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Distinct Sources of Variability Affect Eye Movement
Preparation
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The sequence of events leading to an eye movement to a target begins the moment visual information has reached the brain, well in
advance of the eye movement itself. The process by which visual information is encoded and used to generate a motor plan has been the
focus of substantial interest partly because of the rapid and reproducible nature of saccadic eye movements, and the key role that they play
in primate behavior. Signals related to eye movements are present in much of the primate brain, yet most neurophysiological studies of
the transition from vision to eye movements have measured the activity of one neuron at a time. Less is known about how the coordinated
action of populations of neurons contribute to the initiation of eye movements. One cortical area of particular interest in this process is
the frontal eye fields, a region of prefrontal cortex that has descending projections to oculomotor control centers. We recorded from
populations of frontal eye field neurons in macaque monkeys engaged in a memory-guided saccade task. We found a variety of neurons
with visually evoked responses, saccade-aligned responses, and mixtures of both. We took advantage of the simultaneous nature of the
recordings to measure variability in individual neurons and pairs of neurons from trial-to-trial, as well as the moment-to-moment
population activity structure. We found that these measures were related to saccadic reaction times, suggesting that the population-level
organization of frontal eye field activity is important for the transition from perception to movement.
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Introduction
The process of identifying salient elements in the world and mov-
ing the eyes to foveate those elements is central to primate behav-

ior. The coordination of visual input and motor output involves
neural circuits that are woven throughout the cerebral cortex and
subcortical regions (Wurtz, 2008). One of the key players in this
visuomotor transformation is the frontal eye fields (FEFs), lo-
cated in the anterior bank of the arcuate sulcus. While FEF’s role
in both visual processing and saccade generation is well studied at
the level of neurons recorded one at a time, there has been rela-
tively less attention paid at the population level to how groups of
FEF neurons coordinate from moment to moment during vision
and eye movements.

For the brain to produce a fast and accurate eye movement,
commands from an oculomotor control area, such as FEF, would
ideally need to be robust. FEF contains neurons that respond
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Significance Statement

The transition from perception to action involves coordination among neurons across the brain. In the case of eye movements,
visual and motor signals coexist in individual neurons as well as in neighboring neurons. We used a task designed to compart-
mentalize the visual and motor aspects of this transition and studied populations of neurons in the frontal eye fields, a key cortical
area containing neurons that are implicated in the transition from vision to eye movements. We found that the time required for
subjects to produce an eye movement could be predicted from the statistics of the neuronal response of populations of frontal eye
field neurons, suggesting that these neurons coordinate their activity to optimize the transition from perception to action.
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exclusively to visual stimuli or eye movements, but most exhibit
some degree of response to both (Bruce and Goldberg, 1985;
Lawrence et al., 2005). These responses can take the form of
persistent activity after a visual stimulus that remains elevated
until an eye movement is made (Bruce and Goldberg, 1985).
Behaviorally, single-neuron firing rates to target stimuli (vs dis-
tractors) are correlated with reaction time (Thompson et al.,
1996), and eye movements are difficult to cancel once firing rate
exceeds a certain threshold (Brown et al., 2008). The functional
properties of FEF neurons and their relationship to behavior,
combined with their anatomical connections to visual cortex
(Schall et al., 1995) and the superior colliculus (SC) (Stanton et
al., 1988; Sommer and Wurtz, 1998, 2000; Helminski and Seg-
raves, 2003), make FEF neurons ideal candidates to mediate the
visual to motor transformation in an eye-centered coordinate
frame (Sajad et al., 2015).

To generate consistent, repeatable eye movements, the ideal
oculomotor command signal should be reliable. At the single-
neuron level, reliability, as measured by Fano factor, decreases
after stimulus presentation in a wide variety of visual and motor
areas (Churchland et al., 2010), including FEF. Fano factor in FEF
neurons is lowest before saccade initiation (Purcell et al., 2012)
and reductions in Fano factor are driven by visual stimulation
independent of the saccade plan (Chang et al., 2012). Although
trial-to-trial correlated variability among pairs of neurons (also
known as “spike count correlation,” or rsc) has been widely studied
in visual cortex (for review, see Cohen and Kohn, 2011) and linked to
shifts in visual attention (Cohen and Maunsell, 2009; Mitchell et al.,
2009; Herrero et al., 2013; Snyder et al., 2016), there has been much
less investigation of the role of correlated variability in movement
planning and initiation.

The neural code by which FEF neurons signal an eye move-
ment was initially described by relating presaccadic activity to
saccade reaction time using a fixed rise to threshold model
(Hanes and Schall, 1996). What is less clear is whether activity
well before the saccade (e.g., early in the delay period of a
memory-guided saccade task), particularly at the pairwise and
population level, is important for saccade preparation. This ques-
tion has been recently addressed in the SC, where Jagadisan and
Gandhi (2017) proposed that stability in the time-varying re-
sponses of individual neurons in SC was a key factor in determin-
ing whether SC activity leads to an eye movement. Kaufman et al.
(2014) posed a similar question in the skeletomotor system, ask-
ing why population average delay activity in motor cortex did not
appear to appreciably rise or change to signal the onset of a reach.
They proposed a “potent” and “null” space for movement gener-
ation signals in the population, through which a linear readout
could use specific activity patterns, or mixtures of neural re-
sponses, to signal movement. Together, these results suggest that
the rapid generation of a motor action is not just about having an
elevated firing rate at the single-neuron level but also can be
influenced by interactions at the pairwise (or population) level.

To determine the population-level signatures of eye move-
ment preparation, we recorded simultaneously from groups of
FEF neurons in three rhesus macaque monkeys using linear mi-
croelectrode arrays while the animals performed a memory-
guided saccade task. We found that the generation of an eye
movement depended on activity changes at the single-neuron,
pairwise, and population levels. In particular, the speed at which
a saccade was generated depended not only on the overall firing
rate of a group of neurons, but also the level of variability across
neurons and over time, and the particular pattern of activity ob-
served in the population as a whole. We observed that variability

at the single-neuron (Fano factor) and pairwise (trial to trial
fluctuations in responsivity, or correlated variability) levels de-
creased for the FEF neuronal population once the saccade target
appeared, and variability was lowest on trials with the fastest
reaction time. Furthermore, low-dimensional representations of
population activity were also correlated with reaction time, with
the relationship often persisting throughout the entire delay ep-
och. These results suggest that FEF activity and its fluctuations
from trial to trial, across numerous levels (single-neuron, pair-
wise, and population), are coordinated in a way that contributes
to an optimal state for the rapid transition from preparation to
execution of an eye movement.

Materials and Methods
Neuronal recordings
Surgical preparation. Three adult male rhesus macaque monkeys
(Macaca mulatta; Monkeys B, R, and W) were surgically implanted with
titanium headposts and FEF recording chambers (centered at stereotaxic
coordinates: 25 anterior, 20 lateral) using sterile surgical techniques un-
der isoflurane anesthesia. All procedures were approved by the Institu-
tional Animal Care and Use Committee of the University of Pittsburgh
and complied with guidelines set forth in the National Institute of
Health’s Guide for the care and use of laboratory animals.

Electrophysiological methods. Extracellular activity was recorded with a
16-channel linear microelectrode array (U-Probe, Plexon), with contacts
spaced 150 �m (Monkeys R and W) or 200 �m (Monkey B), spanning a
distance of 2.25 mm or 3.0 mm, respectively. Electrodes were lowered
into cortex using a custom-designed mechanical microdrive (Laboratory
for Sensorimotor Research, Bethesda, MD), inserted through a plastic
grid with 1 mm spacing. The location of FEF within the chamber was
identified first by the functional properties of recorded neurons and then
confirmed by identifying sites where saccades could reliably (�50%) be
evoked using low-amplitude microstimulation (�50 �A, 0.25 ms pulse
duration, 70 ms pulse train duration, 350 Hz stimulation frequency)
(Bruce et al., 1985). We mapped out the recording chamber using micro-
stimulation at multiple locations and then considered successful stimu-
lation sites and their immediate neighbors (1 mm away) as FEF.

