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SUMMARY

Loss of function in the Scn1a gene leads to a severe epileptic encephalopathy called Dravet 

syndrome (DS). Reduced excitability in cortical inhibitory neurons is thought to be the major 

cause of DS seizures. Here, in contrast, we show enhanced excitability in thalamic inhibitory 

neurons that promotes the non-convulsive seizures that are a prominent yet poorly understood 

feature of DS. In a mouse model of DS with a loss of function in Scn1a, reticular thalamic cells 

exhibited abnormally long bursts of firing caused by the downregulation of calcium-activated 

potassium SK channels. Our study supports a mechanism in which loss of SK activity causes the 
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reticular thalamic neurons to become hyperexcitable and promote non-convulsive seizures in DS. 

We propose that reduced excitability of inhibitory neurons is not global in DS and that non-

GABAergic mechanisms such as SK channels may be important targets for treatment.

Graphical Abstract

In Brief

In a mouse model of Dravet syndrome (DS) resulting from voltage-gated sodium channel 

deficiency, Ritter-Makinson et al. find that inhibitory neurons of the reticular thalamic nucleus are 

paradoxically hyperexcitable due to compensatory reductions in a potassium SK current. Boosting 

this SK current treats nonconvulsive seizures in DS mice.

INTRODUCTION

SCN1A encodes the alpha subunit of the voltage-gated sodium channel Nav1.1, which is 

widely expressed in the brain and heart. As regulators of cardiac (Auerbach et al., 2013; 

Kalume et al., 2013) and brain rhythms, mutations in SCN1A dramatically affect human 

health. SCN1A is one of the most commonly mutated genes associated with epilepsy, 

including Dravet syndrome (DS) (Claes et al., 2001, 2009). This age-dependent, early-onset 

epileptic encephalopathy is characterized by non-convulsive and convulsive seizures, 

developmental delay, intellectual and motor disabilities, autistic features, sleep impairment, 

and a high risk of sudden death. Non-convulsive seizures are often intractable and may 

account for the cognitive decline, behavioral disorders, and reduction in social life 

associated with DS (Guzzetta, 2011). The absence of non-convulsive seizures is typical of 

borderline forms of DS, in which cognitive ability is at least partially preserved (Dalla 

Bernardina et al., 1986).

In mouse models of DS, reduced Scn1a function in GABAergic cortical and hippocampal 

inhibitory neurons reduces action potential (AP) firing and network inhibition, which is 
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thought to lead to runaway excitation (altered excitatory-inhibitory balance) and convulsive 

seizures (Cheah et al., 2012; Dutton et al., 2013; Ogiwara et al., 2007; Tai et al., 2014; Yu et 

al., 2006). Knockout of Scn1a in parvalbumin and somatostatin neurons increases the 

susceptibility to thermally induced convulsive seizures, whereas selective knockout in either 

neuron subtype phenocopies distinct DS neuropsychiatric behavioral phenotypes (Rubinstein 

et al., 2015). Identifying the molecular and brain circuit mechanisms by which reduced 

SCN1A causes non-convulsive seizures could lead to novel therapeutic strategies.

Although less studied, another hub of Scn1a-expressing GABAergic neurons exists in the 

nucleus reticularis thalami (nRT) (Papale et al., 2013), which dynamically modulates 

interactions between the thalamus and cerebral cortex (Crick, 1984; Halassa and Acsády, 

2016). The nRT neurons are intrinsic oscillators that inhibit the excitatory relay thalamic 

nuclei (Gentet and Ulrich, 2003; Houser et al., 1980), positioning them to regulate 

thalamocortical oscillations, including seizures. Given the abundant expression of Scn1a in 

nRT (Papale et al., 2013) and that disruptions in nRT correlate with neurological (Makinson 

et al., 2017; Paz et al., 2010; Slaght et al., 2002) and psychiatric disorders (Ferrarelli and 

Tononi, 2011; Zhang et al., 2010), we asked whether Scn1a deficiency results in nRT 

pathology and is involved in non-convulsive seizures using a well-established mouse model 

containing a human Scn1a mutation (DS mice; Ogiwara et al., 2007).

RESULTS

Scn1a Deficiency Alters the Electric Membrane Excitability of nRT Neurons

We first investigated the effect of Scn1a deficiency on GABAergic parvalbumin-positive 

nRT neurons. The input resistance (Rin) of nRT neurons was increased in DS mice (Figure 

S1A), while the membrane capacitance was not significantly reduced (Figure S1A), 

indicating a decrease in the total membrane conductance. Moreover, the AP threshold was 

depolarized and the AP width was increased in DS mice, as expected from Scn1a reduction 

(Cheah et al., 2012) (Figure S1B). However, nRT neurons from DS mice fired more APs in 

response to depolarization (Figure S1C), consistent with an increased Rin.

