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Neuroimaging investigations have revealed interindividual variations in anatomy, metabolism, activity, and connectivity of specific
cortical association areas through which years of education (YoE), as a common proxy of cognitive reserve, may operate in the face of age-
or pathology-associated brain changes. However, the associated molecular properties of YoE-related brain regions and the biological
pathways involved remain poorly understood. In the present study we first identified brain areas that showed an association between
cortical thickness and YoE among 122 cognitively healthy older human individuals (87 female). We subsequently characterized molec-
ular properties of these regions by studying brain-wide microarray measurements of regional gene expression. In accordance with
previous studies, we observed that YoE were associated with higher cortical thickness in medial prefrontal, anterior cingulate, and
orbitofrontal areas. Compared with the rest of the cortex, these regions exhibited a distinct gene expression profile characterized by
relative upregulation of gene sets implicated in ionotropic and metabotropic neurotransmission as well as activation of immune re-
sponse. Our genome-wide expression profile analysis of YoE-related brain regions points to distinct molecular pathways that may
underlie a higher capacity for plastic changes in response to lifetime intellectual enrichment and potentially also a higher resilience to
age-related pathologic brain changes.
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Introduction
The concept of cognitive reserve (CR), most commonly esti-
mated through the use of “proxies” such as years of education

(YoE; Nucci et al., 2012), addresses interindividual differences in
the adaptability and susceptibility of cognitive abilities or day-to-
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Significance Statement

We combined a neuroimaging-based analysis with a transcriptome-wide gene expression approach to investigate the molecular-
functional properties of cortical regions associated with educational attainment, as a commonly used proxy for cognitive reserve,
in older individuals. The strongest association with education was observed in specific areas of the medial prefrontal cortex, and
these areas exhibited a distinct gene expression profile characterized by relative upregulation of gene sets implicated in neu-
rotransmission and immune responses. These findings complement previous neuroimaging studies in the field and point to novel
biological pathways that may mediate the beneficial effects of high educational attainment on adaptability to cope with, or prevent,
age-related brain changes. The identified genes and pathways now warrant further exploration in mechanistic studies.
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day function to brain aging, pathology, or insult (Stern et al.,
2018b). Neuroimaging studies of cognitively normal older indi-
viduals have revealed positive associations between CR proxies
and measures of brain integrity (i.e., regional volumes or cortical
thickness; for review, see Bartrés-Faz and Arenaza-Urquijo,
2011). These associations are primarily observed in limbic, para-
limbic, and heteromodal cortical association areas, particularly
within the prefrontal cortex, and have typically been interpreted
as reflecting a higher capacity for plastic change, which may in-
crease the adaptability of higher-educated individuals to age- or
disease-related brain changes (Valenzuela et al., 2008; Foubert-
Samier et al., 2012; Arenaza-Urquijo et al., 2013, 2017; Lee et al.,
2016; Vaqué-Alcázar et al., 2017). This interpretation is corrob-
orated by functional imaging studies that have demonstrated dif-
ferential patterns of brain activation in these latter regions that
are suggestive of greater neural efficiency and capacity in higher-
educated individuals (Bartrés-Faz et al., 2009; Solé-Padullés et al.,
2009; Fernández-Cabello et al., 2016; Stern et al., 2018a) and may
reflect greater capacity for plastic change associated to the CR
concept (Bartrés-Faz and Arenaza-Urquijo, 2011).

The involvement of distinct brain areas in mediating the pos-
itive effects of CR is likely to be related to their specific anatomo-
functional properties. For example, although the prefrontal
cortex is highly affected by the aging process in terms of brain
atrophy (Hedden and Gabrieli, 2004; Fjell et al., 2014), the func-
tional reorganization capacities of both its lateral and medial sec-
tions have been related to maintenance of cognitive function
(Cabeza et al., 2002; Davis et al., 2008). Also, parts of the lateral
prefrontal cortex exert a regulatory role on the functional orga-
nization of other networks strongly involved in cognitive pro-
cesses (Chen et al., 2013; Spreng et al., 2013; Franzmeier et al.,
2017, 2018). Within the medial parts of the frontal lobe, the an-
terior cingulate cortex (ACC) has been one of the most frequently
involved brain areas in previous CR studies (see references in the
previous paragraph), and this paralimbic region is known to exert
an integrative role between limbic and associative cortices, pro-
moting goal-directed behaviors and executive cognitive pro-
cesses (Devinsky et al., 1995; Carter et al., 1999; Ridderinkhof et
al., 2004). At the cellular level, both the ACC region and the
dorsolateral prefrontal cortex (Fajardo et al., 2008) contain a
characteristic type of large spindle-shaped neuron called von
Economo neurons (Allman et al., 2011; Butti et al., 2013) that
have been linked to superior memory capacity in old age (Gefen
et al., 2015).

Although previous neuroimaging investigations identified
heteromodal and paralimbic brain regions and associated net-
works as likely substrates of the “neural implementation” of CR,
our understanding of the associated biological pathways through
which they may operate to sustain the mechanisms predicated by
the CR theory (i.e., efficiency, capacity, flexibility, and compen-
sation; Stern et al., 2018b) are poorly understood. Former inves-
tigations have shown that differential gene expression profiles
across brain regions are tightly associated with differences in
morphometric (Romero-Garcia et al., 2018b; Seidlitz et al., 2018;
Shin et al., 2018) and functional (Hawrylycz et al., 2015; Richiardi
et al., 2015; Wang et al., 2015) brain tissue characteristics, as well

as differential vulnerability to disease (Romme et al., 2017;
Grothe et al., 2018; Romero-Garcia et al., 2018a). Here we aimed
to further delineate molecular-functional properties of selective
cortical regions associated to YoE among cognitively healthy
older individuals. First, through an magnetic resonance image
(MRI)-based cortical thickness analysis, we identified brain re-
gions associated to high versus low educational attainment. Sub-
sequently we investigated the transcriptional architecture of these
regions using brain-wide regional gene expression data (Hawry-
lycz et al., 2012) in combination with gene set enrichment anal-
ysis (Subramanian et al., 2005; Grothe et al., 2018).