Data collection. Stimuli were displayed on a 21 inch cathode ray tube
monitor with a resolution of 1024 � 768 pixels and a refresh rate of 100
Hz at a viewing distance of 36 cm. Stimuli were generated with custom
software written in MATLAB (The MathWorks) using the Psychophysics
Toolbox extensions (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007). Eye
position was monitored monocularly via infrared tracking at a 1000 Hz
rate (EyeLink 1000, SR Research), and neural and behavioral data were
recorded with a Grapevine recording system (Ripple). For each electrode,
waveform segments that exceeded a threshold (set as a multiple of the
root mean square noise on each channel) were saved and stored for
offline analysis and sorting. Waveforms were automatically sorted using
a competitive mixture decomposition method (Shoham et al., 2003) and
manually refined based on waveform shape and interspike interval using
custom time amplitude window discrimination software written in
MATLAB (Kelly et al., 2007, available at https://github.com/smithlabvi-
sion/spikesort).

Following the offline sorting procedure, the signal-to-noise ratio
(SNR) was calculated for each identified unit as the ratio of the average
waveform amplitude to the SD of the waveform noise (Kelly et al., 2007).
We considered only candidate units with a signal-to-noise ratio of 2.5,
and then eliminated 162 units whose delay period response was not �1
sp/s for at least one condition. This resulted in a total of 976 units (230,
232, and 514 units in 14, 25, and 36 sessions from Monkeys W, B, and R,
respectively), from which we analyzed 7656 pairs of simultaneously re-
corded neurons (2038 from Monkey W, 1199 from Monkey B, and 4419
from Monkey R, same-channel pairs were excluded).

Experimental design and statistical analysis
Behavioral task. Monkeys performed a conventional memory-guided
saccade task (see Fig. 1) (Hikosaka and Wurtz, 1983). The trial began
when the monkey was required to fixate a small blue circle (0.5° diame-
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ter). After maintaining fixation within a 1.8° diameter window for 200
ms, a circular peripheral target (0.8° diameter, 11° eccentric) was briefly
flashed (50 ms duration) at 1 of 8 locations (cardinal and oblique direc-
tions). The animal was required to maintain fixation for 550 or 600 ms
(held constant within a session) until the fixation point was extinguished,
which signaled the monkey to make a saccade to the remembered loca-
tion of the stimulus. The monkey had 500 ms to initiate a saccade, as
defined by the eye position leaving a window 1.8° in diameter around the
fixation point. Once the saccade had been initiated, the monkey’s eye
position had to reach the saccade target within 200 ms and maintain gaze
within 2.7° of the location for 150 ms to receive a liquid reward. Each
block consisted of pseudorandomized presentations of all eight direc-
tions, with at least 50 blocks gathered per session (mean � 132 blocks).
On a subset of days, after the fixation point was extinguished and the
monkey began its saccade, the target was reilluminated to aid in saccade
completion. The analysis presented here is not affected by this target
because it appeared after the analysis window.

General statistical analysis. For pairwise analyses (correlated variability
and covariance), degrees of freedom were across pairs of neurons (n �
7656 pairs unless stated differently in Results). For single-neuron mea-
surements (firing rate, variance, correlation between firing rate, and re-
action time), degrees of freedom were across the number of single
neurons (n � 976 neurons). Detailed information for the specific statis-
tical tests used for each figure can be found in the results.

For statistically testing the time course of variability (see Fig. 5A–C), a
running one-sample t test was computed for each condition after base-
line (200 ms before target onset) subtraction. To compare conditions to
each other, an independent samples t test was used. Both statistical tests
were Bonferroni-corrected. For statistical tests on the Fano factor time
course, see the section below.

Calculation of preferred direction and tuning selectivity. The preferred
direction and selectivity of each FEF neuron, calculated during the delay
period, were determined by a vector average similar to that used for
preferred orientation (Smith et al., 2002). Preferred direction is given by
the circular mean angle as follows:

1

2
arctan��n�1

N
Rn sin(2�n)

�n�1

N
Rn cos(2�n)

�
Where Rn is the response magnitude during the delay period, �n is the
stimulus location, and n is an index from 1 to the number of points, 8, in
the tuning curve.

To measure the selectivity of each neuron’s tuning curve, we calculated
the complex summed response vector (where i � �� 1) as follows:
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And normalized the magnitude by the summed magnitude of all the
response vectors:
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A selectivity of 0 corresponds to a neuron that fires equally for all condi-
tions, and a selectivity of 1 would be for a neuron that responds exclu-
sively to one condition. The preferred direction of a pair of neurons was
the preferred direction of the neuron with a higher selectivity.

Measurement of correlated variability. The methods used to compute
rsc (also known as “spike count correlation” or “noise correlation”) have
been presented in detail in previous publications (Kohn and Smith, 2005;
Smith and Kohn, 2008). Briefly, correlated variability was measured by
calculating spike count correlation (rsc, also known as noise correlation).
The rsc of a given pair of neurons is the Pearson correlation coefficient of
the evoked spike responses to a repeated stimulus. For most of the results
in this paper, rsc was calculated during the memory epoch (550 or 600 ms
in duration), and thus did not include the time period when the stimulus
was on. When an rsc value was calculated across multiple directions, we

normalized each neuron’s response for each direction by z scoring it, and
then calculated the rsc by combining responses across directions. For
calculating the “preferred” and “antipreferred” direction of the pair of
neurons, we first identified the eye movement direction closest to the
preferred direction of the most selective neuron in the pair. That direc-
tion, along with the two directions flanking it on either side were com-
bined to yield the “preferred” direction. The three directions 180 degrees
opposite the directions used for the preferred direction were combined to
yield the “antipreferred” direction. We combined conditions in this way
to increase our statistical power—results using the preferred and anti-
preferred directions alone (without the flankers) were qualitatively sim-
ilar. We also defined the preferred direction of the pair by using the
geometric mean of the two neuron’s tuning curves instead of the more
selective neuron. Instances where these two methods would differ would
only result from pairs with disparate tuning; and even for these pairs,
results were nearly indistinguishable. We chose to use the method of
defining based on the more selective neuron as it guaranteed that the
direction chosen was in the preferred direction of at least one neuron in
the pair (while centering on the geometric mean of the pair can be more
likely to identify compromise directions that are not at the peak response
of either neuron).

Visuomotor response properties. To classify units as visual, motor, or
visuomotor, the relative strength of the response to the visual stimulus
was compared with that around the time of the eye movement. The visual
response was defined as the spike count from 50 to 150 ms after stimulus
onset, whereas the motor response was defined as the spike count from
50 ms before to 50 ms after the onset time of the saccade. We computed
a standard d� metric for each neuron comparing the distributions of its
responses to the visual and motor epochs (differences in the means of the
distributions divided by the square root of the product of their vari-
ances). We arbitrarily assigned positive d� to neurons that responded
most in the visual epoch and negative d� to those that responded most in
the motor epoch. d� values that were close to zero represented neurons
that had nearly identical visual and motor responses.

rsc and reaction time analysis. To relate rsc to reaction time on a trial-
by-trial basis, rsc was calculated on subsets of trials sorted by their reac-
tion time. For a given recording session, within each saccade direction,
trials were sorted according to reaction time. rsc was calculated in a 40-
trial sliding window, such that the first bin would correspond to rsc in the
40 trials with the fastest reaction times and the last bin would correspond
to rsc in the 40 trials with the slowest reaction times. For a session with 100
repeats, the number of rsc bins would total 60. Three sessions that did not
have sufficient trials for 10 reaction time bins (50 repeats) were omitted.
To compare measurements across sessions (as the number of repeats
varied day-to-day), the rsc bins, still sorted by reaction time, were then
combined into deciles in each session. This ensured that each neuronal
pair had 10 rsc measurements across a range of reaction times that could
be averaged across sessions. The same process was also used to compare
pairwise covariance and single-neuron mean firing rate and variance
with reaction time bin. For rsc, statistical testing was done by implement-
ing a linear mixed-effects model (MATLAB function fitlme) with fixed
effects for reaction time and summed d� of a pair (and an interaction
term), a random effect term for neuron pair, and a correlated random
effect term for pair and reaction time. For other measures (covariance,
variance, firing rate), the summed d� term was excluded. This model was
fit separately for preferred and antipreferred conditions.