Given that post-hyperpolarization rebound bursting plays a critical role in thalamic function 

(Beenhakker and Huguenard, 2009; Paz and Huguenard, 2015), we investigated whether 

Scn1a deficiency altered rebound bursting in nRT cells. In response to similar 

hyperpolarizations, the number of APs within the rebound burst was higher in nRT neurons 

from DS mice (Figures 1A and 1B), indicating that GABAergic nRT neurons exhibit 

enhanced intrinsic excitability in DS mice.

We next examined the effects of Scn1a deficiency on thalamocortical (TC) neurons in the 

somatosensory ventrobasal thalamus (VB), which has also been reported to express Scn1a 
(Ogiwara et al., 2013). We observed no differences in the passive membrane, tonic, or 

rebound firing properties of TCVB neurons in DS mice (Figures S2A–S2C). Finally, 

spontaneous excitatory synaptic currents were not altered in nRT and TCVB neurons from 

DS mice (Figures S1D, S1E, and 2D–2F, respectively) and were similar to those reported in 

our previous studies (Paz et al., 2011).

Ritter-Makinson et al. Page 3

Cell Rep. Author manuscript; available in PMC 2019 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SK Current Deficit Underlies Enhanced Cellular Burst Firing in nRT Neurons

Low-threshold T-type calcium and calcium-activated small potassium (SK) conductances 

play a major role in nRT post-inhibitory rebound bursts (Jahnsen and Llinás, 1984; 

Clemente-Perez et al., 2017; Cueni et al., 2008). In DS mice, the peak T-current (IT) density, 

voltage dependence, and biophysical properties of the steady-state inactivation (SSI) IT were 

not altered in nRT neurons (Figure 1C–1G) and were comparable in size and kinetics to IT 

previously measured in the nRT neurons of normal rodents (Paz et al., 2010; Clemente-Perez 

et al., 2017). These results suggest that enhanced rebound burst firing in DS nRT neurons is 

not due to a stronger IT.

We next asked whether alterations in SK channels (Cueni et al., 2008) underlie the enhanced 

burst firing. Whole-cell patch-clamp recordings showed a reduced density of SK currents 

(ISK) in DS nRT neurons (Figures 1H, 1I, S1G, and S1H). qPCR of nRT isolated from DS 

mice showed reduced levels of Kcnn2S (Figures 1J and 1K), which is the predominant SK2 

sub-type in nRT (Wimmer et al., 2012). In a rescue experiment, the SK agonist 1-ethyl-2-

benzimidazolinone (EBIO) (Cueni et al., 2008) was sufficient to normalize the rebound 

bursting properties in DS nRT neurons (Figure 1L), but it did not affect the firing of TCVB 

neurons (Figures S2G and S2H).

In a biophysical model (Adelman et al., 2012; Destexhe et al., 1994; Paz et al., 2013) (Figure 

1M), reducing SK conductance phenocopied the changes observed in DS nRT neurons, 

namely the enhanced number of APs within the rebound burst (Figure 1N) and the enhanced 

Rin (Figure S1F). The increased Rin (Figure S1F) and mean AP number (Figure 1O) were 

robust across the parameter domains tested. Notably, reducing the transient sodium 

conductance altered neither the number of APs in the rebound burst nor the Rin (Figures S3J 

and S3K), suggesting that SK reduction is sufficient to cause enhanced Rin and AP firing in 

the nRT, independent of changes in transient sodium conductance.

Scn1a Deficiency Leads to Thalamic Microcircuit Hyperexcitability

Rebound burst firing in nRT neurons is important for generating and maintaining oscillatory 

activity in the intra-thalamic microcircuit (Beenhakker and Huguenard, 2009; Jahnsen and 

Llinás, 1984; Bazhenov et al., 2000; Deschênes et al., 1984; Steriade et al., 1987). The 

rebound burst in nRT neurons provides phasic GABAergic inhibition onto excitatory 

thalamic relay neurons, which leads to rebound burst firing in relay cells and subsequent re-

excitation of the nRT, with this sequence reiterating to maintain thalamic network oscillation 

(Beenhakker and Huguenard, 2009; Paz and Huguenard, 2015). Therefore, we asked 

whether the intra-thalamic microcircuit between the nRT and relay nuclei is hyperexcitable 

in Scn1a-deficient mice.

To assess this, we used horizontal thalamic slice preparations that conserve the connectivity 

between nRT and VB (Huntsman et al., 1999). In wild-type (WT) mice, stimulation of the 

internal capsule consistently evoked rhythmic oscillatory bursting activity in VB (Figure 2A) 

in the spindle frequency range (~7–10 Hz), similar to previous reports (Paz et al., 2011; 

Huntsman et al., 1999; Clemente-Perez et al., 2017; Barthó et al., 2014; Sorokin et al., 2017; 

Halassa et al., 2011). Evoked repetitive bursting in VB necessitates “ping-pong”-type 
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interactions between nRT and VB; when these connections are severed, no circuit 

oscillations are observed in VB (von Krosigk et al., 1993). Similar stimulations in DS mice 

induced longer circuit oscillations in the thalamus (Figure 2B), with more bursts (Figure 2C) 

occurring at a lower frequency (Figure 2D) in DS mice. These metrics support the 

intrathalamic nRT-VB microcircuit being hyperexcitable in DS mice.

