and the
center well (inbound component; Figs. 1, 2). Incorrect alternations (vis-
iting the same side well in consecutive outbound components; outbound
error), incorrect side-to-side well visits (without visiting the center arm;
inbound error), or perseverations (repeated visits to the same well just
visited) were not rewarded. We used two behavioral sessions each from

Figure 1. Experimental design and recording locations. A, Schematic of W-track spatial
alternation task. Animals run in a W-shaped maze, alternating between runs to the center arm
and to the two alternating outer arms for liquid food reward (see Materials and Methods for
more details). B, C, Representative histological images of recording sites marked by lesions
(arrows) in dorsal CA1 (B) and medial PFC (PrL region; C). Boundaries indicate extent of tetrode
locations identified in dorsal CA1 and PFC in all five animals. Scale bars, 500 �m.
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Figure 2. Spatial representation properties in CA1 and PFC. A, Schematic of 2D firing rate maps as a function of W-track behavioral trajectories (from left to right: OL, IL, OR, IR). Below are
schematic maps of linearized (1D) trajectories showing equivalent position with respect to the 2D behavior. Track arms are labeled as described in the text (C, L, SL, R, SR). B, Occupancy normalized
spatial firing rate maps of an example CA1 unit for the four separate trajectory types. Peak firing rate is reported in the top right, and linearized firing rate maps displayed below each panel. C, Same
as in B, but for a representative PFC neuron. D, Population of CA1 occupancy normalized linear firing rate maps for one animal, normalized and ordered by peak firing rate for each trajectory.
Population activity mapped the spatial extent in all trajectories. E, Same as in D, but for a representative PFC population in one animal. F, Spatial specificity distributions in CA1 (top) and PFC (bottom)
populations across all animals. Spatial specificity of CA1 neurons was significantly higher than PFC neurons [median spatial specificity (IQR); CA1, 0.10 (0.06 – 0.13); PFC: 0.37 (0.17– 0.62); CA1 vs
PFC: Kruskal–Wallis test, p � 1e�99]. Detailed statistics are reported in the text.
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five animals that had learned the W-track task and exhibited high mem-
ory performance (87.0 � 2.4% for outbound task phase; 94.0 � 2.1% for
inbound task phase). Data used for analysis was collected from the two
behavioral sessions interleaved by a rest session, and neural activity was
recorded continuously across the two sessions, similar to previous stud-
ies (Karlsson and Frank, 2009; Jadhav et al., 2012, 2016).

Surgical procedures, euthanasia, and histology. Surgical implantation
procedures were as previously described (Jadhav et al., 2012, 2016; Tang
et al., 2017), and postoperative analgesia administered for several days
post-implantation. Briefly, each rat was surgically implanted with a 3D
printed microdrive containing 30 independently moveable tetrodes, with 15
tetrodes targeting right dorsal hippocampus (AP: �3.6 mm, ML: 2.2 mm)
and 15 tetrodes targeting right PFC (AP: �3.0 mm, ML: 0.7 mm). Tetrodes
were made by twisting and bundling 4 NiCr wires (diameter 13 �m; Sandvik
Palm Coast), followed by gold electroplating to an impedance of 200–300
k�. Electrodes were gradually advanced for 2–3 weeks following surgery to
desired depths, concurrent with recovery and pretraining. The hippocampal
layer was identified by characteristic LFP patterns such as presence of sharp-
wave ripples (SWRs), SWR polarity, and theta modulation.

At the end of the experiment, 24 h before euthanasia, animals were anes-
thetized (1–2% isoflurane) and a current (30 �A) was passed through each
tetrode to form lesions at their tips for localization. Animals were later killed
(Beuthanasia, 200 mg/kg) and perfused transcardially with 4% formalde-
hyde using approved procedures. Brains were then fixed in 4% formalde-
hyde and 30% sucrose, cut into 50 �m sections, stained with cresyl violet,
and imaged for verification of tetrode localization.

Electrophysiology and data acquisition. All tetrodes were referenced
with respect to a cerebellar ground screw. For each animal, one tetrode in
corpus callosum served as hippocampal reference electrode, and another
tetrode in overlying cortical regions with no spiking signals served as
prefrontal reference electrode. All behavioral and electrophysiological
data were acquired using a SpikeGadgets system. Digital electrophysio-
logical data were acquired using 128-channel digitizing head stages, sam-
pled at 30 kHz and saved to disk, with spike data bandpass filtered
between 600 Hz and 6 kHz, and local field potential (LFP) bandpass
filtered between 0.5 Hz to 400 Hz and downsampled to 1.5 kHz. Input
and output triggers for behavioral and environmental data (e.g., reward
delivery) were recorded at 1 ms resolution and synchronized to electro-
physiological data. Animal movement and behavior was recorded and
tracked using an overhead color CCD camera (30 fps), with animal head
position indicated by color LEDs affixed to the headstage apparatus
and microdrive. Cameras were calibrated to provide a resolution of
0.1 cm/pixel, and spatial extent of LEDs permitted a tracking resolu-
tion of �2 cm.

Unit identification and inclusion. Spike peaks were identified by a
threshold crossing of 40 �V in the filtered spike band for CA1 and PFC,
respectively. Spikes were manually sorted, and neurons were recorded
and tracked continuously across the two behavior sessions, as previously
described (Jadhav et al., 2012, 2016; Tang et al., 2017). Briefly, putative
spikes had clustering parameters extracted (spike width on each channel,
spike amplitude, and principal components), and were clustered using a
custom MATLAB (MathWorks; RRID:SCR_001622) cluster visualiza-
tion program (MatClust). Clusters were judged based on waveform shape,
isolation distance, and lack of interspike interval violation. Only well isolated
and stable putative excitatory units across the sessions were included, with
putative interneurons identified and excluded based on average firing rate
�15 Hz and spike width criteria, as previously described (Jadhav et al., 2016;
Tang et al., 2017). Further, only neurons which fired at least 100 spikes in
each session were included for further analysis.

Spatial maps and linearization. Two-dimensional occupancy-
normalized spatial firing maps were calculated for each unit when the
animals’ speed was 	3 cm/s, with spikes binned in 1 cm square bins and
smoothed with a 2D Gaussian (2 �), excluding spiking during high ripple
power (	3 SD ripple band power; see LFP collection and high-theta
segmentation). The linearized spiking activity of each cell was computed
by assigning the rat’s linear position along the 2D skeleton of the four
possible linear behavioral trajectories (center arm reward well to outer
arm reward well for outbound trajectories, and the converse for inbound
trajectories; Frank et al., 2000; Jadhav et al., 2016). Spiking and occu-

pancy closest to each linear 2 cm bin on these four trajectories was then
used to calculate the smoothed, occupancy-normalized linear firing rate
for correct trajectories. A peak rate of 3 Hz or greater was required for a
cell to be considered a place cell in CA1, and a similar criterion was
applied to PFC cells for inclusion in analysis (Jadhav et al., 2016). These
linearized trajectories with occupancy-normalized firing rates were used
in all subsequent decoding analyses.

Spatial specificity and spatial coverage. Concatenating the 1D firing rate
maps for all four behavioral trajectories, spatial specificity was computed
as the spatial sparsity of firing (Fig. 2), the proportion of firing rate bins
	25% of the peak firing rate (Jadhav et al., 2016). Spatial specificities
varied from 0 for highly spatially specific neurons, to 1 for neurons with
uniform firing fields (range of spatial specificity: 0–1). Spatial coverage of a
trajectory by an ensemble was calculated as the percentage of spatial bins
with population occupancy normalized firing rate �3 Hz (Kay et al., 2016).

LFP collection and high-theta segmentation. LFP was bandpass filtered
in the delta (1– 4 Hz), theta (6 –12 Hz), and ripple bands (150 –250 Hz)
using zero phase IIR Butterworth filters. We determined envelopes and
phases by Hilbert transform, and took the ratio of the theta to delta envelopes
at each time point for every hippocampal tetrode. High theta periods were
detected using criteria for theta power, running speed, and exclusion of
SWRs. Specifically, high theta windows were assigned as time periods at least
one theta cycle long when the smoothed (1 �) mean theta/delta ratio ex-
ceeded 2, no SWRs were detected with a 3 SD threshold in the absolute power
of the ripple band, and animal speed was 	3 cm/s.