Mean matching. To account for any differences in the relationship
between d� and rsc due to firing rate (see Fig. 7 A, B), we performed a
mean matching procedure as follows. A population mean firing rate was
calculated as the average rsc across all d� values and reaction time deciles.
Then, within each d� group, pairs were removed until the average geo-
metric mean firing across pairs and reaction time deciles was within 5%
of the population mean. Upon removing these pairs, all trends in Figure
7A, B were preserved (mean matching procedure was performed sepa-
rately for preferred and antipreferred directions).

Fano factor. Fano factor was calculated using methods and code pre-
viously published (Churchland et al., 2010). Data were aligned on stim-
ulus onset, and Fano factor and mean rate were computed using a 100 ms
sliding window. Analysis included only the preferred and antipreferred
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directions (flanker directions included for increased statistical power).
Fano factor was computed after mean matching the firing rate, to rule out
any possibility that changes in Fano factor were trivially due to changes in
firing rate. The statistical significance of the Fano factor decrease was
assessed by comparing the Fano factor 100 ms before target onset to the
Fano factor 200 ms after stimulus onset. Significance was computed
based on sampling distributions from the 95% CIs calculated by the
least-squares regression used when calculating the Fano factor (Church-
land et al., 2010). The decline was significant for both preferred and
antipreferred directions (both p � 0.0001).

Microsaccade detection. Microsaccades were identified using a velocity
criterion based on a previously published detection algorithm (Engbert
and Kliegl, 2003). The criterion, �, was based on a multiple of the SD of
the velocity distribution and calculated separately for the x and y velocity
components as follows:

�x,y � �	x,y

Where � is a multiplier and 	x, y is a median estimator of the velocity time
series defined as follows:

	x,y � �vx,y
2 � � �vx,y�2

Where v represents the velocity and �v� denotes the median estimator. We
used a value of � � 10, and any potential microsaccades must have had a
minimum duration of 6 ms and minimum amplitude of 0.05 degrees.
Trials that contained at least one microsaccade were removed from the rsc

calculation. To maximize statistical power in calculating rsc after the
microsaccade trial removal, we z-scored both the spike counts and the
reaction times for the preferred direction and its two flankers and com-
bined them to calculate one rsc value for the preferred direction (and one
for the antipreferred). On the full set of trials, using this z-scoring pro-
cedure did not appreciably change the results from computing the rsc

separately for each condition.
Factor analysis (FA). FA was used to characterize neural activity at a

population level (Santhanam et al., 2009; Churchland et al., 2010; Ever-
ett, 2013; Williamson et al., 2016). FA allows for the partitioning of
spiking variability into a component shared by the neural population and
a component independent across neurons (Churchland et al., 2010). For
a given session, condition, and trial repeat, spike counts were binned
across the delay period for each simultaneously recorded neuron (as for
the spike count correlation analysis, above). The mean spike counts,
loading matrix, and independent variances for each neuron were esti-
mated using the expectation-maximization algorithm (Dempster et al.,
1977). Only sessions with 
10 neurons were included (this excluded 30
sessions, leaving 41 that met this criterion). For the analysis of shared
variance on fast versus slow trials, an additional criterion of a minimum
number of repeats (100 trials) was used to minimize the overlap of trials
used to calculate shared variance for fast and slow reaction times (5
additional sessions were removed in addition to neuron criterion, leaving
36 sessions).

We determined the latent dimensionality (which could range from 1
to N 	 1, with N being the number of simultaneously recorded neurons)
using a two-stage process previously described (for a more detailed ex-
planation, see Williamson et al., 2016). First, we found the dimensional-
ity that maximized the cross-validated data likelihood. Having fit an FA
model with this dimensionality, we then defined the optimal dimension-
ality, dshared, as the number of dimensions needed to explain at least 95%
of the shared covariance of the model. The value of dshared is more reliable
than the dimensionality that produces the peak data likelihood in
situations where some dimensions explain small amounts of covari-
ance. dshared was calculated individually for each condition and ses-
sion (see Fig. 8A). Because the majority of dshared values were 1 with
this procedure, we set the latent dimensionality to 1 for all sessions to
simplify the comparison.

As a complement to our analysis of the time course of correlated
variability across the delay period, we also wanted to understand how
population activity evolved over the course of the trial. As stated above,
with FA we used data binned across the entire delay period, which did not
consider spike timing within the delay. Gaussian process factor analysis

(GPFA), an extension of FA, leverages spike timing information to pro-
duce a low dimensional estimate of activity that can be calculated at
different time points (for a more detailed explanation, see Yu et al.,
2009). The same neuron criterion used in the FA was applied here for
GPFA, with only sessions with 
10 neurons included (41 sessions). The
time series used for GPFA began at fixation and ended 1.5 s after fixation
to guarantee the time course included all saccades made on every trial,
but further analyses were restricted to data from fixation to saccade on-
set. For a given neuron and trial, the data structure used by the GPFA
model was formed by first binning the neuron’s spike counts into 1 ms
bins corresponding to the time series chosen (0 –1.5 s after fixation),
creating a peristimulus time histogram (PSTH) with 1 ms resolution.
This was done for all simultaneously recorded neurons in a session. To
increase our statistical power, all trials were combined after first subtract-
ing the mean PSTH for a given neuron and condition from each single
trial spike count vector. Thus, the final data structure input to GPFA for
each neuron was a residual spike count for each trial, with each millisec-
ond bin mean subtracted by the corresponding value from the average
PSTH for that condition, concatenated into a matrix containing all si-
multaneously recorded neurons. This method was then applied to each
session separately. Because of the mean subtraction, the data structure
could have values �0, which precluded the use of the square root trans-
form in GPFA.

As in FA, a two-stage process was used to calculate the optimal dimen-
sionality of the model, dshared. For each session, the model was fit to the
dimensionality that maximized the data likelihood. After the model was
fit, dshared was calculated, which determined how many of the latent
dimensions were included in the subsequent analysis of reaction time.
For example, for a session with 15 simultaneously recorded neurons, the
maximum cross-validated likelihood might occur for a 12-dimensional
model. The GPFA model would then be fit to 12 dimensions, and the
dshared calculated. If the dshared was 8, only the first 8 dimensions would be
used for the reaction time analysis for that session. Finally, neural trajec-
tories were orthonormalized to provide a more intuitive specification of
the trajectories in low dimensional space (for more detailed explanation,
see Yu et al., 2009).

Ordering of latent dimensions with reaction time. A secondary effect of
the orthonormalization process was that dimensions were ordered based
on the amount of data covariance explained. When calculating the R 2 fit
between GPFA dimensions and reaction time, it was not necessarily the
case that the dimensions with the highest amount of data covariance
explained had the highest R 2 (although this was usually the case). To
order the dimensions based on R 2 for a given session, we first split the
data into even and odd trials. Then, for a given dimension and time point
during the trial, the R 2 value resulting from a linear fit between the
dimension’s projection value and reaction time was calculated separately
for even and odd trials. Using the R 2 values obtained from the even trials,
the R 2 values were averaged across the 7 time points and sorted according
to highest average R 2. By using the average R 2 across time points, we
prioritized dimensions which consistently predicted reaction time across
the entire trial. We then used this ordering to sort the dimensions and R 2

values obtained from the odd trials. Because the datasets were indepen-
dent, this removed any bias caused by sorting. Ordering the dimensions
by data covariance explained (i.e., not performing the R 2 sorting proce-
dure) did not qualitatively change any of the results.