Materials and Methods
Participants. One hundred and twenty-two normal functioning older
human participants (87 female, 35 male, mean age 68.2 years) were en-
rolled from the Fundació Institut Català de l’Envelliment. All volunteers
had normal cognitive function, with Mini-Mental State Examination test
(MMSE) scores �25 and performances �1.5 SD according to normative
scores in a neuropsychological assessment (i.e., they did not fulfill cognitive
criteria for mild cognitive impairment; Petersen and Morris, 2005). The
study was approved by the local ethics committee and was conducted in
accordance with the Helsinki Declaration. Written informed consent was
obtained from each participant before enrollment in the study.

Experimental design. For each subject we recorded the total years of
completed formal education and stratified the sample according to high
or low education using a cutoff point of 15 years of education as in our
previous report (Vaqué-Alcázar et al., 2017). We used this cutoff on the
basis of a recent study examining which kind of information derived
from educational measures was most closely related to a lower risk of
dementia and concluding that the stratification of subjects into high
versus low educational groups (i.e., tertiary vs non-tertiary education)
showed the strongest associations (Then et al., 2016). A further reason to
use this dichotomous stratification of our sample rather than a continu-
ous approach was based on the frequency distribution of educational
years. Hence, in accordance with the National Spanish education stages
at the time our older participants completed the education, educational
years were bimodally distributed, with a concentration of cases �8 years
of completed education and a second major grouping at 15 years. Using
the dichotomous classification with a cutoff point of 15 years, 48 partic-
ipants were classified as high-educated and 74 as low-educated (see
group comparisons in Results).

Neuropsychological assessment. Applying a similar approach used in
previous studies (Vidal-Piñeiro et al., 2014; Vaqué-Alcázar et al., 2017)
we used principal components analysis (PCA) based on the dataset of the
current study to create a composite scale representing separate declara-
tive memory and “frontal lobe function” domains. The following cogni-
tive tests were used to estimate the memory factor: Rey Auditory Verbal
Learning Test total learning and delayed recall (RAVLT-total and
RAVLT-delayed, N � 94 cases) and Buschke test (total and delayed
scores, N � 28 cases). Previously, the total learning and delayed scores
from both memory tests were transformed to a comparable metric by the
percentage of maximum possible (“POMP”) method (Moeller, 2015).
On the other hand, the tests contributing to the frontal lobe function
domain included the Trail Making Tests (TMT B-A), the Symbol Digit
Modalities Test, and the phonemic (sum of letters F, A, S, 1 min each,
N � 94; and letters P, M, R, N � 28) and semantic (animals, 1 min)
fluency tests. Both factors were calculated in a way that higher scores on
the factor indicated better cognitive performances.

MRI acquisition. MRI for each participant were acquired in a Siemens
Magnetom Trio Tim syngo 3-T system. High-resolution T1-weighted
structural images were obtained with a magnetization-prepared rapid
acquisition gradient echo 3-dimensional protocol (repetition time �
2300 ms, echo time � 3 ms, inversion time � 900 ms, field-of-view � 244
mm, and 1 mm isotropic voxel).

Cortical thickness analyses. Cortical surface reconstruction and calcu-
lation of cortical thickness (CTh) from the structural T1-weighted im-
ages were performed using FreeSurfer v5.1 software package (http://
surfer.nmr.mgh.harvard.edu). In summary, the procedures performed
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by the main FreeSurfer pipeline include removal of non-brain data, in-
tensity normalization (Sled et al., 1998), tessellation of the gray matter/
white matter boundary, automated topology correction (Ségonne et al.,
2007), and accurate surface deformation to identify tissue borders (Dale
et al., 1999). CTh is then calculated as the distance between the white and
gray matter surfaces at each vertex of the reconstructed cortical mantle
(Fischl and Dale, 2000). Individual results were inspected visually to
ensure accuracy of registration, skull stripping, segmentation, and corti-
cal surface reconstruction. Manual editing of the reconstructed surfaces
was required in 15 subjects and the threshold used for brain extraction
was changed in 31 other subjects. The CTh maps were smoothed using a
Gaussian kernel of 15 mm full-width at half-maximum. We then evalu-
ated the statistical analysis using voxelwise general linear models (GLMs)
to study group differences in CTh between high and low YoE subjects,
adjusted by age and gender (Vaqué-Alcázar et al., 2017). Image was cor-
rected for familywise error using a Monte Carlo null-Z simulation, with
10,000 repetitions. Both the initial vertex and the cluster thresholds were
set to p � 0.05.

Statistical analysis of group differences in sociodemographic and cognitive
characteristics. Data analyses were performed using SPSS v24 (IBM). De-
mographic and cognitive data were described as mean � SD. For quan-
titative data, we evaluated differences between groups using two-sample
t tests. For categorical variables, we assessed � 2 tests. In addition, when
the normal distribution assumptions were not met as indicated by the
Shapiro–Wilk test, the Mann–Whitney’s U test was used. Finally, because
age and gender showed differences between the YoE groups (see results
section) the MMSE scores and the final cognitive factors obtained from
the PCA analyses (see Neuropsychological assessment) were regressed by
age and gender. Because there were differences in the type of memory and
verbal fluency tests administered between individuals, this “group test”
variable was also introduced as a regressor to obtain the final memory
and frontal lobe domain values. For all the analyses results were consid-
ered statistically significant at p � 0.05.