We then assessed the impact of reduced SK conductance at the circuit level in our 

computational model, including TCVB and nRT neurons (Figure 2E). Reduced SK elicited 

enhanced network oscillations (Figure 2F), displaying longer oscillations (Figures 2G and 

2H), more bursts within each oscillation (Figures 2I and 2J), and lower oscillation frequency 

(Figures 2K and 2L) in the DS domain. Longer nRT bursts and the consequent TCVB 

hyperpolarization account for the counterintuitive decrease in the frequency of bursting in 

DS mice (Figures 2K and 2L).

In the WT domain (at normal SK conductance levels), a 10% reduction in the sodium 

maximal conductance did not affect burst AP number and Rin in the nRT neuron model 

(Figures S1J and S1K) or oscillation properties in the nRT-TCVB circuit model (Figures 

S1L–S1N) (i.e., it did not account for experimental observations). Moreover, reduced 

sodium conductance left unchanged the effects of reduced SK conductance in the DS 

domain in both the nRT and nRT-TCVB models (Figures S1J–S1N) (i.e., it did not preclude 

the mechanistic effect unraveled between reduced SK and the nRT-TCVB microcircuit 

hyperexcitability). Even a 50% decrease in the sodium maximal conductance did not affect 

these conclusions (data not shown). The model thus suggests that in nRT neurons, reduced 

SK, but not reduced sodium conductance, renders the thalamus “epileptic like” by enhancing 

thalamic rhythmogenesis.

“Silent” Non-convulsive Seizures in Human and Mouse DS

Given that the nRT is a powerful modulator of cortical rhythms (Steriade et al., 1993), we 

next asked whether enhanced bursting in the nRT-VB circuit could underlie seizures in DS 

mice. DS presents with a complex seizure phenotype that includes non-convulsive seizures 

(e.g., typical and atypical absence seizures) (Dravet, 2011). The cellular mechanisms 

underlying these seizures remain unknown (Dravet, 2011), and non-convulsive seizures have 

not been described in DS mouse models.

Thus, we set out to compare the seizure phenotype in DS mice to human DS patients (Figure 

3). Non-convulsive seizures occurred in mice on average 15 ± 8 times per hour, lasting0.5–6 

s (n = 9), and 7 ± 4 times per hour, lasting on average 10 s in DS patients (n = 3). Notably, 

non-convulsive seizures in DS mice and DS patients exhibited similar spectral 

electroencephalogram (EEG) signatures with fundamental frequencies of 4–7 Hz that varied, 

depending on the cortical region (Figures 3B, 3C, 3E, 3F, S3, and S4), characterized by 

poly-spike-and-wave components (Figure 3, note the similarities between 3C and 3G), 

which were different from the spike-and-wave discharges of typical absence seizures.

SK Enhancement Treats Non-convulsive Seizures in DS Mice

Recordings in nRT and VB showed high-frequency burst firing, phase locked to cortical 

poly-spikes during spontaneously occurring non-convulsive seizures (Figures 3B, 3C, and 
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S5A–S5D) and during the convulsive hyperthermia-triggered seizures (Figures S5E and 

S5F) in freely behaving mice. Pharmacological boosting of SK channels in the nRT by acute 

infusion of EBIO reduced the number of spontaneous non-convulsive seizures (Figures 4A 

and 4B). Given the close apposition of nRT and VB, we cannot exclude the potential that 

intra-nRT infusions of EBIO also affected the VB. However, the lack of EBIO effects on the 

firing of TCVB neurons in vitro (Figures S2G and S2H) suggests that the abrogation of 

seizures mainly resulted from the effects of EBIO on the nRT. Next, we investigated more 

clinically tractable systemic injections of EBIO and found that these also reduced the 

number of seizures (Figures 4C–4F). Thus, pharmacological enhancers of ISK could be a 

treatment for non-convulsive seizures in DS.