To determine whether the R 2 values observed were statistically signif-
icant, we used a shuffling procedure as follows. In each session, for each
dimension and time point, the reaction time values were randomly shuf-
fled relative to the dimension’s projection value. This was done for all
sessions, with a Wilcoxon rank signed test used to compare the shuffled
and real R 2 values for each time point and dimension, across all sessions.
To account for multiple comparisons, a p value of 0.0003 was used (Bon-
ferroni correction to maintain a p value of 0.05 given a statistical test for
22 dimensions � 7 time points).

Results
We recorded from 976 neurons (see Materials and Methods) in
FEF across 75 recording sessions in 3 macaque monkeys. This
resulted in 7656 pairs of neurons recorded while the animals
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performed a memory-guided saccade task (Fig. 1). The focus of
our analyses was on how the population activity structure evolved
during the delay period before saccade execution.

Trial-to-trial correlated variability
To understand how changes in correlated variability could affect
eye movement preparation, we first characterized its overall
structure in FEF. Correlated variability (spike count correlation,
or rsc), has been extensively studied in visual areas, such as
V1(Kohn and Smith, 2005; Smith and Kohn, 2008), V4 (Cohen
and Maunsell, 2009; Smith and Sommer, 2013), and MT (Zohary
et al., 1994; Ruff and Cohen, 2014a,b), but much less in oculo-
motor areas, such as FEF (but see Cohen et al., 2010; Zirnsak et
al., 2014; Astrand et al., 2016; Dehaqani et al., 2018). We calcu-
lated rsc for each saccade direction (and combined across direc-
tions in some cases, see Materials and Methods) for each pair of
neurons (Fig. 2). To understand the structure of rsc with respect
to basic functional properties and how that structure compares
with findings in other cortical areas, we examined rsc as a function
of physical distance, tuning similarity, and visuomotor
preference.

We first grouped pairs of neurons by electrode contact dis-
tance and calculated rsc during the delay period of the task for all
pairs of neurons (Fig. 3A). The magnitude of rsc decreased with
increasing electrode separation (Pearson’s r � 	0.070, p �
0.0001). This finding is consistent with findings of the distance
dependence of rsc in numerous previous studies (Smith and
Kohn, 2008; Leavitt et al., 2013; Smith and Sommer, 2013; Zirn-
sak et al., 2014; Snyder et al., 2018).

Tuning similarity between pairs of neurons has also been
shown to affect correlated spiking (Zohary et al., 1994; Bair et al.,
2001; Smith and Kohn, 2008; Cohen and Maunsell, 2009; Cohen
et al., 2010; Smith and Sommer, 2013), with the overarching
finding being that similarly tuned neurons exhibit larger levels of
correlated variability. As a measure of tuning similarity, we cal-
culated the difference in preferred direction for each neuron in a
pair (0 degrees for pairs with identical tuning, to 180 degrees for
pairs that had opposite tuning). The firing rate window to deter-
mine the preferred direction was the entire memory delay period
(from stimulus offset to fixation offset) to incorporate all possible
tuning information. Thus, the delay period would include visual
responses from the stimulus as well as any preparatory motor
activity before the “go” cue. For visual neurons, the preferred
direction represents the location of a classical RF of the neuron,
whereas for motor neurons it is often described as a movement
field. For rsc, as the difference in preferred direction between the
pair increased, the magnitude decreased (Pearson’s r � 	0.115,
p � 0.0001; n � 7656 pairs).

Finally, given the variety of visuomotor response properties
observed in FEF (Bruce and Goldberg, 1985), we wanted to de-
termine whether similarly tuned visual or motor neurons had
higher correlated variability. To perform the memory-guided
saccade task, a visual stimulus must be processed and trans-
formed into a motor command. The convergence of these re-
sponse properties in FEF neurons with the demands of the task
suggested to us that correlated variability might depend on the
role of individual neurons in the visuomotor transformation. To
examine this possibility, we calculated a visuomotor d� for each
neuron based on our ability to differentiate between the
stimulus-aligned and the saccade-aligned responses in that neu-
ron (see Materials and Methods). Neurons with a negative d� can
be considered motor neurons (fire preferentially for the saccade
compared with the visual stimulus), positive d� visual (fire pref-
erentially for the visual stimulus compared with the saccade), and
near zero d� visuomotor (fire equally for visual stimulus and
saccade) (Fig. 3C). We then divided neurons into quintiles based
on this d� measure and focused on interactions between visual-
visual (VV), visuomotor (VM), and motor-motor (MM) pairs.
The decision to use d�, a continuous measure, was based on our
observation that the visuomotor spectrum seemed more of a con-
tinuum than 3 distinct groups. If we divided our groupings into
smaller bins (deciles, for example), the same trends were ob-
served. The decision to use quintiles was based on having enough
bins to visualize the continuum but also maintain a large sample
of pairs within each bin. VV were pairs of neurons where both d�
measures were positive, MM were pairs of neurons where both
were negative, and VM were pairs that had one of each. Given the
results above that pairs that are spatially closer and more similarly
tuned have higher rsc, if visual and motor tuning similarity fol-
lowed the same trend, we would expect VM pairs to have the
lowest rsc compared with more similarly “tuned” VV and MM
pairs. VM pairs did have significantly lower rsc than VV pairs;
however, VM pairs were not significantly different from MM
pairs (Fig. 3D; two sample t test, VV to VM, p � 0.0025; VV to
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Figure 1. Experimental methods. A, Top, Schematic of 16 channel linear microelectrode
array. Contacts were spaced at either 150 or 200 �m (total length of electrode shank 85 mm).
Sample waveforms (mean
SEM) recorded after manual spike sorting. Bottom, Lateral view of
the macaque brain. FEF is highlighted and located along the bank of the arcuate sulcus (PMd
indicates dorsal premotor cortex, PFC indicates prefrontal cortex). B, Memory-guided saccade
task. Each trial began with the subject fixating on a central dot. After the subject fixated the
central dot, a peripheral stimulus briefly appeared at 1 of 8 locations equidistant from fixation
and 45 degrees in angle apart. The subject was required to maintain fixation on the central dot
while remembering the location of the peripheral stimulus. When the central fixation point was
extinguished, this signaled the subject to make a saccade to the remembered location of the
peripheral stimulus.
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MM, p � 0.0002; MM to VM, p �
0.2602). This result suggests that the level
of correlated variability that is character-
istic of one subpopulation (e.g., VV pairs)
may not necessarily be characteristic of
another (MM pairs).

It has been previously shown that the
level of correlated variability is positively
correlated with firing rate (de la Rocha et
al., 2007). This effect cannot underlie our
findings because we observed the highest
firing rates in groups with the lowest rsc

(VM, MM) (Fig. 3E). Despite their differ-
ences in absolute rsc level, all three groups
(VV, VM, MM) had significant trends
with respect to electrode distance (Pear-
son’s r � 	0.129, p � 0.0001; r � 	0.045,
p � 0.007; r � 	0.063, p � 0.003 for VV,
VM, and MM, respectively) and preferred
direction (r � 	0.119, p � 0.0001; r �
	0.106, p � 0.0001; r � 	0.123, p �
0.0001 for VV, VM, and MM, respec-
tively). To maximize our statistical power,
in later analyses in this paper, all neuronal
pairs were pooled unless stated otherwise.
To summarize, correlated variability in
FEF was higher in visual populations
compared with motor or visuomotor, and
the patterns we observed in FEF were
largely consistent with other brain regions
with respect to the basic properties of dis-
tance and receptive field location.

Tuning similarity and eye movement direction
In trying to understand how the population of FEF neurons con-
tributed to planning and executing an eye movement, the analy-
ses so far have considered mean rsc across all directions. We were
next interested in how rsc changes as animals plan different eye
movements. Because the population of FEF neurons contains a
range of direction preferences, we aligned the eye movement con-
ditions relative to the preferred direction of each pair of neurons.
This allowed us to consider the population variability structure in
FEF neurons that were presumably involved in an eye movement
(when the stimulus aligned well with their preferences) versus
neurons that had less involvement (when the stimulus was not
aligned with their preference).