Cortical gene expression data. The transcriptome data from the Allen
Institute Human Brain Atlas (http://human.brain-map.org/; Hawrylycz
et al., 2012, 2015) was used in the present study. In brief, complete
microarray gene expression datasets from a total of 3702 regional tissue
samples from postmortem brain tissue of six individuals were mapped to
anatomical brain locations in corresponding structural MRI scans; these
steps were performed by the Allen Institute (Shen et al., 2012). The
produced raw expression values were then mean averaged across probes
to obtain single expression values for each gene, resulting in 20,737 gene
expression values per tissue sample. From the 3702 brain samples avail-
able in the atlas, we first discarded samples not belonging to the cortex
according to their anatomical annotation (N � 1752). Further, because
of the lack of right hemisphere gene expression data for most of the
donors (Hawrylycz et al., 2012), we only focused on the left hemisphere
in further analyses, leaving a total of 1452 cortical tissue samples. Next,
for each donor the individual tissue sample coordinates were spatially
mapped to a cortical surface reconstruction obtained by processing the
donors’ MRI images in FreeSurfer (data available from Romero-Garcia et
al., 2018b). The YoE-related region-of-interest (ROI) together with a
reference ROI covering the rest of the cortex were then mapped from the
FreeSurfer template space used for cortical thickness analysis to the in-
dividual surface reconstruction of each donor’s brain. The surface-based
ROIs of each donor’s brain were then transformed into volumetric par-
cellations and extended 2 mm into the subjacent white matter to account
for possible registration misalignments. Individual tissue samples were
then mapped to their nearest point on the cortex, resulting in a total of 44
tissue samples being mapped to the YoE-related ROI and 1356 samples to
the cortical reference region. Fifty-two of the 1452 initial cortical samples
(3.6%) were discarded because their distance to the nearest cortical voxel
was larger than 2 mm. Finally, for each ROI the expression values were
averaged across all tissue samples to obtain median expression values for
each gene (French and Paus, 2015; Romero-Garcia et al., 2018b).

Gene expression profile of YoE-related brain regions and gene set enrich-
ment analysis. After identification of brain regions with higher cortical
thickness in the higher-education group (YoE-related areas; see Results),
we quantified the difference in gene expression between these areas and

the background expression levels in the rest of the cortex, calculating a
delta-score for each gene (Freer et al., 2016):

�g � E� �g,YoE � E� �g,rest,

here, for each gene ( g) the median gene expression within the YoE-
related brain area (E�g,YoE) was contrasted to the median expression in
the rest of the cortex (E�g,rest). In an additional sensitivity analysis we
calculated delta scores using an alternative reference region that excluded
all cortical regions with positive (i.e., high � low YoE) � estimates in the
GLM assessing cortical thickness differences between high and low YoE
groups, regardless of their statistical significance. This spatially reduced
reference region covered a total of 814 tissue samples with gene expres-
sion data (compared with the 1354 samples in the original reference
region covering the entire rest of the cortex). The rationale behind this
sensitivity analysis is that a reference region based on the entire rest of the
cortex may include gene expression signal from some regions that show
marginal, subthreshold associations with YoE, thus possibly blurring
gene expression differences of YoE-related areas with cortical back-
ground levels.

The resulting delta scores were then ranked in descending order, where
the top (positive values) and bottom parts (negative values) of the ranked
list contain the genes with relative overexpression or underexpression,
respectively, in YoE-related areas compared with the rest of the cortex.
Instead of examining single genes at the extremes of the ranked list, we
then used gene set enrichment analysis (GSEA; http://software.broadin-
stitute.org/gsea/index.jsp, software version 3.0; Subramanian et al.,
2005) to more broadly explore differentially expressed functional path-
ways. Because to our knowledge this represents the first study using the
present approach in this specific field, we used the GSEA approach to
characterize molecular properties of the YoE-related brain regions in an
exploratory manner. Instead of focusing on one or a few predefined genes
based on a priori hypotheses, the enrichment analysis helps to uncover
general trends in differential gene expression in a more comprehensive
manner, while extracting meaningful and interpretable information
from the high-throughput microarray data. To identify functional gene
sets that are differentially expressed in YoE-related regions in reference to
cortical background levels, GSEA determines whether the genes of pre-
specified functional gene sets, derived from curated gene set databases
(see next paragraph), cluster toward one of the extremes (top or bottom)
of the ranked list. Using this location information an enrichment score
(ES) is calculated for each gene set, reflecting the degree of clustering of
the gene set’s genes toward the top (positively enriched/overexpressed)
or bottom (negatively enriched/underexpressed) of the ranked list. A
gene set nominal p value is then created by comparing the ES with a
null-distribution obtained after permuting 1000 times the gene set’s gene
positions in the list and recomputing a new ES at each permutation. To
adjust the estimated significance level and account for the independent
testing of multiple gene sets, the ES are normalized by the size of the set,
obtaining a normalized ES (NES). We then controlled the proportion of
false-positives by calculating the false discovery rate (FDR) for every NES
(Subramanian et al., 2005).

To increase the power and coverage of our analyses, we included
gene sets from multiple independent sources. The gene sets are de-
fined by the common implication of genes in particular biological
states or processes, and are retrieved from a reviewed, curated, and
annotated repository [the Molecular Signatures Database (MSigDB)
v6.0; http://software.broadinstitute.org/gsea/msigdb/index.jsp; Liber-
zon et al., 2011, 2015]. In the present study, we explored a total of 5429
gene sets, including 497 curated and peer-reviewed gene sets of func-
tional pathways derived from the Reactome database (http://reactome.
org/), 177 from the Kyoto Encyclopedia of Genes and Genomes (https://
www.genome.jp/kegg/), 50 from the MSigDB hallmark collection
(Liberzon et al., 2015), 147 from the BioCarta repository (http://
cgap.nci.nih.gov/Pathways/BioCarta_Pathways), and 4558 gene sets that
group genes annotated by the same gene ontology term (http://www.
geneontology.org/).