Theta coherence. Coherence was calculated for each trajectory type
using the Chronux (http://chronux.org/, RRID:SCR_005547) spectral
processing package for MATLAB as follows. Saturating movement arti-
facts in the LFP were removed, and for valid time periods in which the
animal’s speed was 	3 cm/s, the animal’s linear position was interpo-
lated to the nearest 4 cm linear bin. The LFP of the PFC and CA1 tetrodes
with the highest number of neurons in a given session were used to
calculate coherence between the two regions. Each coherogram time bin
was then assigned to a particular linear bin with the closest spatial posi-
tion based on the animal’s movement, leading to the average coherogram
across trajectories as a function of linear distance (Fig. 3). All further
analyses were averaged across animal and session for display.

Theta cycles, theta phase, and decoding. Theta LFP phase for both hip-
pocampal and prefrontal unit spiking was relative to a hippocampal refer-
ence tetrode located in corpus callosum, as previously described (Jadhav et
al., 2016). Within high theta time windows detected as described above, the
troughs of the hippocampal theta-filtered LFPs were identified and used to
segment valid theta cycles, discarding cycles where phase was ambiguous or
reset, as previously described (Johnson and Redish, 2007; Gupta et al., 2012;
Feng et al., 2015; Wu et al., 2017). Only theta cycles with at least three simul-
taneously active template cells in both hippocampus and prefrontal cortex
were analyzed, and theta cycle decoding was implemented as previously
described (Johnson and Redish, 2007; Gupta et al., 2012; Wu et al., 2017). A
Bayesian decoder was used to calculate the probability of the animal’s loca-
tion given the firing rate templates of the neurons that fired and their spikes
that occurred in each time window (Zhang et al., 1998; Davidson et al., 2009;
Karlsson and Frank, 2009; Gupta et al., 2012; Pfeiffer and Foster, 2013).
Briefly, the probability of the animal’s position (pos) across all total spatial
bins (S) given a time window (t), containing Poisson spiking (spikes) of
independent units is as follows:

P
 pos�spikes� �
P
spikes�pos� P
 pos�

P
spikes�
.

Normalizing over P(spikes) and using a uniform prior P( pos) to avoid
spatial decoding bias, we get the following:

P
pos�spikes� �
U

�j�1

S
U

where U � ��i�1
N fi
pos�ni� e�t �i�1

N fi
 pos�.

Where fi( pos) is the occupancy normalized 1D firing rate map for the ith
unit, N is the total number of active units, ni is the number of spikes fired
by a particular ith unit, and t is a time window (in this case, the entire
theta cycle). This was computed using the firing rate template for the
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corresponding behavioral trajectories. The decoded position is then the
non-zero spatial bin location with the maximum posterior probability.
Decoding error is defined as the absolute difference between the animal’s
actual position averaged in the time window and the decoded position
(Fig. 3).

Cross validation metrics: firing rate templates and neuron count. Cross
validation procedures were used as described previously (Fig. 3G) to
generate null distributions for significance testing. To verify that the
templates constructed across trials were sufficiently powered for subse-
quent population decoding, we used a standard leave-one- (trial) out
cross validation strategy (LOOCV; van der Meer et al., 2017). Briefly, the
firing of both populations during one randomly selected trajectory were
left out during field/template construction, with template construction
then proceeding as described above with the remaining trials. The animal
position for theta cycles during this omitted trial was then decoded using
these cross-validation templates, and we repeated this LOOCV proce-
dure for all trials per session. Next, to confirm that decoding accuracy in
CA1 was not simply because of a higher isolated neuron count (Fig. 3G),
we confirmed our results by randomly subsetting our CA1 neuron count
to match the PFC neuron count in each session and animal (number of
CA1 cells was always higher than PFC cells; Table 1) and proceeding with
the spatial decoding procedure as above. We repeated this procedure
1000 times per session, each with a random choice for CA1 neural sub-
sets. For the random CA1 neuron subsets, we preserved spatial coverage
and spatial specificity in CA1 (to avoid artifacts in spatial decoding be-
cause of incomplete coverage) by drawing from the CA1 neuron distri-
bution weighted by the 20 cm spatial section in which their peak firing
rate occurred.

Joint decoding in CA1 and PFC. Using previously described methods
(Haggerty and Ji, 2015; Saleem et al., 2018), joint decoding error in each
session (n � 10 sessions in 5 animals) was quantified as the Pearson’s
linear correlation coefficient between the two decoded position errors in
CA1 and PFC within each time window, computed for each 20 cm spatial
section/bin. Animal speed at each time window was classified into three
evenly spaced speed bins: low, medium, and high; 3–15, 15–30, and 30�
cm/s, respectively (we obtained similar results with other thresholds for
speed categories, including 3–12, 12–24, 24� cm/s, and 3–17, 17–34,
34� cm/s), and correlation was computed for decoding errors within
each 20 cm spatial section/bin (20 –180 cm in 20 cm increments for each
spatial bin), for subsequent comparison to shuffled controls while
matching speed category and position bin. Significance for joint decod-
ing error was computed relative to shuffled speed and position bin
matched time windows, repeating the above procedure 1000 times, en-
suring that correlations in decode error because of speed and location
were controlled for. Joint decode errors for both real and shuffled data
were binned in 1 cm 2 bins and smoothed with a 2� 20 cm Gaussian and
z-scored for visualization, with the residual joint decoding computed as
the difference between the two (actual � shuffle; Fig. 4).

Phase locking, concentration, and precession. Phase locking (Fig. 5) was
computed using a Rayleigh z test for non-uniformity using the spikes of
all neurons for both sessions per animal. As previously described (Jadhav
et al., 2016), time periods with animal speed 	3 cm/s and with absolute
power in the ripple band 
3 SD were considered, with spike phase de-
rived from the hippocampal reference tetrode. Neurons with a criterion
significance level of p 
 0.05 were considered significantly phase-locked.
Concentration parameters (�) were computed for phase-locked neurons
via a von Mises fit to the spiking phase data as subset above. Phase
precession was computed using same criterion for neurons and spikes as
above, with the addition of limiting the phase precession analysis to the

peak firing field, computed as the linear distance from the peak firing rate
to the first instance of firing rate 
0.25 of the peak firing rate in both
directions. Phase precession values were then computed as previously
described (Kempter et al., 2012; Cei et al., 2014; Jeewajee et al., 2014;
https://github.com/HoniSanders/measure_phaseprec for publicly avail-
able code). Briefly, we computed the best fit phase slope and phase inter-
cept of a linear-circular distribution over spiking linear distance and
spiking phase, respectively. Slope was limited to a maximum of one cycle
over the peak firing field to reduce overfitting. All circular statistics were
computed using the publicly available CircStat toolbox for MATLAB
(Berens, 2009).

Theta phase splits and shuffling. For analyses involving multiple phase
bins (Fig. 6), the following procedure was followed. Each theta cycle used
for analysis was divided into N evenly spaced subperiods divided by
phase of the theta period, resulting in N different spiking templates de-
fined by theta phase for further Bayesian reconstruction. Templates were
then used for every cell that corresponded to its instantaneous spike
phase in theta. Shuffling protocol consisted of randomly assigning spike
phase bins during template construction (encoding shuffle), or random-
izing the phase bins chosen after normal template construction (decod-
ing shuffle), and decoding normally as described above.

Data visualization. Color maps used throughout were modified from
the matplotlib package and adjusted with vscim with the goal of being
perceptually uniform (Thyng et al., 2016). Figure layout was generated in
part using a ggplot2-like package created for MATLAB, Gramm (Morel,
2018).