Correlated variability in the spiking activity of pairs of neu-
rons was lowest when saccades were made toward the pair’s pre-
ferred direction (chosen as the preference of the more selective of
the two neurons) and highest in the antipreferred direction, par-
ticularly for pairs of neurons with similar tuning (Fig. 4A,C). The
decrease in rsc as a function of proximity to preferred direction
was also present, albeit weaker, in pairs with dissimilar tuning.
The geometric firing rate computed within the same conditions
(Fig. 4B,D) demonstrated that the rsc trend was opposite that
predicted if the changes in rsc were purely due to an increase in
firing rate (de la Rocha et al., 2007).

The time course of correlated variability
Our analyses up to this point have considered the delay epoch
(550 or 600 ms in duration) in aggregate. If correlated variability
in FEF is an important factor in the sequence of events leading up
to a saccade, we would expect changes in correlated variability to

manifest some time after the visual target appears. We used a
sliding analysis window (100 ms windows sliding in 10 ms incre-
ments) to determine the time scale on which the neuronal pop-
ulation structure shifted as a target appeared and an eventual
saccade took place. We first considered how rsc and firing rate
changed over time for different eye movements by grouping the
preferred eye movement direction and its flankers with the 180
degree opposite direction and its flankers. It is possible a decrease
in rsc observed in a pair’s preferred direction could be driven
merely by the recent presence of the visual stimulus in or near the
RF as observed in previous studies in visual cortex (Smith and
Kohn, 2008; Smith and Sommer, 2013; Snyder et al., 2014), with
rsc returning to baseline levels as the delay period continues. If a
low correlated variability level contributed to a high-fidelity stim-
ulus encoding and reliable motor preparation, we would predict
the low level to be persistent across the entire delay epoch. After
stimulus onset (time � 0 s), mean firing rate increased (Fig. 5B),
whereas rsc decreased (Fig. 5A) for both preferred and anti-
preferred directions, with a sharper decrease in preferred direc-
tions. This decrease persisted throughout the entire delay period,
consistent with our prediction that FEF population variability
could be meaningful for both encoding the stimulus and prepar-
ing an eye movement. Toward the end of the delay period, rsc in
the preferred and antipreferred directions overlapped, meaning
that the variability structure while preparing to make an eye
movement was broadly tuned, even for directions in the ipsilat-
eral hemifield.

Because of how rsc is measured (from the covariance of a pair
of neurons normalized by the product of the individual vari-
ances), it is affected by both the both joint and individual neuro-
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nal variability, and both components could drive changes in the
overall rsc level. Thus, a decrease in rsc could be due to a decrease
in covariance, increase in individual variance, or both. We fur-
ther investigated the time course of individual neuronal variabil-
ity and correlated variability through the delay period to
determine what components drive the changes observed in rsc.
The covariance, like rsc, decreased immediately after stimulus
presentation and maintained a low level throughout the delay
period (Fig. 5C). This decrease in covariance drove rsc downward
for both the preferred and antipreferred directions. Contrary to
rsc, the covariance was higher in the preferred direction compared
with the antipreferred, and the difference appeared later in the
memory period. The inversion between rsc and covariance with
respect to saccade direction is explained by the difference in vari-
ances, an effect driven largely by the substantial differences in

firing rate in the two directions. To mea-
sure individual neuron variability in a way
that was not impacted by the mean firing
rate, we calculated Fano factor using a
mean matching method (see Materials
and Methods). Consistent with previously
reported findings (Churchland et al.,
2010), Fano factor for both conditions de-
creased after stimulus onset and remained
at a low level (relative to baseline)
throughout the memory period (Fig. 5D).

In summary, variability at the single-
neuron and pairwise level decreased rela-
tive to baseline when preparing to make
an eye movement, even in antipreferred
directions. This implies that bilateral pop-
ulations of neurons are involved in eye
movement preparation. We next sought
to understand how correlated variability,
a measure calculated across groups of tri-
als, could vary with behavior on a trial-by-
trial basis.

The role of population variability in
reaction time
Although the memory-guided saccade
task we used was easy for our subjects,
they did vary in their behavior from trial
to trial. A primary source of that variation
was their reaction time: the difference in
time between the “go cue” (fixation off-
set) and the onset of their eye movement
toward the remembered target location.
Comparing a trial-to-trial measure of
variability (rsc) with a single-trial measure
of behavior presented a problem. To solve
this, we grouped the trials to calculate rsc

separately based on reaction time. We
used a group of 40 trials because smaller
numbers of trials produced less reliable
estimates of rsc and larger numbers of
trials impaired our ability to measure dif-
ferences in reaction time. For each condi-
tion, rsc was calculated on a sliding group
of 40 trials that were ranked based on the
reaction time of the subject (Fig. 6A; see
Materials and Methods). Our hypothesis
was that, if the low correlated variability

levels observed provide some benefit to eye movement planning,
rsc calculated with fast reaction time trials should be lower than
that calculated with slow reaction time trials. We found that this
was true for saccades in both the preferred and antipreferred
directions (Fig. 6B). To statistically test the relationship between
rsc and reaction time, we constructed a linear mixed-effects
model. The model was fit to the reaction times and correspond-
ing rsc bins separately for preferred and antipreferred directions.
We found a significant trend (linear mixed-effects model, p �
0.001) across the population for both directions, indicating that a
low rsc value was associated with fast reaction times.

To ensure that our results were not biased due to fluctuations
in behavior during the delay period, we performed two additional
control analyses. First, we analyzed the first and last 200 ms of the
delay epoch and found in both cases that the results were quali-

0.1 0.5 0.9 1.3 1.7 2.1
Distance (mm)

0

0.02

0.04

0.06

0.08

0.1

S
pi

ke
 c

ou
nt

 c
or

re
la

tio
n 

(r
sc

)

r= -0.070, p<0.001

10 50 90 130 170
Preferred direction difference (°)

0

0.02

0.04

0.06

0.08

0.1

r= -0.115, p<0.001

d’
 p

er
ce

nt
ile

m
ot

or
vi

su
al

d’ percentile
motor visual

S
pike count correlation (rsc )

G
eom

etric m
ean firing rate (sp/s)

n=7656 pairs

d’ percentile
motor visual

A

D

B

E

0 20 40 60 80 100

0

20

40

60

80

100

0.03

0.04

0.05

0.06

6

7

8

9

10

0 20 40 60 80 100

-0.2 0 0.2 0.4 0.6 0.8
Time from stimulus onset (s)

0.2

0.3

0.4

0.5

0.6

0.7

N
or

m
al

iz
ed

 fi
rin

g 
ra

te
 (

sp
/s

)

-0.2 0
Time from saccade onset (s)

C
0-20
20-40
40-60
60-80
80-100

d’ percentile

Motor

Visual

Figure 3. Correlated variability with basic response properties. A, Mean 
 SEM rsc for pairs of neurons as a function of distance.
Neuronal pairs were grouped by distance with bin centers starting at 0.100 mm and bin edges spanning 
0.100 mm. Bins with
�100 pairs were removed. B, Average rsc for pairs of neurons as a function of preferred direction difference (tuning similarity).
Neuronal pairs were grouped in 20° bins starting at 10°. rsc decreased with increasing neuronal distance and tuning dissimilarity.
Both panels show binned data, but statistical analyses were performed on 7656 total pairs. C, Average PSTH across neurons for one
condition at each d� quintile. Conditions were chosen separately for each neuron as the condition that elicited the highest firing
rate during the delay period. Each neuron’s PSTH was normalized to the maximum firing rate in either the visual/delay or saccade
window. The d� prime statistic reliably differentiated visual, motor, and visuomotor subpopulations. D, rsc for pairs based on
visuomotor response properties. Each pair was binned based on the visuomotor d� ranking of each neuron in the pair relative to all
neurons recorded. E, Same binning in C but geometric mean firing rate during the delay epoch. Visual-visual pairs had significantly
higher rsc compared with motor-motor or visuomotor pairs, despite having lower geometric mean firing rate.