Optogenetic Toggling of Thalamic Bursting Modulates Seizures in Scn1a-Deficient Mice

The nRT exerts its effects on cortical rhythms through its TC relay targets (Pinault, 2004), 

and non-convulsive seizures are prominent in the S1 cortex. Therefore, we hypothesized that 

if nRT → VB → S1 was causally involved in seizures, interrupting the bursting in VB 

should disrupt the seizures (Figure 5A). To test this, we perturbed VB firing using stable 

step function opsin (SSFO), a bistable opsin (Yizhar et al., 2011) that can switch the firing of 

TCVB cells from bursting to tonic mode (Sorokin et al., 2017). Unilateral SSFO activation in 

VB after seizure detection (Figure 5B) rapidly eliminated VB bursts, toggled tonic firing, 

and stopped ongoing seizures (Figures 5C–5E). Thus, VB bursting output may maintain 

non-convulsive seizures in DS. The light itself did not disrupt seizures (Figure S6), 

demonstrating that optical disruption of seizures requires SSFO activation.

DISCUSSION

Here, we discovered that in DS, Scn1a deficiency and subsequent reduction of ISK in the 

nRT drives thalamic hyperexcitability to promote non-convulsive cortical seizures.

Less Is More: How Does Scn1a Deficiency in nRT Neurons Lead to Thalamic Network 
Hyperexcitability?

Our finding that GABAergic nRT neurons in DS mice have a more depolarized AP threshold 

is expected, and confirms previous studies (Kalume et al., 2015; Hedrich et al., 2014). 

However, we also found that nRT neurons exhibit an overall increase in excitability, 

displaying stronger spiking during depolarizing current pulses and stronger post-

hyperpolarization rebound bursts of APs. This is at least in part due to a compensatory 

decrease in SK channel expression and consequent shift of the current balance toward 

inward currents and increased Rin. These changes were sufficient to maintain abnormal 

oscillations in the intrathalamic network formed by reciprocal connections between nRT and 

relay TC neurons in the somatosensory thalamus. Although many other compensations 

likely occur in DS, the reduction in ISK is particularly powerful because of its known role in 

thalamic rhythmogenesis. Our findings are in agreement with previous studies showing that 

blockade of ISK with apamin causes cellular and circuit hyperexcitability in thalamic slices 

(Kleiman-Weiner et al., 2009). The thalamic hypersynchrony due to blockade of ISK is not 

as strong as that obtained with GABA blockers (Kleiman-Weiner et al., 2009), which may 
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explain how SK deficiency in nRT results in atypical spike-and-wave discharge absence 

seizures.

The identification of SK2 as a modifier of DS non-convulsive seizures adds to the list of 

genetic modifiers of SCN1A epilepsies (Calhoun et al., 2017; Hawkins and Kearney, 2016; 

Hawkins et al., 2016; Martin et al., 2007). Notably, we not only found that Kcnn2 is reduced 

in the nRT but also that pharmacological enhancement of ISK in nRT can treat non-

convulsive seizures in our DS mouse model. Intra-cerebellar or systemic injections of the SK 

channel booster EBIO have previously been used to reduce burst firing in the cerebellum, to 

enhance motor performance, and to reduce dyskinesia in tottering mice (Walter et al., 2006); 

systemic administration of chlorzoxazone—a Food and Drug Administration (FDA)-

approved activator of SK channels—has been shown to improve motor performance in mice 

(Gao et al., 2012) and in human patients (Feil et al., 2013). Although systemic EBIO 

treatment likely affects structures other than the nRT, our observation that local intra-nRT 

injections of EBIO are sufficient to treat seizures suggests that the thalamus could be a target 

to treat non-convulsive seizures in DS. Furthermore, TCVB neurons, known not to express 

SK2, exhibited normal firing properties in DS mice and were not affected by EBIO.

We propose the following working model of thalamic involvement in DS pathology: Scn1a 
deficiency leads to a compensatory reduction of ISK in nRT neurons, which contributes to 

enhanced Rin and a shift toward inward currents, which enhance the intrinsic excitability of 

nRT neurons in response to both hyperpolarization (rebound bursts) and depolarizing stimuli 

(Figure S6F). The increased excitability of nRT neurons results in enhanced bursts of APs 

following activation from either excitatory TCVB neurons or cortex. Enhanced output from 

nRT neurons leads to longer-lasting hyperpolarizations in the target TCVB neurons, resulting 

in stronger rebound bursting that re-excites nRT neurons. This cycle iterates to maintain 

non-convulsive seizures.

Our model fits within the framework of the dysfunctional cortex in DS. A hyperactive cortex 

could recruit the nRT via glutamatergic projections to amplify abnormal cortical inputs due 

to the intrinsic hyperexcitability of nRT cells (enhanced Rin) and via extensive projections 

from nRT onto sensory and limbic TC nuclei. It may be that the seizures initiate in the 

cortex, which in turn recruits the nRT and thalamus to maintain the seizure (Figure S5D). 

While further investigation is needed, it is clear that the thalamus, both nRT and VB, is 

required for seizure maintenance and is thus a promising target.

Treatment Strategies for DS: What Are the Implications of Enhanced Excitability of 
GABAergic nRT in Light of Reduced GABAergic Function in the Cortex?