Results
We used multisite multielectrode recordings to simultaneously
record neural activity in dorsal CA1 region of hippocampus and
medial PFC of rats (n � 5) as they performed a continuous
W-track spatial alternation task that requires hippocampal-
prefrontal interactions (Kim and Frank, 2009; Jadhav et al., 2012,
2016; Tang et al., 2017; Maharjan et al., 2018). Figure 1 illustrates
a schematic of the task and histologically verified recording loca-
tions in CA1 and PFC. Recordings in all animals were localized
primarily to dorsal CA1 region and the prelimbic (PrL) area of
PFC, delineated in Figure 1, B and C. The W-track alternation
task (Fig. 1A) requires animals to visit the two outer arms of the
maze in an alternating sequence, with rewarded visits from the
center arm to alternating outer arms (2 outbound trajectories)
interleaved with rewarded returns from the outer arms to the
starting center arm (2 inbound trajectories; see Materials and
Methods). Data from two behavior sessions per animal were used
for analyses (2 behavior sessions interleaved by a rest session; see
Materials and Methods), with animals performing the task with
high accuracy in each session (n � 10 sessions; n � 32.6 � 2.8
correct trials per session, performance: outbound task phase,
mean � SEM; 87.0 � 2.4%; inbound task phase; 94.0 � 2.1%
inbound task phase). A total of 255 CA1 (animal mean � SEM;
51 � 4) and 111 PFC (animal mean � SEM; 22 � 3) neurons
were used after exclusion of putative interneurons and those with

100 spikes (Table 1 shows distribution of neurons across the 5
animals; neurons were recorded continuously across the two be-
havior sessions for each animal, as previously described; Jadhav et
al., 2012, 2016; Tang et al., 2017).

Spatial representations in CA1 and PFC
Similar to CA1 place cells, PFC neurons are also reported to have
spatially restricted, trajectory-specific firing in spatial choice
tasks (Jones and Wilson, 2005a; Fujisawa et al., 2008; Hyman et
al., 2010; Ito et al., 2015; Jadhav et al., 2016; Guise and Shapiro,
2017; Mashhoori et al., 2018). Figure 2A–C shows illustrative
CA1 and PFC neurons with spatially specific firing fields on the
four trajectories of the W-maze task, namely, outbound to left

Table 1. Cell counts for five animals in CA1 and PFC

CA1 PFC

62 29
53 25
43 25
40 13
57 19
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arm (OL), inbound from left arm (IL), outbound from right arm
(OR), inbound from right arm (IR). The four trajectories in the
task are illustrated in Figure 2A, with the maze divided into cen-
tral arm (C), left arm (L), right arm (R), and two short sections
connecting the arms, side-left (SL) and side-right (SR). Each tra-
jectory consists of a run through from one reward well to another
through three sections of the maze, e.g., outbound left (OL)
through center, side-left, and left arm. Spatial firing fields for
each CA1 and PFC neuron were computed as occupancy-
normalized firing rates for each trajectory type, and then subse-
quently linearized for elapsed trajectory distance, similar to
previous studies (Frank et al., 2000; Jadhav et al., 2016; Fig. 2B,C,
bottom shows linearized fields with a 2 cm bin size; see Materials
and Methods for details).

Because CA1 and PFC neurons have trajectory-specific firing
fields (McNaughton et al., 1983; Frank et al., 2000; Wood et al.,
2000; Hok et al., 2005; Fujisawa et al., 2008; Spellman et al., 2015),
each trajectory is expected to have distinct ensemble representa-
tions or spatial templates. We therefore examined the response
profiles of neurons in both regions across the four behavioral
trajectories (example for one animal, Fig. 2D,E). Ensemble rep-
resentations in both areas tiled the full extent of the spatial envi-
ronment across all trajectories, with spatial coverage sufficient for
subsequent decoding analyses for all animals, calculated as the
percentage of spatial bins with population occupancy normalized
firing rate �3 Hz (Kay et al., 2016; mean percentage coverage �
SD; CA1: 97 � 0.88%; PFC: 100 � 0%). Note that neurons illus-
trated in Figure 2, D and E, are sequentially ordered separately for
each trajectory based on the position of their peak firing fields
within that trajectory.

The spatial firing properties of CA1 and PFC were quantified
by computing the spatial specificity (or, spatial sparsity) of neu-
rons in both areas as previously described (Jadhav et al., 2016).
Spatial specificity was defined as the fraction of each trajectory
with above-threshold occupancy normalized firing rates (	25%
peak firing rate for each neuron; see Materials and Methods). As
expected, CA1 neurons had higher spatial specificity than PFC
neurons, with the CA1 distribution skewed toward lower values
of spatial specificity characteristic of highly place specific cell fir-
ing, and a spread of spatial specificities in PFC (Fig. 2E; Wilcoxon
signed rank test compared with uniform distributions with me-
dian � 0.5; CA1: Z � �13.8, p � 3.1e�43; PFC: Z � �3.0, p �
0.003). Spatial specificity of CA1 neurons was significantly higher
than PFC neurons [median spatial specificity (interquartile range
[IQR]); CA1: 0.10 (0.06 – 0.13); PFC: 0.37 (0.17– 0.62); CA1 vs
PFC spatial specificity distributions are significantly different
from one another, Kruskal–Wallis test; � 2

(1) � 101.6, p � 1e�99],
therefore with an approximately fourfold ratio of median spatial
specificities for CA1 versus PFC neurons.

CA1 and PFC populations encode spatial position at a theta
cycle timescale
It is well established that theta oscillations and theta coherence
are prominent in hippocampal-prefrontal networks during
memory-guided trajectories (Jones and Wilson, 2005a; Siapas et
al., 2005; Benchenane et al., 2010; Hyman et al., 2010; Remondes
and Wilson, 2013). We similarly observed high coherence be-
tween theta oscillations for all outbound and inbound trajecto-
ries. Figure 3A illustrates a coherogram exhibiting high coherence
in the theta band between CA1 and PFC electrodes for a repre-
sentative outbound left trajectory, and Figure 3B shows average
theta coherence across sessions for the four trajectories. Theta
coherence was similar across trajectories (average theta coher-

ence for entire trajectory; Kruskal–Wallis with Bonferroni post
hoc for comparisons between the four trajectory types; � 2

(3) �
3.88, all comparisons p 	 0.63).

It has been proposed that high theta coherence is suggestive of
interactions on a theta oscillation timescale between hippocam-
pal and prefrontal activity. We therefore asked, with what accu-
racy could we determine an animal’s current position during
trajectories from the concurrent neuronal ensemble activity in
either area, using theta oscillations as time bins? To address this
question, we used a Bayesian decoder (see Materials and Meth-
ods) to estimate the probability of an animal’s position per time
bin given the ensemble firing in the corresponding trajectory
template, similar to previous studies (Brown et al., 1998; Jensen
and Lisman, 2000).

We used the population templates in CA1 and PFC (Fig.
2D,E) corresponding to an animal’s current trajectory for all
subsequent analyses, and corresponding theta oscillation cycles
as time bins (see also Materials and Methods). Theta cycles have
been proposed to represent temporal windows for organization
of hippocampal-cortical activity (Itskov et al., 2008; Lisman and
Redish, 2009), and previous studies have used theta cycle time
bins for decoding CA1 ensemble activity (Gupta et al., 2012; Feng
et al., 2015; Wang et al., 2015; Wikenheiser and Redish, 2015; Wu
et al., 2017). We therefore used a similar approach for simultane-
ous decoding of CA1 and PFC activity. Decoded position was
estimated for all four trajectories which were divided into eight 20
cm spatial bins or sections from the start to the end of the trajec-
tory (Fig 3C.) We excluded the start and end sections of each arm
with reward wells where animals are primarily stationary and
hippocampal activity prominently exhibits SWRs (Karlsson and
Frank, 2009; Jadhav et al., 2016). Using this decoding analysis
approach, we asked whether both CA1 and PFC ensembles rep-
resented current spatial position on a theta time-scale, and the
degree of correlation, if any, in decoding errors (as a measure of
position estimate accuracy) in the two areas.