Khanna et al. • Neural Variability during Eye Movements J. Neurosci., June 5, 2019 • 39(23):4511– 4526 • 4517



tatively similar to those reported here for
the entire epoch. This makes it unlikely
that simple firing rate effects due to visual
or motor transients could account for our
results. Second, to ensure that the changes
in correlation with reaction time were not
due to the presence of small eye move-
ments during the delay period, we used a
microsaccade detection algorithm (see
Materials and Methods). After removing
trials that contained one or more micro-
saccades, there was still a significant rela-
tionship between rsc and reaction time for
both preferred and antipreferred direc-
tions (linear mixed-effects model, pre-
ferred, p � 0.003; antipreferred, p �
0.001).

In the same manner, we analyzed
single-neuron firing rates to determine
their association with reaction time (Fig.
6C). We found that, for saccades in the
antipreferred direction, firing rate was rel-
atively constant (linear mixed-effects
model, p � 0.025). However, for saccades
in the preferred direction, a high firing
rate was associated with faster reaction
times (linear mixed-effects model, p �
0.001), consistent with previous findings
in FEF (Everling and Munoz, 2000) and
SC (Dorris et al., 1997). In addition to overall rsc, we broke down
this measure of correlated trial-to-trial variability into its constit-
uent statistics: covariance and variance. Covariance (Fig. 6D) fol-
lowed the same trends as rsc in that it was lowest for fast reaction
time trials; however, the result was not significant in our model
for the antipreferred direction (linear mixed-effects model, pre-
ferred: p � 0.016; antipreferred: p � 0.204). Variance (Fig. 6E)
was also lowest on fast reaction time trials (Fig. 6E; linear mixed-
effects model, preferred: p � 0.001; antipreferred: p � 0.003).
Because a lower variance would tend to increase rsc, we conclude
that correlated variability (and not single-neuron variability) is
the primary change associated with fast reaction times.

Visual and motor subpopulations and reaction time
While the relationship between rsc and saccade reaction time was
observed across the entire population, one might suspect differ-
ences between visual and motor subgroups. We have already
shown that rsc for MM pairs is lower than that of VV pairs, but
does this persist for the rsc relationship with reaction time? The
linear mixed-effects model previously used was fit with an addi-
tional parameter, the sum of the visuomotor d� of each pair. As
expected, based on the previous d� rsc result, there was a main
effect of d� on rsc for both preferred and antipreferred directions
(linear mixed-effects model, preferred: p � 0.011; antipreferred:
p � 0.002), meaning that VV pairs had significantly higher rsc

compared with MM pairs. It appeared the relationship between
rsc and reaction time was also stronger in VV pairs compared with
MM pairs (Fig. 7A,B), but the interaction term between reaction
time and sum d� was not statistically significant (linear mixed-
effects model, preferred: p � 0.143; antipreferred: p � 0.061). To
account for any differences in rsc due to firing rate, we mean
matched the geometric firing rate of each d� group (see Materials
and Methods). The mean matching procedure yielded qualita-
tively similar results (data not shown). It should be noted that the

weaker relationship between rsc and reaction time in MM and
VM pairs could be due to a floor effect, as these pairs of neurons
overall had lower rsc compared with VV pairs. Together, our
analyses indicate that substantial shifts in correlated trial-to-trial
variability in the delay epoch activity accompany eye movement
preparation.

While decreases in rsc across the entire population, particu-
larly among visual neurons, may underlie efficient motor prepa-
ration, we also observed that increases in firing rate were
associated with fast reaction times (Fig. 6B). Previous studies
have related the firing rate of single neurons to saccade initiation
in FEF (Hanes and Schall, 1996; Ding and Gold, 2012; Hauser et
al., 2018). While we found a relatively weak (albeit highly statis-
tically significant) relationship over the entire delay epoch, the
firing rate signals for saccades would be expected to be more
tightly coupled with the timing of the saccade itself.

To relate FEF firing rate to saccade reaction time on an indi-
vidual neuron basis, we correlated on a trial-by-trial basis the
firing rate of each neuron in its preferred direction for the last 50
ms before the go cue with the reaction time of the animal for that
trial. Previous research on firing rate correlations with reaction
time split FEF neurons into motor and visuomotor populations
(Ray et al., 2009; Jantz et al., 2013); however, none has divided
groups based on the strength of the motor or visuomotor re-
sponse within these populations. We ranked each neuron based
on our visuomotor d� metric (see Materials and Methods), and
then compared the relationship between firing rate and reaction
time in each of the deciles transitioning from motor to visuomo-
tor to visual neurons. The 10% of neurons with the relatively
strongest motor responses had, on average an �	0.08 correla-
tion between their firing rates and the animal’s reaction time.
That is, higher firing in those neurons led to small (fast) reaction
times. As we considered progressively less strong motor neurons,
the magnitude of correlation decreased between firing rate and
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saccade reaction time, such that activity in the strongest visual
neurons had nearly zero correlation with reaction time (Fig. 7C;
Pearson’s r � 0.205, p � 0.001). Not only was this firing rate
signal strongest in the motor neurons, but it was strongest close to
the “go” cue (Fig. 7D), indicating a tight coupling with the even-
tual saccade. Together, our results support a role of both single-
neuron firing rates and pairwise correlated variability in saccade
preparation.

Population-level variability structure
While our analysis of variability at the level of pairs of neurons
showed a relationship with reaction time, it is challenging to
determine the mechanistic relationship between these quantities.
One approach to resolve this is dimensionality reduction, which
attempts to distill the key relationships among neurons from the
larger set of possible interactions. For this, we used FA, a method
that parcels the variability observed in neurons into shared and
private components. We fit FA models to binned spike counts
during the delay period for each session and condition separately
(excluding any sessions with �10 simultaneously recorded neu-
rons, leaving us with 41 viable sessions), with the resulting shared
variance matrix being N � D, where N indicates the number of
neurons and D indicates the latent dimensionality of the model.
To determine the optimal dimensionality, the FA model was first
fit to the dimensionality with the highest cross-validated likeli-
hood. Having fit the model with this dimensionality, the optimal

dimensionality, dshared, was calculated as the number of dimen-
sions needed to account for 95% of the shared covariance (see
Materials and Methods). Many conditions (47%) had a dshared of
1, meaning that most of the shared variance could be attributed to
a single dimension in the neural population space (Fig. 8A). We
thus used a one-dimensional latent model to keep our methods
constant across all sessions and because it provided a good fit to
the data. Using this model, we calculated the percent shared vari-
ance for each neuron as an indication of how much its activity
covaried with the other recorded neurons.

If our pairwise results were an indication of a connection be-
tween shared variability and reaction time, then a similar finding
would be predicted in the context of the FA model. We first fit the
FA model to fast and slow trials, calculating the percent shared
variance using the 60 fastest trials and the 60 slowest trials, for
each condition. To minimize the number of overlapping trials in
the two models, any sessions with �100 repeats per condition
were excluded (leaving 36 sessions for this analysis). Percent
shared variance was then averaged across neurons in a session,
resulting in one value per condition and session. To increase our
statistical power, we then averaged the three contralateral direc-
tions together (and separately, the three ipsilateral directions),
akin to the preferred and antipreferred division in the correlated
variability results. Congruent with our results in correlated vari-
ability, percent shared variance was lower in fast trials compared
with slow trials for both contralateral and ipsilateral directions
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(one-sample t test, ipsilateral: p � 0.0015; contralateral: p �
0.0302; Fig. 8B).