Given that statistical inference in GSEA is based on complete func-
tional gene sets, not all of the genes included in a significant gene set are
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necessarily differentially expressed. A so called leading-edge subset of
genes can be identified that primarily accounts for a gene set’s enrich-
ment score, and a leading-edge analysis then aims to find commonalities
among the identified gene sets by clustering the respective leading-edge
subsets (Subramanian et al., 2005). To account for the existing redun-
dancy between the different gene sets and to facilitate interpretation of
the enrichment results, functionally coherent gene sets were detected
using a clusterization algorithm (Merico et al., 2010; Isserlin et al., 2014),
and organized into a network layout (“enrichment map”). In this net-
work, nodes represent gene sets, and their edges or connections represent
the genetic overlap (i.e., number of overlapping genes) between pairs of
nodes. Each resulting cluster in the network indicates functionally related
gene sets implicated in the same overarching biological pathway. The net-
work was created with Enrichment Map v2.0.1 (http://www.baderlab.
org/Software/EnrichmentMap) using the GSEA leading-edge subsets as
input (FDR p � 0.05; combined Jaccard and overlap coefficients cutoff �
0.5; Fig. 1).

Results
Sociodemographic and cognitive differences related to YoE
Table 1 depicts the comparison of high and low YoE groups in
terms of sociodemographic and cognitive characteristics. Between-
group comparisons revealed that the low-educated individuals
were significantly older and there were more low-educated
women. There were no age and sex-adjusted MMSE differences
between groups, although high YoE older adults outperformed
those with low YoE in the composite scores for memory and
“frontal lobe” domains. When comparisons within the specific
cognitive domains were retested adding the MMSE as a covariate,
differences were still observed indicating that the cognitive ad-
vantage of higher-educated elders in memory and frontal lobe
function is not explained by global cognitive difference.

Identification of YoE-related cortical areas
The vertex-wise CTh analysis identified a large cluster where
healthy older adults in the high YoE group exhibited greater CTh
than those in the low YoE group (left hemisphere only). The
cluster was restricted to areas within the frontal lobe, including
parts of the dorsomedial prefrontal cortex (medial parts of the
superior frontal gyrus) overlapping with Brodmann areas (BAs)
8, 9, and 32, the ACC (BA 24), frontal pole (BA 10), and orbito-

frontal cortex (BA 11; Fig. 2). No brain areas reached significant
differences in the opposite direction (i.e., greater thickness in low
compared with high YoE groups).

A distinct gene expression profile characteristic of
YoE-related areas
GSEA analysis identified 11 gene sets that were positively en-
riched (FDR � 0.05) in YoE-related areas compared with cortical
background levels (Table 2), and the respective enrichment sig-
nals were driven by a total of 130 unique leading-edge genes
(Table 3).

No significantly negatively enriched gene sets were identified.
Network organization of the gene sets clustered by their leading-
edge subsets (enrichment map) evidenced strongly overlapping
leading-edge genes among some of the gene sets, resulting in a
total of six different gene sets/clusters (Fig. 3). The largest cluster
included four gene sets implicated in biological events related to

Table 1. Demographic and cognitive differences between groups

High YoE
(N � 48)

Low YoE
(N � 74)

Group
differences

Age, y 67.2 � 3.2 68.9 � 3.6 U � 2.850
p � 0.005a*

Gender, F/M 24/24 63/11 �2 � 17.568
p � 0.001b*

YoE 15.7 � 1.7 9.0 � 2.6 U � 9.480
p � 0.001a*

MMSE 29.6 � 0.7 29.4 � 1 U � 0.656
p � 0.512a

Memory domain 0.39 � 0.94 	0.25 � 0.96 t � 3.122
p � 0.002c*

Frontal lobe domain 0.55 � 0.66 	0.30 � 1.02 t � 4.427
p � 0.001c*

Data are presented as mean � SD. F/M, Female/male. MMSE represent direct values, Memory and Frontal lobe
scores were composite factors calculated using PCA. Statistical comparisons reflect the results after these variables
were further adjusted by age, gender, and for the test group variable (see Materials and Methods).[1]
ap values were obtained by Mann–Whitney’s U test pairwise comparisons (nonparametric data).
bp values were obtained by �2 test (categorical data).
cp values were obtained by two-sample t test.

*Significant differences.
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ionotropic neurotransmission, and the large majority of the up-
regulated leading-edge genes corresponded to genes coding for
components of several different ligand-gated ion channels, in-
cluding those receptive for glutamate (kainate, AMPA, and
NMDA receptors), GABA (GABAA), glycine, acetylcholine (nic-
otinic receptors), and serotonin (5-HT3). Other clusters related

to neurotransmission included gene sets implicated in neuropep-
tide (2 gene sets) and G-protein-coupled transmembrane signal-
ing (1 gene set), as well as purinergic signaling (1 gene set). A
different category of overexpressed gene sets was represented by a
cluster related to immune response (2 gene sets), including sev-
eral leading-edge genes related to pathogen recognition (e.g.,

Figure 2. Top, Regions showing greater cortical thickness in healthy older adults with high YoE compared with low YoE individuals. For anatomical reference, overlapping anatomical regions as
delineated in the Desikan–Killiany atlas are shown (bottom). G, Gyrus; S, sulcus; trFp, transverse frontopolar; Fmg, fronto-marginal; Forb, frontal orbital (including H-shaped); G-rec, gyrus rectus;
Fsuborb, frontal suborbital; supF, superior frontal.