Theta cycles were extracted from filtered LFP (6 –12 Hz; see
Materials and Methods), and segmented based on reference cycle
troughs, similar to segmentation protocols in previous studies
[Johnson and Redish, 2007; Gupta et al., 2012; Feng et al., 2015;
Wu et al., 2017; length of theta cycles: median (IQR), 131 ms
(121.3–142.7 ms)]. An example of decoded positions for an out-
bound left trajectory, relative to actual position, using CA1 and
PFC ensembles is shown in Figure 3, D and E. The spatial bin with
the highest non-zero posterior probability in a given time frame
(theta cycle time) is assigned as the decoded position, and the
animal’s mean linearized position during the same time window
is the actual position of the animal. Decoding error is reported as
the difference, in cm, between the actual and decoded position
distribution of decoding error per theta cycle time bin using CA1
and PFC ensembles for all four trajectory types (OL, IL, OR, and
IR) across all trials for one animal is shown in Figure 3F (N � 282,
357, 417, and 569 time bins, respectively, in N � 10, 14, 12, and 10
trials in this session for the four trajectory types; OL, IL, OR, and
IR). For CA1 ensembles, the decoding error distribution is highly
skewed to low values indicating high spatial decoding accuracy, as
expected from previous studies [Jensen and Lisman, 2000; range
of medians and IQRs for CA1 decoding error across all animals
and trajectories, 2.6 – 4.7 cm (4.4 –11.5 cm), Shapiro–Wilk test of
normality showing non-normal distributions; p values for all an-
imals and trajectories � 3.4e�10]. We also observed the same
skewed trend toward spatial decoding accuracy in PFC [range of
medians and IQRs for PFC decoding error across all animals and
trajectories: 5.1–28.9 cm (12.0 –59.7 cm), Shapiro–Wilk test of
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normality showing non-normal distributions; p values for all an-
imals and trajectories � 2.8e�08]. Decoding error across the
four trajectory types did not show differences for either CA1 or
PFC populations (Kruskal–Wallis with Bonferroni correction for
multiple comparisons; CA1: � 2

(3) � 7.04, all pairwise compari-
sons p � 0.05; PFC: � 2

(3) � 2.55, all pairwise comparisons p �
0.88), and importantly, CA1 decoding error was significantly
smaller than PFC for all four trajectory types (Wilcoxon rank sum
for all trajectories; Z � �12.01, all comparisons p � 1e�33).

We next combined decoding errors across all trajectory types
to compare and quantify CA1 and PFC decoding accuracy under
different decoding conditions. Figure 3G shows median decoding
error using CA1 and PFC ensembles for all animals and trajecto-
ries (N � 93, 61, 52, 68, and 52 correct trajectories for the 5
animals over both sessions). Both CA1 and PFC activity can be
used to decode animal’s current position with relatively high de-
coding accuracy [solid bars, median (IQR); CA1: 3.4 cm (1.4 – 8.3
cm); PFC: 15.7 cm (3.7– 47.0 cm)], with significantly more accu-

Figure 3. Decoding of spatial position from CA1 and PFC ensembles on a theta-cycle timescale. A, Average coherogram plotted against linear position between CA1 and PFC tetrodes for all OL
trajectories across animals. Note the high coherence in the theta range throughout the memory-guided trajectory. B, Average coherence in the theta band for all animals, for the four trajectory types,
with SEM overlaid. Theta coherence was equivalently high for all trajectory types ( p 	 0.63). C, Schematic of spatial binning of trajectories, illustrated for OL. Each trajectory was split into 20 cm bins
(or, 8 spatial sections) for further analysis, excluding the sections with reward wells. All four trajectory types were similarly divided into eight sections. D, Actual spatial position of animal (red line)
during an outbound left trajectory is shown along-with Bayesian decoded spatial position (heatmap) from CA1 ensembles (n � 63 neurons). Decoded position is computed as peak probability of
decoded position in theta cycle time bins, using underlying theta cycles during the course of the trajectory (median length of theta cycles is 131 ms). Theta cycle number is indicated along the x-axis,
and position along the y-axis is shown across the eight 20 cm spatial sections illustrated in C. E, Same as in D, but showing simultaneous Bayesian decoding of position using PFC ensembles (n �
29 neurons). Heatmap is similar to D. F, Distributions of decoding error (difference between actual and decoded position) in theta-cycle time bins (actual values as dots, median and IQR overlaid) are
shown for both CA1 and PFC ensemble decoding for all four trajectory types for one session from one animal (N � 282, 357, 417, and 569 time bins, respectively, for the four trajectory types; OL, IL,
OR, and IR). CA1 ensembles had significantly better decoding accuracy than PFC ensembles for all trajectory types (all p � 1e�33; detailed statistics in text). G, Comparison of CA1 and PFC decoding
error under different decoding conditions, averaged across all trajectory types for all sessions. Filled bars as in F; open bars using LOOCV for decoding, hatched bars using subsampling to match the
number of CA1 and PFC neurons for decoding. CA1 had significantly smaller decoding error under all conditions (*p 
 3e�60; detailed statistics in the text).

4556 • J. Neurosci., June 5, 2019 • 39(23):4550 – 4565 Zielinski, Shin et al. • CA1–PFC Theta Phase Coding of Position



rate estimation for CA1 (CA1 vs PFC, Kruskal–Wallis, � 2
(1) �

2504.64, p � 1e�99). Ratio of median decoding accuracy in the
two areas was comparable with the spatial specificity ratios shown
in Figure 1 (median decoding error ratio for CA1 vs PFC �4.6:1
for these decoding parameters; spatial specificity ratio for CA1 vs
PFC is �4:1). We also used a LOOCV approach for decoding, in
which for decoding a given trajectory, templates used for decod-
ing were built by omitting that trajectory (van der Meer et al.,
2017; see Materials and Methods), and observed similar results
[Fig. 3G, open bars; median (IQR); CA1: 6.32 cm (2.7–14.7 cm);
PFC: 22.7 cm (7.8 –54.1 cm); CA1 vs PFC, Kruskal–Wallis, � 2

(1) �
9333.2, p � 1e�99; median decoding error ratio for CA1 vs PFC
is �4:1]. The cross-validated decoding confirms that templates
were sufficiently stable across trials to provide observed high de-
coding accuracy. Finally, to account for the difference in number
of neurons for CA1 versus PFC, we subsampled the number of
CA1 neurons to match the number of PFC neurons for each
session (Fig. 3G, hatched bars; note that PFC decoding errors are
same as original data with solid bars). The median decoding error
ratio improved because the reduction in number of CA1 neurons
increased CA1 decoding error, but the CA1 ensembles still had
significantly higher decoding accuracy than PFC ensembles [Fig.
3G, hatched bars; median (IQR); CA1: 8.4 cm (2.7–26.6 cm);
PFC: 15.7 cm (3.7– 47.0 cm); CA1 subset vs PFC, Kruskal–Wallis,
� 2

(1) � 272.97, p � 2.6e�61; median decoding error ratio for CA1
vs PFC is �2:1].