The second FA comparison we made expanded upon our
previous finding that single-neuron activity was correlated with
reaction time. We predicted that, if this were true at the single-

neuron level, population activity in a low dimensional space
should correlate with reaction time as well. To test this, we fit the
FA model using one latent dimension (see Materials and Meth-
ods) for each condition of each session. An example condition
from one session is shown, where the value along the first FA
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dimension was negatively correlated with reaction time (Fig. 8C;
r � 	0.343, p � 0.001). Because the FA model was fit separately
for each condition and session, the factor space from condition to
condition (and session to session) can lie along a different low
dimensional axis, leading to sometimes positive and other times
negative correlations with reaction time. To compare the FA pro-
jection value-reaction time correlation across sessions and
conditions, we used a metric agnostic to the direction of the
relationship: the R 2 of the linear fit between reaction time and FA
projection value. To compare these R 2 values against what would
be expected by chance, for each condition within a session, we
randomly shuffled the reaction times with respect to their FA
projection values and calculated the R 2 from the resulting linear
fit. The resulting shuffled distribution was compared with the R 2

distribution from the data across conditions and sessions. The
relationship between FA projection value and reaction time was
significantly stronger for the data compared with the shuffled
distribution (Fig. 8D; two-sided Wilcoxon signed rank test, p �
0.001). These analyses demonstrate that both the overall level of
shared variability (% shared variance on fast and slow trials) as
well as the particular configuration of population activity (the
projection along the first FA dimension) were related to the speed
at which a saccade is generated.

Temporal evolution of population activity leading up to
a saccade
Using FA to reduce the dimensionality of population data pro-
vided a snapshot confined to a single moment in time in which

the spikes are binned. We report above that correlated variability
decreased after stimulus onset and that this decrease persisted
throughout the entire delay period. This led us to ask whether the
relationship between low dimensional population activity and
reaction time was present earlier in the trial, and to ask how this
relationship evolved over time within the trial leading up to the
eye movement. To achieve this, we used GPFA, an expansion
upon FA, which allowed us to examine how low dimensional
trajectories evolved across time (Yu et al., 2009).

At first glance, a simple population-level analysis to examine
the time course of activity across the trial would be to average the
responses of all simultaneously recorded neurons. By averaging
across neurons, however, subtle differences across the population
can be masked. We found that the population PSTHs for fast and
slow trials exhibited no salient differences in population activity
(one representative session is shown in Fig. 9A). GPFA, like FA,
leverages dimensionality-reducing techniques to define low di-
mensional spaces, which account for shared variability across the
population of neurons. Using the same example session, we
applied GPFA to the population activity. To increase our sta-
tistical power when fitting the GPFA model, we combined all
conditions (after subtracting the average PSTH for each con-
dition), and the latent dimensionality, dshared, was chosen us-
ing the same two-stage process as in the FA model (see
Materials and Methods). We expected, based on our FA re-
sults, that GPFA would reveal neural trajectories that were
clearly separable for fast and slow reaction time trials (6 exam-
ple trials shown in Fig. 9B).
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To visualize the resulting trajectories from the GPFA model
and how they varied with reaction time, we binned trajectories
into deciles based on reaction time. Because the GPFA model was
fit with trials combined across conditions, to account for any
differences in reaction time between conditions, each trial’s reac-
tion time was subtracted by the mean reaction time of that
condition. Neural trajectories were clearly differentiated when
arranged by reaction time, and this order was frequently pre-
served throughout the trial’s time course, for multiple dimen-
sions (Fig. 9C). To make the comparison between dimensions
more intuitive, each dimension was orthonormalized, which also
resulted in the dimensions being ordered according to the
amount of covariance they explained (see Materials and Methods
and Yu et al., 2009). To quantify the relationship between a given
GPFA dimension’s projection value and reaction time, we calcu-
lated the R 2 (as in the FA results), using the trajectory’s value at
the time of the saccade (Fig. 9D). Using GPFA in this way, we
demonstrated (as in Fig. 8C using FA) that the population activity
structure in a low-dimensional subspace was related to the reac-
tion time of the animal.

Because GPFA leverages the time course of neural activity to
calculate trajectories through a low-dimensional subspace, we
were able to assess how the population activity was structured
leading up to the saccade. Our analysis of a single session (Fig. 9C)
indicated that the configuration of population activity very early
in the trial could impact the reaction time much later on, and this

effect was not confined to a single dimension of the subspace. Our
use of GPFA sorted the dimensions by their ability to explain
shared variability in the population (from greatest to least). Al-
though in general the dimensions that explained the largest
amounts of shared variance were the ones that were able to ac-
count for reaction time, this was not strictly true in every session.
Therefore, to make comparison across sessions, we sought a
method that would sort each session’s dimensions by their ability
to explain the reaction time of the animal. To do this, we ran
GPFA on all of the trials, but then split them in half (even and
odd). We used the first half of the trials to measure the relation-
ship (i.e., R 2) with reaction time, averaged across the delay pe-
riod, and resorted the dimensions based on this R 2 value. Then,
in the other half of the trials, we measured the R 2 with reaction
time in time windows ending at saccade onset and proceeding
back by 100 ms steps. In this way, we guaranteed that our sorting
of dimensions based on their ability to explain reaction time
would not necessarily lead to an effect if it were driven purely by
noise. Whether using this method or leaving the dimensions
sorted by shared variance explained, our overall effects were qual-
itatively similar.

We found that several dimensions had a statistically signifi-
cant relationship with reaction time, which persisted throughout
the delay period (Fig. 9E, solid lines; Wilcoxon Sign Rank test at
each time point, corrected for multiple comparisons), consistent
with our result in a single session (Fig. 9C). While some addi-
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tional higher dimensions had a significant relationship with re-
action time, it was largely at time points close to the saccade (Fig.
9E, dashed line). In summary, population activity was correlated
with reaction time, consistent with our findings for pairwise cor-
related variability. We conclude that the rapid execution of a
saccadic eye movement is enabled by particular configurations of
neural activity, revealed in our analysis at both pairwise and pop-
ulation levels.

Discussion
Preparation for a saccade involves signals in a diverse population
of FEF neurons. We found that two aspects of FEF activity were
associated with efficient oculomotor preparation as measured by
a fast saccadic response. The first was that variability among sin-
gle neurons, pairs of neurons, and in the population decreased
during the delay epoch and was related to the generation of fast
reaction times (for both preferred and antipreferred saccade di-

rections). The second was that certain patterns of neural activity,
identified in a low dimensional space using FA and GPFA, were
also related to reaction time. Both of these findings were evi-
dent across the entire delay period, and not confined to the
immediate presaccadic period. Together, these findings suggest
that population-level signatures of FEF activity are important in
the generation of eye movements.

Correlated variability in FEF and other visual areas
Despite being documented in many other visual areas (Kohn and
Smith, 2005; Smith and Kohn, 2008; Cohen and Maunsell, 2009;
Smith and Sommer, 2013; Ruff and Cohen, 2014a), the structure
of correlated variability with respect to basic functional proper-
ties has been less investigated in movement-related areas, such as
FEF and motor cortex (with the exception of Lee et al., 1998;
Cohen et al., 2010; Zirnsak et al., 2014; Astrand et al., 2016; De-
haqani et al., 2018). We observed that rsc decreased with in-
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terneuronal distance and increased with tuning similarity, traits
that match previous findings in other cortical areas (Kohn and
Smith, 2005; Smith and Kohn, 2008; Cohen and Maunsell, 2009;
Leavitt et al., 2013; Smith and Sommer, 2013; Ruff and Cohen,
2014a; Snyder et al., 2018). This is consistent with a conserved
structure of correlated variability across multiple cortical regions
in the visual hierarchy. It is possible that this conserved compu-
tational feature is driven by similarly conserved anatomical struc-
tures across cortex, such as laminar (Barbas and Pandya, 1989;
Felleman and Van Essen, 1991; Anderson et al., 2011) and local
circuit architecture (Stanton et al., 1989; Kritzer and Goldman-
Rakic, 1995).