Table 2. GSEA

Gene set NES FDR q-val Size GSEA ID URL

1. Ionotropic neurotransmission
GO_EXTRACELLULAR_LIGAND_GATED_ION_CHANNEL_ACTIVITY 2.159 0.012 25 M18911 http://amigo.geneontology.org/amigo/term/GO:0005230
GO_EXCITATORY_EXTRACELLULAR_LIGAND_GATED_ION_CHANNEL_ACTIVITY 2.204 0.011 28 M18473 http://amigo.geneontology.org/amigo/term/GO:0005231
GO_TRANSMITTER_GATED_CHANNEL_ACTIVITY 1.999 0.048 29 M17983 http://amigo.geneontology.org/amigo/term/GO:0022835
GO_NEUROTRANSMITTER_RECEPTOR_ACTIVITY 2.049 0.031 79 M18363 http://amigo.geneontology.org/amigo/term/GO:0030594

2. NEUROPEPTIDE SIGNALING
GO_NEUROPEPTIDE_HORMONE_ACTIVITY 2.057 0.033 68 M18214 http://amigo.geneontology.org/amigo/term/GO:0005184
GO_NEUROPEPTIDE_RECEPTOR_BINDING 2.120 0.012 51 M18007 http://amigo.geneontology.org/amigo/term/GO:0071855

3. Transmembrane signaling
GO_RESPONSE_TO_AMMONIUM_ION 2.037 0.033 26 M10335 http://amigo.geneontology.org/amigo/term/GO:0060359

4. Purinergic signaling
GO_PURINERGIC_RECEPTOR_SIGNALING_PATHWAY 1.991 0.049 28 M16435 http://amigo.geneontology.org/amigo/term/GO:0035587

5. Immune response
GO_MYELOID_DENDRITIC_CELL_ACTIVATION 2.124 0.014 55 M16283 http://amigo.geneontology.org/amigo/term/GO:0001773
GO_MACROPHAGE_ACTIVATION 2.133 0.016 75 M13410 http://amigo.geneontology.org/amigo/term/GO:0042116

6. Vesicle trafficking
GO_CLATHRIN_COATED_VESICLE_MEMBRANE 2.013 0.043 31 M17518 http://amigo.geneontology.org/amigo/term/GO:0030665

GSEA results identifying 11 gene sets belonging to 6 larger functional clusters.
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Table 3. Continued

Gene Rank in gene list Delta-score Functional group

RGS10 910 0.082 Transmembrane signaling
RGS8 1677 0.061 Transmembrane signaling
CDK5R1 2769 0.046 Transmembrane signaling
P2RY12 95 0.172 Purinergic signaling
P2RX7 1776 0.060 Purinergic signaling
P2RY13 33 0.224 Purinergic signaling
P2RX6 263 0.126 Purinergic signaling
P2RY6 309 0.120 Purinergic signaling
P2RX5 1255 0.071 Purinergic signaling
P2RY11 1570 0.064 Purinergic signaling
GPR34 271 0.124 Purinergic signaling
ADORA3 155 0.148 Purinergic signaling
PTAFR 961 0.080 Purinergic signaling
GNAI2 1428 0.067 Purinergic signaling
PYCARD 517 0.101 Immune response
BATF3 985 0.079 Immune response
TGFB1 564 0.098 Immune response
PYDC1 505 0.102 Immune response
DOCK2 461 0.105 Immune response
DHRS2 122 0.160 Immune response
TM7SF4 253 0.127 Immune response
CX3CR1 269 0.125 Immune response
ZAP70 545 0.099 Immune response
TYROBP 653 0.093 Immune response
SYK 295 0.121 Immune response
CD93 777 0.088 Immune response
SLC11A1 950 0.080 Immune response
TLR7 1188 0.072 Immune response
AIF1 96 0.171 Immune response
CLU 1748 0.060 Immune response
TLR3 994 0.078 Immune response
CX3CL1 1772 0.060 Immune response
SNCA 1060 0.076 Immune response
RAB3A 2097 0.055 Vesicle trafficking
TYRP1 328 0.118 Vesicle trafficking
CLTA 3693 0.037 Vesicle trafficking
AP2A1 1624 0.062 Vesicle trafficking
KIAA1199 3293 0.041 Vesicle trafficking
AP2A2 2058 0.055 Vesicle trafficking
NCALD 511 0.101 Vesicle trafficking
NRGN 229 0.132 Vesicle trafficking
CLTCL1 693 0.092 Vesicle trafficking
AP2S1 666 0.093 Vesicle trafficking
SLC17A7 2179 0.053 Vesicle trafficking
FCGR1A 1250 0.071 Vesicle trafficking
FCGR1B 257 0.127 Vesicle trafficking
HLA-DQA2 2184 0.053 Vesicle trafficking
LDLR 3312 0.040 Vesicle trafficking
AP1M2 1516 0.065 Vesicle trafficking
AP2M1 2364 0.051 Vesicle trafficking
HLA-DQA1 4017 0.034 Vesicle trafficking
AP1M1 2776 0.046 Vesicle trafficking
HLA-DPA1 4290 0.032 Vesicle trafficking
CD74 708 0.091 Vesicle trafficking
HLA-DRB5 3488 0.039 Vesicle trafficking
HLA-DRB4 8 0.312 Vesicle trafficking
DBNL 764 0.088 Vesicle trafficking
FZD5 4176 0.033 Vesicle trafficking
SLC32A1 4411 0.031 Vesicle trafficking
WNT5A 4491 0.031 Vesicle trafficking
AP1B1 3964 0.035 Vesicle trafficking
AP3B2 3468 0.039 Vesicle trafficking
HLA-DPB1 2465 0.050 Vesicle trafficking
HLA-DRA 62 0.193 Vesicle trafficking
CD9 3327 0.040 Vesicle trafficking
HLA-DQB1 239 0.130 Vesicle trafficking