Coherent representation of spatial position by CA1 and
PFC ensembles
To examine whether representation of spatial position is shared
across hippocampus and prefrontal cortex, we first examined the
effect of behavioral variables, including running speed, on decod-
ing accuracy. Running speed is an important variable that can
vary from trial-to-trial and within trajectories, and because pre-
vious results have linked theta power and spatial representations
with animal running speed (McFarland et al., 1975; McNaughton
et al., 1983; Geisler et al., 2007; Maurer et al., 2012), we also
analyzed decoding error with regard to animal speed within a
given theta window. Each theta-cycle time bin was assigned low,
medium, and high speed ranges, similar to previous studies (Sal-
eem et al., 2018; 3–15, 15–30, and 	30 cm/s respectively; we
observed similar effect for other thresholds for speed categories
with boundaries at 12 and 24 cm/s, as well as 17 and 34 cm/s), and
decoding error was compared for different speed categories. As
expected, we saw a change in decoding error with speed, espe-
cially with an increase in CA1 decoding error for lower speeds
(Fig. 4A; Kruskal–Wallis with Bonferroni post hoc; CA1, � 2

(2) �
128.5, p � 7.8e�15 for low vs mid and low vs high speed catego-
ries; PFC, � 2

(2) � 50.2, p � 0.008 for low vs mid, low vs high, and
mid vs high speed categories). Examining the effect of spatial bins
within trajectories, we also saw a small but significant increase in
decoding error at the choice point and turn sections (spatial bins
4 –5 on side-left and side-right arms; Fig. 3C) corresponding to
decrease in animal speed during trajectories (Fig. 4A,C). Decod-
ing error versus spatial bin for both CA1 and PFC is shown in
Figure 4B (Kruskal–Wallis with Bonferroni post hoc; CA1, � 2

(7) �
109.2, p � 1.2e�6 for spatial Bin 5 vs spatial bin 1; PFC, � 2

(7) �
44.19, p � 0.03 for spatial Bin 4 vs spatial bin 1), and animal speed
in spatial sections during trajectories is shown in Figure 4C
(Kruskal–Wallis with Bonferroni post hoc; � 2

(7) � 2165.4, p 

1e�100 for pairwise comparisons of spatial bins 3– 6 to other
bins indicating significant slowdown; p � 0.16 for all spatial bin

comparisons within Bins 3– 6). Running speed therefore had an
effect on position representations in both CA1 and PFC.

We next asked whether the theta-cycle position representa-
tions of CA1 and PFC ensembles were correlated, which would
suggest that spatial information is shared across the two net-
works. Recent studies have found similar coherent spatial repre-
sentations in CA1 and visual cortical areas (Haggerty and Ji, 2015;
Saleem et al., 2018). Similar to these studies, we therefore exam-
ined the theta cycle correlations between decoding errors for CA1
and PFC estimates, while controlling for actual location and
speeds. In this approach, correlation between CA1 and PFC de-
coding errors is computed within each spatial section (spatial
sections are used to control for the relationship between speed
and location during shuffling), and then compared with correla-
tion values with shuffled data while controlling for location and
speed (see also Materials and Methods), i.e., shuffled correlation
values for statistical comparison are obtained by shuffling CA1
and PFC data across speed-matched theta cycles within each spa-
tial section.

We indeed found that CA1 and PFC decoding errors within
theta cycles were correlated with each other (Fig. 4D–G). The
distribution of CA1 vs PFC decoding error values were distrib-
uted along the diagonal with peak �0, but were significantly
correlated, similar to previously reports for CA1 and visual cortex
(Saleem et al., 2018). Figure 4D illustrates the distribution of raw
correlation values for CA1 versus PFC decoding errors for one
spatial section, and average for all spatial sections in Figure 4E
(average correlation: r � 0.10, n � 10 sessions). Crucially, to
control for effects of speed modulation, we compared this actual
correlation to values obtained from shuffled data, where CA1 or
PFC decoding error was shuffled across time bins (theta cycles)
within individual spatial sections, and within the same speed cat-
egory (shuffled time bins had the same speed range: low, mid, or
high, as the original time bins), thus preserving the relationship
between speed and position (see also Materials and Methods;
Saleem et al., 2018). Figure 4F shows the difference between ac-
tual and shuffled correlations, with residual decoding errors dis-
tributed principally along the diagonal, indicating that CA1 and
PFC ensembles had correlated spatial coding. Indeed, a compar-
ison of actual versus shuffled correlation values for all 10 behavior
sessions (Fig. 4G) showed that actual decoding error correlations
were significantly higher than shuffled values, with a decrease
from 0.10 to 0.03 (paired-sample two-tailed t test; n � 10; signif-
icant difference between actual and shuffled correlations, t(9) �
3.19, p � 0.01).

The cross-regional correlational values for spatial representa-
tions are similar to those observed in previous studies for CA1
and visual cortex (Haggerty and Ji, 2015; Saleem et al., 2018).
Although the observed correlations are small, they establish
that the spatial representations in the two regions are not
independent. These results therefore suggest shared and co-
herent coding of spatial position in the two regions governed
by theta oscillations.

Theta phase modulation of CA1 and PFC activity
In addition to coherence between theta oscillations in CA1 and
PFC, spiking activity in also known to be modulated by theta
phase in the two regions. Phase-locked spiking and phase preces-
sion in CA1 are well established phenomena known to result in
improved spatial coding by providing a temporal code for posi-
tion because of a relationship of spiking within place fields to the
phase of ongoing theta oscillations (O’Keefe and Recce, 1993;
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Skaggs et al., 1996; Harris et al., 2002; Schmidt et al., 2009; Fig. 5).
Similarly, several studies have established prominent phase-
locking of PFC spiking to hippocampal theta oscillations, and
shown that this phase-locked spiking is correlated with perfor-
mance in spatial memory tasks (Jones and Wilson, 2005a;

Benchenane et al., 2010; Spellman et al., 2015). The possibility of
phase precession in PFC neurons with respect to hippocampal
theta oscillations has also been reported (Jones and Wilson,
2005b). Whether this theta phase-associated spiking in PFC re-
sults in improved spatial coding is not clear.

Figure 4. Coherent spatial position coding in CA1 and PFC. A, Decoding error from CA1 (pink, top) and PFC (cyan, bottom) populations in low (3–15 cm/s), medium (15–30 cm/s), and high speed
(30� cm/s) categories. Decoding error varied with speed in both areas. B, Decoding error as a function of spatial bin (sections) for CA1 (pink, top) and PFC (cyan, bottom). Decoding error had a small
but significant increase in middle bins (Bins 4 and 5). C, Animal speed as a function of spatial bin. Animal speed decreased significantly in middle of trajectories corresponding to turn and choice point
sections. D, 2D histogram showing cycle-by-cycle correlations between CA1 and PFC decoding errors in spatial section 6. Heatmap indicates z-scored histogram count of decoding error for CA1 versus
PFC. E, Same as D, averaged across all spatial bins. Decoding error distribution showed peaks along the diagonal �0, with significant correlations for CA1 versus PFC decoding error (r � 0.10, n �
10 sessions, p � 0.001). F, Difference between decoding errors using actual and shuffled data (controlled for spatial and speed bins) shows a distribution along the diagonal, indicating strong
correlations between actual decoded errors. G, Decoding error correlations for actual versus shuffled data for the 10 recording sessions. Actual correlations were significantly higher than shuffled
values (mean correlation values of r � 0.10 vs r � 0.03, p � 0.01). Detailed statistics for all comparisons are reported in the text. n.s. � not significant, *p 
 0.05 unless specified otherwise.
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To address this question, we first quantified theta phase-
associated spiking, namely phase-locking and phase-precession
in simultaneously recorded CA1-PFC populations (see Materials
and Methods; Fig. 5). Similar to previous reports by others and us
(Jones and Wilson, 2005a; Siapas et al., 2005; Jadhav et al., 2016),
CA1 and PFC neurons exhibited strong phase-locking, with a
large fraction of neurons in both regions phase-locked to theta
oscillations [Fig. 5A–C; Rayleigh z test; p 
 0.05 criterion; CA1
fraction significant � 83.5% ( 213/255); PFC fraction signifi-
cant � 51.4% ( 57/111)]. Figure 5A shows illustrative examples of
significantly phase-locked CA1 and PFC neurons, along-with

their spatial firing preferences on a linearized trajectory. Note
that these cells exhibit both spatial selectivity as well as preferred
theta phase spiking within their spatial firing fields. Spiking in the
firing fields is therefore not uniformly distributed across phase,
but rather occurs at particular phases of theta oscillations for
phase-locked neurons. Figure 5B shows distribution of phase-
locking strengths for the two regions, and distribution of pre-
ferred peak phases for significantly phase-locked CA1 and PFC
neurons is shown Figure 5C. As expected, phase locking strength
was significantly higher for CA1 compared with PFC neurons
(phase-locking strength measured as the � concentration param-