Previous work on DS showed that sodium channel deficits in GABAergic neurons result in 

reduced firing, leading to the hypothesis that reduced network inhibition in the neocortex 

and hippocampus promotes convulsive seizures (Cheah et al., 2012; Dutton et al., 2013; 

Ogiwara et al., 2007; Tai et al., 2014; Yu et al., 2006). This model suggests that the optimal 

treatment of seizures would be to enhance firing of GABAergic neurons. However, our study 

shows that in contrast to the cortex, thalamic GABAergic neurons of the nRT show enhanced 

intrinsic excitability and rebound burst firing that result in thalamic network 

hyperexcitability. If cortical hyperexcitability is due to reduced firing of GABAergic cells, 
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but thalamic hyperexcitability is due to enhanced firing of GABAergic cells, then drug 

treatments that enhance firing of GABAergic cells in both regions will not yield optimal 

results or may even worsen seizures. Moreover, given that thalamic modulation treats non-

convulsive seizures and that the thalamus is implicated in sleep, cognition, and motor 

planning (Beenhakker and Huguenard, 2009; Saalmann and Kastner, 2015; Karussis et al., 

2000; Guo et al., 2017), we propose that the thalamus could be an important target for 

treating non-convulsive seizures and perhaps associated comorbidities such as sleep 

impairments and cognitive dysfunction in DS. When designing new therapeutic strategies to 

enhance GABAergic neuron function, it will be important to keep in mind that these should 

be combined with drugs that reduce nRT bursting. Our results align with the recent finding 

that although reduced firing in GABAergic neurons occurs during development in DS, this 

change is temporary and does not contribute to the chronic epilepsy in DS mice (Favero et 

al., 2018).

What Are the Implications for Understanding DS Pathophysiology Beyond Seizures?

Mice lacking SK2 show fragmented sleep patterns and reduced sleep spindles (Cueni et al., 

2008), similar to DS mice (Kalume et al., 2015), supporting the idea that reductions in SK2 

underlie thalamic circuit dysfunction and sleep impairments in DS. Over-expressing SK2 

increases sleep spindles and reduces sleep fragmentation (Wimmer et al., 2012), indicating 

that enhancement of SK function in DS may restore sleep impairments, in addition to 

treating seizures.

Here, we describe a cellular and circuit mechanism underlying non-convulsive seizures in 

DS and compare this phenomenon with human patients. Non-convulsive seizures are 

debilitating, account for the cognitive decline in human patients with DS (Guzzetta, 2011; 

Dalla Bernardina et al., 1986), and are comorbid with autism spectrum disorders in multiple 

mouse models (Holder and Quach, 2016; Jung et al., 2013; Gheyara et al., 2014). It remains 

to be elucidated which subnetworks of nRT, in addition to the somatosensory subnetwork, 

are affected in their firing pattern, and if so, how these pathological firing patterns may 

spread to the different thalamic nuclei. Unraveling the cognitive impact of the DS mutations 

requires cell-specific and inducible mouse models. Given the recently uncovered framework 

of nRT organization and function (Clemente-Perez et al., 2017) and the role of nRT SK 

channels in attention deficit disorder (Wells et al., 2016), we speculate that the nRT could be 

a key brain substrate and thus therapeutic target for the comorbid neurological (seizure) and 

psychiatric (autism) components of DS.

STAR★METHODS

Detailed methods are provided in the online version of this paper and include the following:

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Jeanne Paz (jeanne.paz@gladstone.ucsf.edu).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

DS mice—We performed all experiments per protocols approved by the Institutional 

Animal Care and Use Committee at the University of California, San Francisco and 

Gladstone Institutes. Precautions were taken to minimize stress and the number of animals 

used in each set of experiments. Mice were separately housed after surgical implants. Mice 

modeling DS, Scn1aR1407X+/− mice (Ogiwara et al., 2007), hereafter referred to as DS mice, 

and WT littermates were used in this study and maintained on a mixed background (80%–

88% C57BL6J (Jax 000664)/12%–20% C3HeB/FeJ (Jax 000658). DS mice that are 

homozygous for the Scn1a mutation die by age post-natal 15 (P15) and therefore were not 

studied here. Heterozygous DS mice have a high mortality rate between post-natal days 20 

and 71 and a 31-fold higher risk of death than WT littermates (Gheyara et al., 2014). By 73 

days, only 18% of Scn1aRX/+ mice remain alive (Gheyara et al., 2014) and could be 

recorded with chronic multioptrode devices. Both male and female mice were used for these 

experiments and ages ranged between postnatal days 18–80.

Human Subjects—All procedures were approved by the Regional and Institutional 

Committee of Science and Research Ethics of Scientific Council of Health. Per institutional 

guideline, this clinical case study was exempted from IRB approval. The total number of 

human subjects cited in this study (n = 3) are also reported in the text of the results. The 

subjects ages ranged from 5–7 years and included 1 boy and 2 girls.