Table 3. Leading-edge genes of positively enriched gene sets in education-related
cortical areas

Gene Rank in gene list Delta-score Functional group

CHRNA1 2073 0.055 Ionotropic neurotransmission
GABRB3 4013 0.034 Ionotropic neurotransmission
GABRB1 1966 0.057 Ionotropic neurotransmission
CHRNA2 383 0.112 Ionotropic neurotransmission
CHRNA4 3822 0.035 Ionotropic neurotransmission
GRIK5 3748 0.036 Ionotropic neurotransmission
CHRNA6 30 0.228 Ionotropic neurotransmission
GRIK3 2188 0.053 Ionotropic neurotransmission
GRIK4 1311 0.069 Ionotropic neurotransmission
GRIK1 725 0.090 Ionotropic neurotransmission
GRIK2 3892 0.035 Ionotropic neurotransmission
CHRND 2309 0.051 Ionotropic neurotransmission
GLRA2 2534 0.049 Ionotropic neurotransmission
GLRA3 193 0.139 Ionotropic neurotransmission
PTK2B 1126 0.074 Ionotropic neurotransmission
GABRD 3157 0.042 Ionotropic neurotransmission
GRIA4 3367 0.040 Ionotropic neurotransmission
GABRQ 1422 0.067 Ionotropic neurotransmission
CHRNB2 3933 0.035 Ionotropic neurotransmission
GRID2 3549 0.038 Ionotropic neurotransmission
CHRNB3 172 0.145 Ionotropic neurotransmission
GABRA5 2148 0.054 Ionotropic neurotransmission
GABRA3 2268 0.052 Ionotropic neurotransmission
HTR3A 1185 0.072 Ionotropic neurotransmission
HTR3B 107 0.166 Ionotropic neurotransmission
GRIN2C 886 0.083 Ionotropic neurotransmission
GRIN2B 1247 0.071 Ionotropic neurotransmission
GRIN2D 3196 0.041 Ionotropic neurotransmission
GRIN3A 293 0.122 Ionotropic neurotransmission
GRIA3 4508 0.030 Ionotropic neurotransmission
CHRM3 1533 0.064 Ionotropic neurotransmission
CHRM1 695 0.092 Ionotropic neurotransmission
CHRM5 841 0.084 Ionotropic neurotransmission
HRH3 1832 0.059 Ionotropic neurotransmission
DRD4 679 0.092 Ionotropic neurotransmission
UCN 2726 0.046 Neuropeptide signaling
GRP 61 0.194 Neuropeptide signaling
CCK 327 0.118 Neuropeptide signaling
TRH 1531 0.064 Neuropeptide signaling
ADCYAP1 723 0.090 Neuropeptide signaling
CORT 2852 0.045 Neuropeptide signaling
GAL 13 0.300 Neuropeptide signaling
NPY 1125 0.074 Neuropeptide signaling
PNOC 98 0.170 Neuropeptide signaling
NPPA 1561 0.064 Neuropeptide signaling
CRH 308 0.120 Neuropeptide signaling
VIP 1573 0.064 Neuropeptide signaling
HCRT 2355 0.051 Neuropeptide signaling
EDN1 1281 0.070 Neuropeptide signaling
CCKBR 2641 0.048 Neuropeptide signaling
GHRH 847 0.084 Neuropeptide signaling
NMU 27 0.235 Neuropeptide signaling
SHANK1 746 0.089 Neuropeptide signaling
KCNC2 1181 0.072 Transmembrane signaling
SLC34A1 187 0.140 Transmembrane signaling
OPRM1 255 0.127 Transmembrane signaling
ASS1 1852 0.058 Transmembrane signaling
PPP1R9B 3268 0.041 Transmembrane signaling
CCNA2 976 0.079 Transmembrane signaling
CRHBP 1198 0.072 Transmembrane signaling
HRH1 674 0.092 Transmembrane signaling
GNA15 3229 0.041 Transmembrane signaling
GNAQ 2989 0.043 Transmembrane signaling
GNB1 1626 0.062 Transmembrane signaling

(Table continues.)
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TLR family), cytokine signaling, and immune activation (e.g.,
TGFB1, AIF1, PYCARD), as well as a closely related gene set
implicated in vesicle trafficking, which mainly contained leading-
edge genes coding for major histocompatibility complex (MHC)
molecules and adaptor complex proteins (AP1–3). Complemen-
tary GSEA analysis of delta scores calculated with the alternative
reference region revealed identical results.

Discussion
The observed association between YoE and higher cortical thick-
ness in medial prefrontal, ACC, and orbitofrontal cortices pro-
vides further converging evidence to other neuroimaging studies
conducted within the CR model (Arenaza-Urquijo et al., 2013;
Kim et al., 2015; Lee et al., 2016; Boller et al., 2017; Vaqué-Alcázar
et al., 2017). The relevance of distinct frontal lobe areas as medi-
ators of CR mechanisms is probably related to their key role in
cognitive processes such as working memory (Owen et al., 2005;
Barbey et al., 2011), cognitive conflict monitoring (Jahn et al.,
2016), or decision-making (Shenhav et al., 2013). We further
observed that these cortical areas exhibited a distinct gene expres-
sion profile characterized by relative upregulation of gene sets
implicated in neurotransmission and immune response.