Figure 5. Theta phase modulation of CA1 and PFC spiking. A, Examples of theta phase-locked CA1 and PFC neurons. Spikes from single neurons are plotted with corresponding theta oscillation
phase and linear position indicated along the two axes. Note that spikes occur at specific phases of theta oscillations within the firing fields of the neurons, thus exhibiting a phase–space relationship.
Both neurons were significantly phase-locked, assessed with a Rayleigh z test (CA1 neuron, ��1.1 p�1.6e�28; PFC neuron, ��2.0, p�1e�99). These neurons did not show significant phase
precession ( p 	 0.63, red lines). B, Distribution of � values for all phase-locked CA1 (n � 213) and PFC (n � 57) neurons. CA1 had significantly stronger phase-locking than PFC ( p � 1.5e-08). C,
Distribution of preferred theta phases for significantly phase-locked CA1 (n � 213) and PFC (n � 57) neurons. The two distributions are significantly different from each other ( p � 0.002). D,
Examples of theta phase precession in CA1 and PFC neurons. Spikes from single neurons are plotted with corresponding theta oscillation phase and linear position indicated along the two axes, with
line fits for circular-linear correlation overlaid in red (CA1 neuron: 	 � �0.64, p � 1.7e�7; PFC neuron: 	 � �0.27, p � 0.02). E, Distribution of rho value (	) from line fits for circular-linear
correlation quantifying strength of phase precession in all CA1 and PFC neurons. CA1 had significantly stronger phase precession than PFC ( p � 2.7e�4). *p 
 0.05 unless specified otherwise.
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eter of a circular von Mises distribution; CA1 vs PFC phase-
locked neurons n � 213 vs 57; two-sample Kolmogorov–
Smirnov test; p � 1.5e�08). Preferred phases for CA1 and PFC
phase-locked neurons were also different, similar to previous re-
ports (Kuiper two-sample test; the two distributions for preferred
phases of the phase-locked neurons are significantly different,
T(Kuiper) � 5025, p � 0.002).

We next characterized phase-precession properties of CA1
and PFC neurons. Phase precession of place cells, or the advance-
ment of firing from late to early theta phases as an animal tra-
verses a place field, is a major constituent of CA1 theta
modulation (O’Keefe and Recce, 1993; Skaggs et al., 1996;
Schmidt et al., 2009; Feng et al., 2015). We quantified phase pre-
cession using a previously reported method (Kempter et al.,
2012) that maximizes the circular-linear correlation of spike lo-
cation versus spike theta phase, using the peak firing fields of each
neuron (see also Materials and Methods). Similar to previous
reports, we found a large fraction of CA1 neurons exhibited sig-
nificant phase-precession (Fig. 5D,E; 58.0% neurons, 148/255
with p 
 0.05 criterion), with a much smaller fraction of signifi-
cant neurons with phase precession in PFC (6.3%, 7/111 with p 

0.05 criterion), similar to chance levels. Illustrative examples of
phase precession for CA1 and PFC are shown in Figure 5D (Fig.
5A did not exhibit significant phase precession, p 	 0.63 for both
neurons, CA1 neuron, 	 � �0.64, p � 1.7e�7; PFC neuron, 	 �
�0.27, p � 0.02; note that the example phase-locked neurons),
and the distributions of the phase precession parameter, Rho (	;
the R value equivalent for goodness-of-fit for linear circular rela-
tionships) are shown for all CA1 and PFC neurons in Figure 5E.
These distributions were significantly different as expected (two-
sample Kolmogorov–Smirnov test; p � 2.7e�4).

These results confirm previous findings of strong theta phase-
locking in PFC neurons (Hyman et al., 2005; Jones and Wilson,
2005a,b; Siapas et al., 2005; Gordon, 2011; Jadhav et al., 2016).
We found little evidence for PFC phase precession (Jones and
Wilson, 2005b), which was similar to chance level detection rate.
Interestingly, as previously suggested (Jones and Wilson, 2005a;
Benchenane et al., 2010; Spellman et al., 2015), these results also
show that phase-locked spiking in PFC exhibits spatial prefer-
ences, raising the possibility of a phase code for spatial location in
PFC, in parallel with CA1.

Incorporation of theta phase improves spatial decoding in
both CA1 and PFC
Theta phase is known to underlie an additional temporal code in
CA1 that provides more accurate spatial information than just
the firing rates alone, and indeed incorporation of theta phase has
been shown to significantly improve hippocampal spatial decod-
ing (Jensen and Lisman, 2000). Because PFC neurons also exhibit
theta-phase-specific spatial selectivity within firing fields as a re-
sult of phase-locked spiking (Fig. 5), we next asked whether this
phase relationship can lead to improved decoding accuracy in
PFC populations by taking into account these phase–space rela-
tionships, in parallel with CA1 ensembles.

We used a strategy similar to a previous study (Jensen and
Lisman, 2000) for incorporating theta phase in population de-
coding of spatial position in both CA1 and PFC, to assess and
compare the impact on spatial representation in these regions
(Fig. 6). Spatial firing field templates were sectioned into an in-
creasing number of evenly spaced phase bins for decoding anal-
yses, with each phase-bin based template taking into account
theta phase in addition to the firing field of the neuron. Each
neuron’s firing field therefore contributes multiple templates

(equivalent to number of phase bins used for decoding), which
are spatially restricted only if a phase-based code for spatial posi-
tion exists for the original firing field. Figure 6A illustrates for a
CA1 neuron how seven phase bins result in templates with spa-
tially restricted firing because of phase precession in the firing
field, with the new phase bins encoding subparts of the original
firing field. Similarly, for the PFC neuron illustrated in Figure 6B,
phase-locked spiking, and not phase precession, results in phase-
based spatial templates because of spiking at specific phases
within the firing field. Only the preferred phase bins (indicated
with arrows) in this PFC neuron exhibits spatially localized firing.
Note that for a uniform or random distribution of phases in the
firing field (i.e., no phase–space relationship), multiple phase bin
templates will not increase the spatial localization, but rather
distribute the firing field randomly among the phase templates.
Therefore, an important control for this analysis is generating a
similar number of templates but with shuffled phase bins, which
preserve the increased number of phase-based templates but ran-
domize the phase–space relationship. Similarly, simply using
smaller time windows without reference to phase will also not
trivially increase the spatial information, because smaller time
windows led to higher decoding error in both CA1 and PFC (Fig.
6C), presumably because of reduction in number of spikes
(Kruskal–Wallis with Bonferroni post hoc; CA1, � 2

(3) � 263.1, p �
3.7e�9 for theta vs 50 ms; PFC, � 2

(3) � 214.87, p � 3.7e�9 for
theta vs 50 ms).

Using this method for generating phase-based templates for
population decoding, we found a significant and consistent im-
provement in spatial decoding accuracy in CA1 with increase in
number of phase bins, similar to previous findings, with asymp-
totic improvement in decoding error at �6 – 8 phase bins (Jensen
and Lisman, 2000; Fig. 6D). There was an approximately twofold
median improvement in CA1 decoding accuracy when seven
phase bins were taken into account [median (IQR) decode error
for 1 phase bin: 3.4 cm (1.4 – 8.3 cm); median (IQR) decode error
for 7 phase bins: 2.0 cm (0.9 –3.8 cm); Kruskal–Wallis with Bon-
ferroni post hoc, � 2

(7) � 1277.47, p � 0.02 for all pairwise succes-
sive phase-bin comparisons for Bins 1–5, pairwise successive
phase– bin comparisons 	5, p � 1]. Using a similar decoding
approach for PFC ensembles, we also found a significant and
strong increase in spatial decoding accuracy for PFC populations,
with an approximately fourfold median improvement in PFC
decoding accuracy when seven phase bins were taken into ac-
count [Fig. 6E; median (IQR) decode error for 1 phase bin: 15.7
cm (3.7– 46.9 cm); median (IQR) decode error for 7 phase bins:
3.6 cm (1.4 –30.6 cm); Kruskal–Wallis with Bonferroni post hoc,
� 2

(7) � 1684.76, p � 0.0013 for all successive pairwise compari-
sons for Bins 1–7, pairwise phase– bin comparison between 7 and
8, p � 0.24]. The median decoding accuracy for PFC ensembles
with seven theta phase bins was comparable to the original CA1
decoding accuracy obtained with just with firing rates [median
(IQR); CA1 with 1 phase bin, 3.4 cm (1.4 – 8.3 cm), PFC with 7
phase bins, 3.6 cm (1.4 –30.6 cm); CA1 accuracy at 1 phase bin
was still significantly higher than PFC at 7 phase bins, Wilcoxon
rank sum test for comparison between the two; z � �13.28, p �
3.0e�40].