METHOD DETAILS

Viral injections—Stereotaxic viral injections were carried out as described (Clemente-

Perez et al., 2017, Paz et al., 2013, Paxinos and Franklin, 2012). Briefly, in WT or DS mice, 

adeno-associated virus carrying genes for eYFP alone (rAAV5/CamkIIa-eYFP) (7.4 ×1012 

genome copies per ml)) or Stable Step Function Opsin (SSFO; rAAV5/CamkIIa-

hChR2(C128S;D156A)-eYFP (5.2×1012 genome copies per ml)) was injected into the 

ventrobasal nucleus of the thalamus (VB) using the following coordinates: 1.6 mm posterior 

to Bregma, 1.6 lateral relative to midline, and two separate injections of 400 nL of virus at 

3.2 and 3.5 mm ventral to the cortical surface (total injected volume, 800 nl). Viruses were 

acquired from (UNC Vector Core SCR_002448). We allowed the viruses to express for 

anywhere between 3 weeks and 6 months, depending on the nature of the experiment.

Immunostaining, microscopy, and image analysis—Mice were anesthetized with a 

lethal dose of ketamine (300 mg/kg) and xylazine (30 mg/kg) and perfused with 4% 

paraformaldehyde in 1× PBS. Serial coronal sections (50 μm thick) were cut on a Leica 

SM2000R Sliding Microtome. Sections were mounted in an antifade medium (Vectashield) 

and imaged using a Biorevo BZ-9000 Keyence microscope at 10×–20×. The expression of 

the viral constructs in different brain regions was confirmed using the mouse brain atlas 

(Paxinos and Franklin, 2012).

Slice preparation—Mice were euthanized with 4% isoflurane, perfused with ice-cold 

sucrose cutting solution containing 234 mM sucrose, 2.5 mM KCl, 1.25 mM NaH2PO4, 10 

mM MgSO4, 0.5 mM CaCl2, 26 mM NaHCO3, and 11 mM glucose, equilibrated with 95% 

O2 and 5% CO2, pH 7.4, and decapitated. We prepared 250-μm (for patch-clamp 
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electrophysiology) or 400-μm (for thalamic microcircuit studies)-thick horizontal thalamic 

slices containing VB thalamus and nRT with a Leica VT1200 microtome (Leica 

Microsystems). We incubated the slices, initially at 32°C for 1 h and then at 24–26°C, in 

artificial cerebro-spinal fluid (aCSF) containing 126 mM NaCl, 2.5 mM KCl, 1.25 mM 

NaH2PO4, 1 mM MgCl2, 2 mM CaCl2, 26 mM NaHCO3, and 10 mM glucose, equilibrated 

with 95% O2 and 5% CO2, pH 7.4. The thalamic slice preparation was performed as 

described (Paz et al., 2011, Clemente-Perez et al., 2017, Paz et al., 2013).

Patch-clamp electrophysiology from thalamic slices—Recordings were performed 

as described (Paz et al., 2011, Clemente-Perez et al., 2017, Paz et al., 2013). We visually 

identified nRT and TC neurons by differential contrast optics with a Zeiss (Oberkochen) 

Axioskop microscope and an infrared video camera. Recording electrodes made of 

borosilicate glass had a resistance of 2.5–4 MΩ when filled with intracellular solution. 

Access resistance was monitored in all the recordings, and cells were included for analysis 

only if the access resistance was < 25 MΩ. We corrected offline the potentials for −15 mV 

liquid junction potential. Intrinsic and bursting properties were recorded in the presence of 

kynurenic acid (2 mM, Sigma), the internal solution contained 67 mM potassium gluconate, 

67 mM KCl, 1 mM MgCl2, 0.1 mM CaCl2, 10 mM HEPES, and 1.1 mM EGTA, 4mM ATP, 

6mM phosphocreatine, pH adjusted to 7.4 with KOH (290 mOsm). For EPSCs and voltage-

clamp recordings, the internal solution contained 120 mM potassium gluconate, 11 mM 

KCl, 1 mM MgCl2, 1 mM CaCl2, 10 mM HEPES, and 1 mM EGTA, pH adjusted to 7.4 

with KOH (290 mOsm) recorded in the presence of picrotoxin (50 μM, Tocris). For EBIO 

recordings, 0.4 M EBIO was initially dissolved in DMSO and then diluted to 100 μM in 

aCSF containing kynurenic acid (2 mM) and picrotoxin (50 μM, Tocris). We only focused 

on studying the subset of cells in nRT that expresses IT and exhibits rebound burst firing 

which is the majority cell type in nRT (Clemente-Perez et al., 2017). Recordings with EBIO 

were done 5–10 minutes after drug application. IT measurements were conducted as 

described with steady-state inactivation protocols (Clemente-Perez et al., 2017). This 

protocol, which was established by the Huguenard lab, characterizes steady-state 

inactivation of IT by using depolarizing commands to activate near threshold (−65mV), well-

clamped currents. While a reasonable voltage clamp is possible in at least some nRT cells in 

slices from young animals, the yield is much too low to allow us to assess the currents in our 

adult DS and WT slices. Instead, we show well-controlled voltage clamp of modestly sized 

IT, demonstrate that they have the prototypical slower decay that distinguishes them from 

relay cells. Using this protocol, we obtain an admittedly incomplete picture of IT properties. 