Our pathway analyses identified several gene sets involved in
cell communication and neurotransmission processes. The ma-
jority of the upregulated leading-edge genes encode for major
ionotropic glutamate receptors (i.e., GRIK, GRIA, and GRIN
gene families), nicotinic acetylcholine receptors (CHRN gene
family), as well as GABAA receptor subunits (GABR gene family),
suggesting an important role for these brain areas in fast excit-
atory and inhibitory signaling. This molecular characteristic cor-
responds to the well described role of these medial prefrontal
areas as highly active, functionally connected network hubs sub-
serving transmodal information integration (Buckner et al.,
2009; Sepulcre et al., 2012; Braga et al., 2013). In addition, neu-
rotransmitter signaling through calcium-permeable ion chan-
nels, particularly glutamatergic AMPA and NMDA receptors as
well as nicotinic acetylcholine receptors, is considered to be one
of the most important molecular features of postsynaptic plastic-

ity (Cull-Candy et al., 2006; Anggono and Huganir, 2012; Pank-
ratov and Lalo, 2014).

In addition to ionotropic neurotransmission, we also identi-
fied several other upregulated gene set families involved in
G-protein-coupled transmembrane signaling through neuro-
peptide and purinergic receptor binding. Beyond their role in
homeostatic and neuroendocrine processes, neuropeptide/G-
coupled receptor signaling is increasingly recognized as a media-
tor of activity-dependent refinement of local brain circuits and
plasticity (McClard and Arenkiel, 2018), including important
roles for learning and memory (Gøtzsche and Woldbye, 2016).
Postmortem autopsy studies (Riudavets et al., 2007; Iacono et al.,
2009), revealed that subjects with considerable AD pathology but
preserved cognition exhibited neuronal hypertrophy in specific
brain areas including the ACC. Such changes were interpreted as
evidence of morphological plasticity in response to the incipient
neuropathological changes of AD, suggesting that modulation of
synaptic transmission and associated plasticity may reflect a neu-
robiological mechanism of resilience to cope with pathology and
maintain cognition, which is the core concept of the CR theory.

A second category of gene sets that were found to be upregu-
lated in the examined YoE-related areas was related to immune
processes. This may reflect a particular sensitivity of the identified
cortical regions for microglial activation (e.g., MHC-II molecules
are frequently used as markers of microglial activation; Hopper-
ton et al., 2018). In this sense, imaging-based PET studies have
demonstrated region-specific activation of microglia in normal
aging, including the frontal lobe and ACC regions (Schuitemaker
et al., 2012). Although excessive microglial hyperactivation seems
to contribute to the susceptibility of cognitive deficits (Kohman,
2012), transiently activated microglia also play an important role
in the clearance and degradation of misfolded protein aggregates
associated with neurodegenerative disease, such as the extracel-
lular A� fibrils characteristic for Alzheimer’s disease (Cai et al.,
2014; Cho et al., 2014). Recent PET imaging studies have indi-
cated that high education and lifelong intellectual enrichment
may result in attenuation of age-related A� aggregation in medial
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Figure 3. Heat map of the clustered leading edge genes of the positively enriched gene sets. Rows correspond to the gene sets listed in Table 2 and columns correspond to their respective
leading-edge gene as detailed in Table 3. Color coding from white to dark red reflects degree of relative upregulation (delta score). The upper part shows the enrichment map of the clustered gene
sets, containing six different clusters representing the overarching functional pathways. Node size represents the gene set size and line thickness shows the degree of overlap (shared genes) between
the two gene sets it connects.
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prefrontal cortical regions such as the ACC (Landau et al., 2012)
and orbitofrontal areas (Arenaza-Urquijo et al., 2017), particu-
larly in those individuals at risk for AD (Wirth et al., 2014). Thus,
together with these previous findings our present results could
indicate that such education-related A� suppression effects may
be primarily observed in these brain areas partially because they
are characterized by a high expression of microglial activity genes.

Regarding the characteristic overexpression of both micro-
glial activation and neurotransmission pathways, it is interesting
to note that purinergic signaling has been implicated in excitatory
neurotransmission as well as in neuronal– glial communication,
inflammation regulation, and phagocytotic activity of microglia
(North and Verkhratsky, 2006), including clearance of A� fibrils
(Kim et al., 2012; Erb et al., 2018).

In summary, our results suggest that the gene expression pro-
file and enriched biological pathways of the prefrontal regions
identified here may entail fundamental mechanisms to account
for why these brain areas represent key regions mediating the
positive physiological and cognitive effects of high educational
attainment. One possibility is that because of their particular mo-
lecular characteristics, lifetime exposure to CR proxies such as
YoE may lead to specific changes in the anatomy and activity of
these regions over other cortical areas, possibly explaining the
frequently reported increases of gray matter or cortical thickness
measures in these areas in elders with high CR ratings. On the
other hand, enrichment for biological pathways implicated in
immune response and microglial activity would align with evi-
dence for a protective effect of lifetime exposure to enriched cog-
nitive activity against pathology accumulation in these regions
(Landau et al., 2012; Arenaza-Urquijo et al., 2017).

The present study is not without limitations. A first constraint
refers to the lack of biomarker information to characterize our
sample of older adults. According to population-based studies
(Jansen et al., 2015; Toledo et al., 2015) �20% of individuals with
normal cognition and a mean age comparable to our older adult
individuals are likely to harbor significant brain pathology (i.e.,
amyloid-� or tau deposition). Furthermore, because our main
inclusion criterion was normal cognitive function, these percent-
ages may be expected to be even higher among highly educated
elders, as preserved cognition in the face of brain pathology is
likely to be more frequent among high CR elders. Therefore, our
current approach does not allow discerning the degree to which
the detected associations between education and cortical thick-
ness may be specific to normal aging or confounded by coexisting
brain pathology.