Incorporation of theta phase thus improves spatial decoding
accuracy in both CA1 and PFC, suggesting that spatial firing fields
in both regions are comodulated by theta phase. To control for
the possibility that the increased decoding accuracy may simply
arise from increased number of templates, we performed the
same analysis with shuffled firing templates, by reassigning spikes
to a random theta phase bin before computing new phase-binned
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Figure 6. Theta phase-based templates improves spatial position decoding in both CA1 and PFC. A, Example of a CA1 firing field split into seven theta phase-based templates. This neuron exhibited strong
phase precession, apparent in the phase-based templates shown on right, where preferred firing location changes with theta phase. B, Example of a PFC firing field split into seven theta phase-based templates.
This neuron exhibited strong phase locking, apparent in the phase-based templates shown on right, where only preferred phase bins (indicated by arrows) shows significant spiking that is spatially localized.
Non-preferred phase bins exhibit highly reduced number spikes. C, Decoding error using firing rate templates as a function of time windows. Using smaller temporal windows (50 ms) than theta cycles leads to
increased decoding error ( p
3.7e�9). D, Decoding error using CA1 ensembles using successively increasing number of phase-bin templates. Phase bin 1 corresponds to a firing-rate-only template, similar to
Figure 3. Decoding accuracy significantly increased until five phase bins ( p�0.02,�2-fold improvement in median decoding accuracy), with only nonsignificant, asymptomatic improvement with subsequent
increase in phase bins. Inset, Low decoding error values for clarity. E, Same as D, using PFC ensembles. Decoding accuracy significantly increased until seven phase bins ( p � 0.0013, �4-fold improvement in
mediandecodingaccuracy). F,ComparisonofactualdecodingerrorforCA1usingphase-basedtemplatestotwoshuffledmetrics:anequivalentnumberoftemplates,butwithrandomassignmentofthetaphase
(“encoding” phase bin shuffle; dark gray), and with correct construction of phase templates per neuron, but with random choice of phase template during decoding (decoding phase bin shuffle; light gray).
Decodingerrorwithshuffledtemplatesusingrandomphaseassignmentdidnotshowanysignificant improvementindecodingaccuracywithincreaseinphasebins( p
2.3e�114forallpairwisecomparisons
from 2 to 8 phase bins between actual and both shuffled decoding values). G, Same as F, using PFC ensembles. ( p
3e�34 for all pairwise comparisons from 2 to 8 phase bins between actual and both shuffled
decoding values). H, Decoding error correlations for actual versus shuffled data for the 10 recording sessions for seven phase bins. Actual correlations were significantly higher than shuffled values (mean
correlation values of r � 0.13 vs r � 0.02, p � 0.009). n.s. � not significant, *p 
 0.05 unless specified otherwise.
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fields (encoding shuffle). This shuffling procedure thus removes
any phase–space relationships by assigning spikes from firing
fields to random theta phases, but preserves the original firing
fields for the increased number of templates (e.g., for 7 phase
bins, each of the new 7 templates will have the same overall firing
field as the original field for the neuron, but with random assign-
ment of phase bins). With these shuffled templates, we observed
no improvement in decoding accuracy with increase in phase
bins for either CA1 or PFC populations (Fig. 6F; pairwise Wil-
coxon rank sum for encoding shuffled phase bins in CA1 2– 8 vs
regular phase bins 2– 8, p 
 2.6e�208; Fig. 6G; pairwise Wil-
coxon rank sum for encoding shuffled phase bins in PFC 2– 8 vs
regular phase bins 2– 8, p 
 1e�99). We also used another shuf-
fling procedure, in which the construction of phase templates is
preserved, but the selection of which phase templates to use dur-
ing decoding is shuffled for each neuron, randomizing phase
templates used during decoding (“decoding shuffle”). This de-
coding shuffle also did not show any improvement in decoding
accuracy with increase in phase bins for either CA1 or PFC
populations (Fig. 6F; pairwise Wilcoxon rank sum for decoding
shuffled phase bins in CA1 2– 8 vs regular phase bins 2– 8, p 

2.3e-114; Fig. 6G; pairwise Wilcoxon rank sum for decoding
shuffled phase bins in PFC 2– 8 vs regular phase bins 2– 8, p 

3e�34). Thus, the preferred phase–space coding properties of
multiple PFC neurons are required for the observed increase in
decoding accuracy with the incorporation of theta phase.

The improved position decoding accuracy can therefore can-
not be explained simply as an increase in number of templates, or
the sharpening of templates because of a trivial decrease in num-
ber of spiking events in smaller time windows. Finally, we also
examined whether correlations in CA1 and PFC spatial coding
were preserved when theta phase was incorporated in population
decoding. Using a similar approach as above (Fig. 4F), we com-
puted correlations between actual decoding errors and shuffled
errors for each session, illustrated for decoding errors obtained
using seven theta phase bins (Fig. 6H). Similar to correlations
based on just firing rate decoding, we found that actual decoding
error correlations were significantly higher than shuffled values,
with a decrease from 0.13 to 0.02 (Fig. 6H; paired-sample two-
tailed t test; n � 10; significant difference between actual and
shuffled correlations, t(9) � 3.05, p � 0.009). Incorporation of
theta phase thus improves spatial decoding accuracy in both CA1
and PFC.

Discussion
Our results establish a theta phase-mediated mechanism of tem-
poral coordination for coherent coding of spatial position in
hippocampal-prefrontal networks during memory-guided be-
havior. We report two major novel findings; first, we found that
prefrontal population activity encodes animals’ current position
on a theta-cycle timescale during memory-guided behavior, and
this prefrontal coding of spatial position is coherent with hip-
pocampal coding. Second, we found that theta phase-associated
spiking significantly improved prefrontal representations of spa-
tial position, simultaneously with improvement in CA1 spatial
representations, while maintaining coherent coding.

The physiological mechanisms that underlie hippocampal-
prefrontal interactions are of great interest. It is well established
that these regions have complementary roles in memory pro-
cesses, and multiple direct and indirect anatomical pathways be-
tween the two regions can support communication necessary for
memory-guided behavior (Cenquizca and Swanson, 2007; Vertes
et al., 2007; Spellman et al., 2015; Hallock et al., 2016; Maisson et

al., 2018). Further, inactivation studies that target these interac-
tions have reported deficits in spatial memory (Floresco et al.,
1997; Riedel et al., 1999; Wang and Cai, 2006, 2008; Churchwell
et al., 2010; Maharjan et al., 2018).