Nevertheless, we can reliably obtain inactivation slope and half-inactivation voltage, as well 

as amplitude of IT at our fixed test voltage (see (Paz et al., 2010) and (Clemente-Perez et al., 

2017)).

For ISK recordings, apamin (100 nm final concentration) was diluted in aCSF containing the 

synaptic blockers kynurenic acid (2 mM, Sigma) and picrotoxin (50 μM, Tocris). Recordings 

for ISK measurements were done 5–10 minutes after drug application. ISK was calculated by 

digitally subtracting IT using measured in aCSF with and without apamin as described 

(Cueni et al., 2008, Wells et al., 2016). Currents were subtracted using Clampfit 10.5 

(Molecular Devices, SCR_011323).
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Extracellular thalamic oscillations—We placed horizontal slices (400 μm) containing 

somatosensory thalamus in an interface chamber at 34°C and superfused them at a rate of 2 

mL min−1 with oxygenated aCSF (same as recipe used for patch-clamp electrophysiology, 

except supplemented with 0.3 mM glutamine for cellular metabolic support). Extracellular 

multiunit activity (MUA) recordings were obtained with a linear 16-channel multi-electrode 

array (Neuronexus) that spanned the nRT and VB. MUA signals were amplified 10,000 

times and band-pass filtered between 100 Hz and 6 kHz using the RZ5 from Tucker-Davis 

Technologies (TDT, SCR_006495). Position of recording array was visually checked for 

each recording to confirm position of electrodes in nRT and VB. We delivered electrical 

stimuli to the internal capsule with a pair of tungsten microelectrodes (50–100 kΩ, FHC). 

The stimuli were 100 μs in duration, 50 V in amplitude, and delivered once every 30 s.

We then used custom MATLAB software to analyze thalamic MUA recordings.

Detection of Kcnn2 mRNA in brain tissue—DS mice and WT littermate control mice 

(age 3–5 months) were euthanized with Fatal Plus, and nRT were microdissected in ice-cold 

sucrose cutting solution. Tissue was immediately flash-frozen and then RNA was isolated 

using QIAGEN RNeasy kits with on-column DNase digest. Superscript First-Strand cDNA 

synthesis kits were used to convert RNA into cDNA. qRT-PCR experiments were performed 

using the following primers for mouse Kcnn2S (short transcript variant, Genbank: 

NM_080465.2): F- 5′ AGT GGT CTG GAG GAA GAG GA 3′ and R- 5′ CAT TTG CAC 

GTT CTC CCG AA 3′ and mouse Kccn2L (long transcript variant, Genbank: 

NM_001312905.1): F-5′ TGG TTA CAG ACT GAG ACT CTT GT 3′ and R- 5′ TCC 

TCT TCC TCC AGA CCA CT 3′ and the mouse house-keeping gene Gapdh (Genbank: 

NM_001289726.1 and Genbank: NM_008084.3): F- 5′ GGT CGG TGT GAA CGG ATT 

TG 3′ and R- 5′ GCA ACA ATC TCC ACT TTG CC 3′. Reactions were performed using 

Sybr Green Master Mix (Applied Biosystems) on a 7900HT Fast Thermal Cycler (Applied 

Biosystems) and levels of Kcnn2 mRNA were determined using the ΔΔCT method.

Surgical implantation of devices for simultaneous recording of seizure activity 
and manipulation of brain regions—The devices for simultaneous ECoG, MUA 

recordings and optical or pharmacological manipulations in freely behaving mice were all 

custom made in the Paz lab. In general, recordings were optimized for assessment of 

somatosensory subnetworks (S1 cortex and somatosensory nRT) and thus do not necessarily 

generalize to other nRT domains, which should be investigated in the future. For optogenetic 

studies, we designed devices containing multiple screws for acquisition of ECoG signal, 

along with local field potential (LFP) and MUA signal recoded from tungsten electrode 

wires that were positioned approximately 250 and 500 mm from the tip of an optic fiber 

(200 μm core, ThorLabs) (Paz et al., 2013, Clemente-Perez et al., 2017).