A further restriction of our study is that the cross-sectional
structural MRI analysis does not provide specific information
regarding the possible mechanisms underlying the observed ed-
ucation/cortical thickness relationship. Thus, these relations
could either reflect a higher capacity for plastic brain changes
related to efficiency or compensation mechanisms of CR (for
review, see Bartrés-Faz and Arenaza-Urquijo, 2011), or they
could reflect brain maintenance associated to less age-related cor-
tical thickness loss (Nyberg et al., 2012). Although CR and brain
maintenance are two interrelated and not mutually exclusive
concepts (Stern et al., 2018b), both being putatively related to
brain plasticity mechanisms (Bartrés-Faz and Arenaza-Urquijo,
2011; Cabeza et al., 2018), disentangling their relative contribu-
tions would typically require a longitudinal study design (or
comparison with young brains’ characteristics; Nyberg et al.,
2012; Cabeza et al., 2018). The detailed characterization of neu-
ronal systems underlying CR and maintenance effects is an on-
going and highly active area of research (Stern et al., 2018a). In

future studies the inclusion of other CR proxies or lifestyle-based
measures (IQ, occupation, leisure-time, physical activity), cogni-
tively impaired individuals (e.g., patients with AD or MCI), and
functional imaging modalities, together using distinct ap-
proaches such as the residual (van Loenhoud et al., 2017) or those
based on physiological age estimations (Steffener et al., 2016) will
help to further characterize detailed CR-related brain networks,
possibly also disentangling regionally diverging implications in
compensation/efficiency and maintenance mechanisms.

Finally, our study is limited by the available data for estimat-
ing region-specific cortical gene expression profiles. Although the
used gene expression data from the Allen Brain Atlas provides the
anatomically most comprehensive transcriptome data for the hu-
man brain available to date, the data were derived from only six
brain donors. Furthermore, this gene expression dataset was ob-
tained from postmortem specimens of relatively young subjects
(mean age 42.5 at death; Hawrylycz et al., 2012, 2015; Shen et al.,
2012) with no educational background information provided.
We acknowledge that these aspects may pose a bias when inter-
preting the findings based on brain regions identified from older
participants, given that cortical gene expression values are known
to change across the lifespan (Naumova et al. 2013).

In conclusion, to our knowledge, this study represents the first
attempt to characterize the transcriptome-wide gene expression
profile of YoE-related brain areas. Our results point to a distinc-
tive enrichment with certain biologic pathways that may equip
these regions with a higher capacity for plastic change in response
to lifetime intellectual enrichment and potentially also a higher
resilience to age-related pathologic brain changes. Further re-
search is needed to advance our mechanistic understanding of the
biological pathways through which cognitive and brain reserve
operate to preserve cognition and day-to-day functionality
among older adults.
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North RA, Verkhratsky A (2006) Purinergic transmission in the central ner-
vous system. Pflugers Arch 452:479 – 485.

Nucci M, Mapelli D, Mondini S (2012) Cognitive reserve index question-
naire (CRIq): a new instrument for measuring cognitive reserve. Aging
Clin Exp Res 24:218 –226.
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Bosch B, Villar A, Bargalló N, Jurado MA, Barrios M, Molinuevo JL
(2009) Brain structure and function related to cognitive reserve variables
in normal aging, mild cognitive impairment and Alzheimer’s disease.
Neurobiol Aging 30:1114 –1124.

Spreng RN, Sepulcre J, Turner GR, Stevens WD, Schacter DL (2013) Intrin-
sic architecture underlying the relations among the default, dorsal atten-
tion, and frontoparietal control networks of the human brain. J Cogn
Neurosci 25:74 – 86.

Steffener J, Habeck C, O’Shea D, Razlighi Q, Bherer L, Stern Y (2016) Dif-
ferences between chronological and brain age are related to education and
self-reported physical activity. Neurobiol Aging 40:138 –144.

Stern Y, Gazes Y, Razlighi Q, Steffener J, Habeck C (2018a) A task-invariant
cognitive reserve network. Neuroimage 178:36 – 45.

Stern Y, Arenaza-Urquijo EM, Bartres-Faz D, Belleville S, Cantilon M,
Chetelat G, Ewers M, Franzmeier N, Kempermann G, Kremen WS,
Okonkwo O, Scarmeas N, Soldan A, Udeh-Momoh C, Valenzuela M,
Vemuri P, Vuoksimaa E; Reserve, Resilience and Protective Factors PIA
Empirical Definitions and Conceptual Frameworks Workgroup (2018b)
Whitepaper: defining and investigating cognitive reserve, brain reserve,
and brain maintenance. Alzheimer’s Dement. Advance online publica-
tion. Retrieved September 14, 2018. doi:10.1016/j.jalz.2018.07.219.

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005)
Gene set enrichment analysis: a knowledge-based approach for interpret-
ing genome-wide expression profiles. Proc Natl Acad Sci U S A 102:
15545–15550.

Then FS, Luck T, Angermeyer MC, Riedel-Heller SG (2016) Education as
protector against dementia, but what exactly do we mean by education?
Age Ageing 45:523–528.

Toledo JB, Zetterberg H, van Harten AC, Glodzik L, Martinez-Lage P,
Bocchio-Chiavetto L, Rami L, Hansson O, Sperling R, Engelborghs S,
Osorio RS, Vanderstichele H, Vandijck M, Hampel H, Teipl S, Moghekar
A, Albert M, Hu WT, Monge Argilés JA, Gorostidi A, et al. (2015) Alz-
heimer’s disease cerebrospinal fluid biomarker in cognitively normal sub-
jects. Brain 138:2701–2715.

Valenzuela MJ, Sachdev P, Wen W, Chen X, Brodaty H (2008) Lifespan
mental activity predicts diminished rate of hippocampal atrophy. PloS
One 3:e2598.

van Loenhoud AC, Wink AM, Groot C, Verfaillie SCJ, Twisk J, Barkhof F, van
Berckel B, Scheltens P, van der Flier WM, Ossenkoppele R (2017) A
neuroimaging approach to capture cognitive reserve: application to Alz-
heimer’s disease. Hum Brain Mapp 38:4703– 4715.
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