Theta oscillation-mediated interactions are the most pro-
minently implicated physiological mechanism for long-range
hippocampal–prefrontal communication in spatial memory par-
adigms. Theta oscillations in the two regions exhibit oscillatory
coherence, and more than half of prefrontal neurons exhibit
phase-locked spiking to hippocampal theta oscillations (Hyman
et al., 2005; Jones and Wilson, 2005a; Siapas et al., 2005; Gordon,
2011; Guise and Shapiro, 2017). Importantly, coherence and
phase-locking are enhanced during spatial memory performance
(Jones and Wilson, 2005a; Benchenane et al., 2010; Hyman et al.,
2010; Hallock et al., 2016; Guise and Shapiro, 2017), and im-
paired in parallel with cognitive deficits in genetic knock-out
models (Sigurdsson et al., 2010; Harris and Gordon, 2015).
Theta-mediated hippocampal–prefrontal interactions therefore
support spatial memory-guided behavior, and there is evidence
that these interactions can support mnemonic representations,
such as task-selective activity, choice-specific responses, and
memory encoding for spatial working memory (Jones and Wil-
son, 2005a; Hyman et al., 2011; Spellman et al., 2015; Guise and
Shapiro, 2017). Despite this evidence, whether and how theta
oscillations support shared processing of spatial information, the
most fundamental feature represented by hippocampal place
cells, has remained unexplored. Further, although theta is known
to mediate a phase-based code for position in CA1, whether theta
phase also influences PFC spatial coding is not clear.

In this study, we therefore had two major goals; examine spa-
tial coding relationships in CA1 and PFC ensembles during
memory-guided behavior, and investigate the effect of theta
phase on spatial coding. Addressing these questions requires si-
multaneous population recordings in the two regions and appli-
cation of Bayesian decoding analyses, which we implemented in
animals performing a W-track spatial alternation task that re-
quires hippocampal-prefrontal interactions (Maharjan et al.,
2018). We confirmed that PFC neurons exhibited spatially-
specific firing, but as expected, CA1 place cells exhibited signifi-
cantly higher spatial specificity. We then used Bayesian decoding
analyses to extract moment-by-moment spatial position from
ensemble activity. We used theta cycles as time bins, because (1)
theta oscillations provide temporal windows for organization
across hippocampal-cortical networks (Lisman, 2005; Lisman
and Redish, 2009; Mizuseki et al., 2009; Lisman and Jensen,
2013), and (2) we wanted to investigate the effect of theta phase
on spatial coding. For this firing rate based Bayesian decoding,
using fixed time bin of lengths close to the average theta cycle
(�125 ms) yielded similar decoding error (Fig. 6), which in-
creased with smaller time windows, presumably because of de-
crease in relevant spiking information.

Using this firing rate based Bayesian decoding, we found that
PFC ensembles also encoded spatial position within individual
theta cycles, but with higher decoding errors than CA1 as ex-
pected from their lower spatial specificity. Crucially, simultane-
ous population decoding allowed us to examine correlations in
cycle-by-cycle decoding error. We found that CA1-PFC position
representations were coherent, with decoding errors from both
regions significantly correlated with each other, even when con-
trolling for effects of speed. This coherent coding indicates shared
processing of spatial signals in the CA1–PFC network, which can
be supported by multiple direct and indirect connections. In par-
ticular, direct connections from ventral CA1 to PFC, as well as
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indirect connections from PFC to CA1 via nucleus reuniens, have
been implicated in altering task selective spatial representations
between the regions (Ito et al., 2015; Spellman et al., 2015), sug-
gesting that a similar mechanism may underlie coherent spatial
coding. These interactions can therefore be bidirectional, al-
though we note that theta-mediated interactions have been
shown to exhibit a primarily CA1-leading-PFC directionality
(Gordon, 2011; Jadhav et al., 2016). Direct hippocampal–pre-
frontal projections arise primarily from the ventral hippocam-
pus, which have been shown to at least partially mediate dorsal
hippocampal–prefrontal interactions (O’Neill et al., 2013). Al-
though the W-track task depends on dorsal CA1–PFC interac-
tions, this raises the possibility that the observed theta-mediated
coherent spatial coding may involve a crucial role of ventral hip-
pocampus, which can be investigated in future studies. Interest-
ingly, the degree of CA1-PFC spatial coherence we observed was
similar in magnitude to recently reported correlations for CA1
and primary visual areas (Haggerty and Ji, 2015; Saleem et al.,
2018), raising the possibility of interdependent spatial represen-
tations in widespread networks.

We next examined the effect of theta-phase associated spiking
on joint spatial representations in the two regions. CA1 place cells
exhibits theta phase precession, where spike timing relative to
theta phase conveys finer spatial information than place field
firing alone (O’Keefe and Recce, 1993; Skaggs et al., 1996). Phase
precession is also related to place-cell theta sequences, which rep-
resent sequential activity within individual theta cycles that sweep
through positions near the animal’s current position (Foster and
Wilson, 2007; Feng et al., 2015; Wikenheiser and Redish, 2015).
This phase-based temporal coding results in significant improve-
ment in estimation of position from CA1 populations (Jensen
and Lisman, 2000). We therefore reasoned that PFC spatial rep-
resentations may also be similarly influenced, because (1) theta
oscillations mediate strong hippocampal–prefrontal interactions
during memory-guided behavior, and (2) PFC neurons exhibit
prominent hippocampal theta phase-associated spiking. We con-
firmed strong theta phase-locked spiking in both CA1 and PFC
regions (Jones and Wilson, 2005a; Jadhav et al., 2016), whereas
theta phase precession was prominent only in CA1 (O’Keefe and
Recce, 1993; Skaggs et al., 1996). Both CA1 and PFC neurons thus
exhibited a strong relationship between theta phase and spatial
firing, with a preference to spike at particular phases within their
spatial firing fields (CA1 by phase precession, PFC by phase-
locking), underlying a phase–space relationship (Fig. 5). We
asked whether using theta phase as an additional parameter in
population decoding leads to an improvement in position esti-
mation. We indeed found that both CA1 and PFC spatial repre-
sentations showed significant improvement in spatial coding
when theta phase was taken into account. This improvement in
spatial accuracy was not seen with shuffled phase assignments,
where we generated a similar number of templates, but with ran-
dom assignment of phase, thus disrupting the phase–space rela-
tionship. Theta phase relationships therefore enhanced spatial
accuracy, and also maintained coherent CA1–PFC spatial coding,
suggesting shared spatial processing. Finally, PFC representa-
tions showed a greater improvement in spatial accuracy with
phase than CA1, which was likely a floor-effect resulting from the
lower limit of the spatial resolution of our position tracking (�2
cm), and the fact that CA1 firing rate representations were al-
ready highly accurate.

This increase in spatial decoding accuracy is likely because of a
phase-specific segregation of spatially selective spikes from mul-
tiple neurons with similar phase preferences, leading to a sharp-

ening of spatial information when decoded spikes are in the
preferred phase bin. Interestingly, we observed significant im-
provement in decoding accuracy using up to 6 – 8 phase-based
templates for theta cycles. It has been previously argued that for
CA1, this corresponds to the phenomenon of theta– gamma cou-
pling, where optimal improvement in decoding accuracy corre-
sponds to number of nested gamma (�40 – 80 Hz) cycles within
theta cycles (Jensen and Lisman, 2000). Theta– gamma coupling
is also known to be related to CA1 theta sequences (Colgin, 2011;
Zheng et al., 2016), and theta– gamma coupling has also been
recently reported in hippocampal–prefrontal networks (Tamura
et al., 2017), raising the possibility that a similar phenomenon can
influence PFC spatial representations.

Our results thus establish that hippocampal and prefrontal
neural populations coherently encode position during spatial
memory behavior, and further that theta phase underlies a tem-
poral mechanism that concurrently improves spatial representa-
tional accuracy in both regions. We hypothesize that this
phenomenon can possibly extend beyond local coding of current
position. Interestingly, spatial decoding accuracy showed a
behavioral-dependent decrease near choice points in both CA1
and PFC. Hippocampal theta sequences are known to be promi-
nent during these behavioral epochs and support non-local rep-
resentations of behaviorally relevant trajectories or upcoming
goals (Johnson and Redish, 2007; Gupta et al., 2012; Wikenheiser
and Redish, 2015; Zielinski et al., 2017). Our results raise the
possibility that a similar mechanism of theta phase-mediated co-
ordination can support non-local coding in hippocampal–pre-
frontal networks. By elucidating a physiological mechanism for
coordination of spatial representations, these findings therefore
provide an important foundation for future investigations of how
theta oscillations organize shared mnemonic representations in
hippocampal-prefrontal networks.
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