We further examined rsc as a function of visuomotor response
properties. Motor-motor pairs had lower rsc compared with
visual-visual pairs, in agreement with some previous results that
demonstrated very low rsc values in motor cortex compared with
visual areas (for review, see Cohen and Kohn, 2011). In a system
in which the initiation of movement was in part driven by the
response magnitude in a subset of “motor” neurons, the presence
of high correlated variability in the trial-to-trial responses of that
population would be particularly influential in driving trial-to-
trial behavioral variability. In the extreme, large correlations
among such movement-generating neurons could effectively
amplify noisy fluctuations in a few neurons, leading to errant
movements. Visual populations, on the other hand, may have
higher correlated variability due to fluctuations of internal states
(e.g., attention and motivation) which affect neuronal responses.
This comparison hints at potential fundamental differences in
the neural code for sensory signals and motor control; the con-
trast in correlated variability between visual and motor popula-
tions may reflect a sort of insulation of the motor signal against
fluctuating cognitive signals. Ultimately, the difference in corre-
lated variability between pairs of neurons based on visuomotor
response properties adds to the evidence that these subpopula-
tions are separate and play distinct roles in eye movement gener-
ation (Sato and Schall, 2003; Thompson et al., 2005; Gregoriou et
al., 2012).

Role of variability in planning eye movements across space
FEF neurons encode both visual stimuli and eye movements
across the entire visual field. In FEF, the synergistic activity of
ensembles of neurons can represent regions of visual space that
are poorly encoded by single neurons (Dehaqani et al., 2018).
Compared with baseline measures, we found that a decrease in
both correlated variability of pairs of neurons and in the variabil-
ity of individual neurons was associated with movement prepa-
ration. It occurred rapidly after target onset and was maintained
throughout the delay period. This is reminiscent of the decrease
in correlated variability in visual neurons that occurs after visual
stimulus onset (Smith and Kohn, 2008; Smith and Sommer,
2013; Snyder et al., 2014), as well as the broad finding across
cortex of a reduction in variability after stimulus onset (Church-
land et al., 2010). In FEF, the Fano factor decrease after visual
stimulation has been shown to be broadly tuned, occurring for
targets inside and outside the response field (Chang et al., 2012).
In agreement with our time course findings, rsc in FEF drops and
remains low after a cue during an attention task (Astrand et al.,
2016). Similarly, in an attention task in V4, shifts in correlated
variability coincide with the time of likely target presentations
(Snyder et al., 2016). Comparing correlated variability across sac-
cade directions, our result that correlated variability was lowest in
the preferred direction differed somewhat from a previous study
(Cohen et al., 2010). This may be due to their focus on faster time

scale interactions using a different (but related) statistical ap-
proach, as well as a different experimental paradigm (visual
search in their study). Overall, our observation of a link between
rsc and the reaction time reinforces the importance of this pair-
wise variability structure in the control of eye movements.

In oculomotor areas, such as FEF, saccade initiation has often
been linked to increases in activity of oculomotor neurons whose
movement fields correspond to the saccade direction. Linear ac-
cumulator models have been used to describe how neuronal ac-
tivity in FEF relates to movement preparation and execution,
with movement initiation governed by the time at which a
threshold is reached (Hanes and Schall, 1996; Heitz and Schall,
2012, 2013; Jantz et al., 2013). Additionally, baseline firing rates
have been related to movement initiation (Hauser et al., 2018).
Downstream from FEF, the role of SC in movement generation in-
corporates both a preparatory buildup to movement and a release
from fixation (Dorris et al., 1997), whereas low-frequency SC prepa-
ratory activity can trigger a movement if inhibitory networks down-
stream are removed (Jagadisan and Gandhi, 2017). Together, these
studies point to an important role in the overall firing rate of indi-
vidual neurons and selected populations in initiating eye move-
ments. However, it has remained unclear whether a full accounting
of eye movement generation can rely on intuition and models built
from single-neuron or even paired recordings.

Movement preparation in neuronal populations
With the increasing availability of technologies that allow simulta-
neous recordings of multiple neurons, it has become possible to
consider how populations of neurons act in concert to plan and
initiate movements. In prefrontal cortex, for example, population
activity remains in a stable low dimensional subspace during the
memory period of a working memory task ending in an eye move-
ment, despite the responses of single neurons varying in both tuning
and latency (Murray et al., 2017). In primary motor cortex (M1),
even when neural responses are complex and difficult to relate to
specific movement parameters, low dimensional representations of
population activity during the movement epoch have predict-
able trajectories when indexed by activity during the prepara-
tory epoch (Churchland et al., 2012). Additionally, the relative
contributions of neurons to the population signal can index
task epoch (preparation vs execution) (Kaufman et al., 2014;
Elsayed et al., 2016), preparatory state to one of two targets
(Ames et al., 2014), and the decision making process between
two reaches (Kaufman et al., 2015). The power of these stud-
ies, considered together, has been their collective demonstra-
tion that population-level coordination of neural activity,
combined with simple linear readout mechanisms, can explain
the transition from planning to execution of a motor act.

Our results extend the existing literature in two key ways. First,
we found that variability, across single neurons, pairs of neurons,
and at the population level, was a key signature in the sequence
leading up to a movement. That is, to prepare a short-latency right-
ward eye movement, it is important (1) rightward-preferring FEF
neurons have a low correlated variability; (2) rightward-preferring
FEF motor neurons fire vigorously before saccade execution; (3)
leftward-preferring FEF motor have low correlated variability; and
(4) shared variance across the population of FEF neurons decreases.
One way to think about this is that, while a group of neurons plans
the eye movement, all the others must also be sure to avoid contam-
inating the planning signal (but for caution in interpreting the role of
correlated variability, see Moreno-Bote et al., 2014; Arandia-
Romero et al., 2016; Kohn et al., 2016). Another interpretation
comes from the skeletomotor system, where mixtures of population
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activity can be categorized as either “potent” or “null” with respect to
the generation of a motor output (Kaufman et al., 2014; Elsayed et
al., 2016). Instead of constraining the decodability of the neuronal
population, the shifts in pairwise variability and shared variance ex-
hibited across the population may instead point to the importance of
particular configurations of population activity (in the “potent”
space) in triggering movement initiation.

Our second main finding was that, at the population level, differ-
ent mixtures of neural activity can result in shorter or longer-latency
eye movements. In motor cortex (Afshar et al., 2011) and parietal
cortex (Michaels et al., 2015), the moment-by-moment firing rate of
the neuronal population has been shown to predict reaction time in
reaching and grasping tasks, respectively. This has been interpreted
as evidence for a theoretical framework in which there is an “optimal
subspace” for movement generation, and that the initial conditions
within that subspace affect the eventual movement. Our prediction
of reaction time (a peak R2 of �8% in the best GPFA dimension
averaged across sessions) is comparable with (but slightly smaller
than) the values reported in those studies, although our neuronal
population sizes were also smaller. Our findings extend the potential
applicability of these subspace theories to the oculomotor domain,
pointing to potentially common mechanisms across distinct modes
of movement generation. The separation of neural trajectories did
not occur only around the time of the eye movement, but often
began early in the trial and persisted across the entire delay period.
This further emphasizes that the mixture of activity is not just related
to executing the eye movement but also to prior processes, such as
encoding the stimulus, holding it in memory, and preparing to gen-
erate the eye movement, all of which could impact the eventual re-
action time. Considering our results together, it could be the case
that high variability from trial to trial “pushes” the mixture of neural
activity from populations of neurons away from the optimal config-
uration for saccade preparation, and thus results in a longer reaction
time.

An important future direction will be to better link changes in
the activity of FEF populations to the signals in their downstream
targets in the SC and, in turn, to eye movement initiation. While
the firing rates of individually recorded neurons clearly can ex-
plain some of the variance in behavior given the correlations with
reaction time, our study points to the importance of population-
level activity structure in generating eye movements. To further
test the importance of variability at the population level, one
future direction would be to disrupt this structure causally, by
using microstimulation, and observing the effects on behavior.
One such study in the skeletomotor system demonstrated that
microstimulation during the preparatory period of a movement
influences reaction time, dependent on the cortical area that was
stimulated (Churchland and Shenoy, 2007). Further extensions
of this work could help answer whether similar approaches are
used by the oculomotor and skeletomotor systems to separate
movement preparation from execution. While simultaneous
population recordings have been relatively less common in eye
movement-related structures because of their relative inaccessi-
bility, new recording approaches can reveal the way populations
of neurons give rise to fast and accurate eye movements.
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