Cortical screws were implanted bilaterally in S1 (−0.5 mm posterior from Bregma, ± 3.25 

mm lateral), and bilaterally in V1 (−2.9 mm posterior from Bregma, ± 3.25 mm lateral). For 

optogenetic manipulation of VB, optrodes were implanted at −1.5 posterior from Bregma, 

1.5 mm lateral, with the tips of the optical fiber and electrodes at 3.0 mm, 3.25 and 3.5 mm 

ventral to the cortical surface, respectively.
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Mice were also instrumented for local infusion of drug into nRT using cannulas (Plastics 

One). Briefly, we made custom-built devices in which a guide cannula was attached to our 

devices for recording ECoG. Tungsten wires were glued to the guide cannula, so that they 

protruded 250 and 400 mm from the tip of the insert cannula (500 μM protrusion from tip of 

guide cannula). To target nRT, guide cannulas were implanted at −1.3 mm posterior from 

Bregma, 2 mm lateral, and 2.5 mm deep.

Mice were allowed to recover for at least 1 week before recording. ECoG and thalamic LFP 

signals were recorded using RZ5 (TDT) and sampled at 1221 Hz, with thalamic MUA 

signals sampled at 24 kHz. A video camera that was synchronized to the signal acquisition 

was used to continuously monitor the animals. Animals were briefly anesthetized with ~2% 

isoflurane at the start of each recording to connect for recording. Each recording trial lasted 

30–180 min. To control for circadian rhythms, we housed our animals using a regular light/

dark cycle, and performed recordings between roughly 11:00 AM and 6:00 PM. All the 

recordings were performed during wakefulness. The location of the optrodes or cannulas 

was validated by histology after euthanasia in mice that did not experience sudden death and 

whose brains we were able to recover and process.

ECoG spectral analysis—We used the continuous wavelet transformation for spectral 

analysis to decompose signals into both time and frequency (Sorokin et al., 2016, 2017). We 

used a basis of Morlet wavelets from 1–128 Hz with seven octaves and 10 wavelets per 

octave(Sorokin et al., 2017). Video monitoring was used to distinguish non-convulsive and 

convulsive seizures.

In vivo optogenetics during free behavior—We simultaneously passed a fiber optic 

with an inline rotating joint (Doric) through a concentric channel in the electrical 

commutator, and connected it to the 200-μm core fiber optic in each animal’s headpiece 

while recording ECoG/MU. The fiber optic was connected to 450- and 532-nm wavelength 

laser control boxes, which were triggered externally using the RZ5 (TDT). The tip of the 

optical fiber rested 100–500 mm from the most ventral tungsten electrode on each optrode to 

allow maximal activation of the desired brain region. We used 5–35 mW of laser power, 

measured at the end of the optical fiber before connecting to the animals. Light was turned 

on by the scientist upon visual seizure detection.

Pharmacological manipulations during free behavior—All animals were 

habituated to the recording chamber prior to drug studies. To determine the effects of 

systemic EBIO administration on non-convulsive seizure frequency in DS mice, we used a 

randomized-block design to record half of mice on test Day 1 with vehicle (s.c. 250 μl of 

10% DMSO/90% saline) and half of the mice with EBIO (s.c. 25 mg/kg, dissolved in 10% 

DMSO and 90% saline) (Wells et al., 2016). We then reversed the drug condition for test day 

2 (which was 48 h later). Non-convulsive seizures were manually scored offline by an 

experienced user during the first 30 min of vehicle or EBIO application. Note, as EBIO also 

changed the brain state (more time spent in stage II sleep), the user could not be blinded to 

the experimental condition.
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To determine the effects of local infusion of EBIO into the nRT, we implanted mice with 

cannulas (Plastics One) targeting the right nRT. After recovery from surgery, 800 nL of 

vehicle (0.25% DMSO in saline) was infused into the right nRT at a rate of 200 nL per 

minute using a syringe pump. ECoG and thalamic LFP/MUA were then recorded for 1 h 

post drug administration. EBIO (400 μM, 0.0015% DMSO in saline) was then infused into 

the right nRT and the ECoG, and thalamic LFP/MUA was recorded for an additional hour. 

Non-convulsive seizures were manually scored offline by an experienced user during the 

first 60 min of vehicle or EBIO application.

Human Seizure Recordings—All procedures were approved by the Regional and 

Institutional Committee of Science and Research Ethics of Scientific Council of Health. Per 

institutional guideline, this clinical case study was exempted from IRB approval. The 

original video-EEG recording of three patients with DS associated with SCN1A pathogenic 

variant was reviewed by an experienced pediatric neurophysiologist (MRC). The 

international 10–20 system was used for electrode placement. From our cohort of patients 

with DS, we selected patients in whom long-term video-EEG recording was performed (> 

19 hours) and non-convulsive seizures were recorded. Atypical absences where defined as 

discharge of irregular high voltage spikes and slow waves accompanied by decrease 

awareness and at time eyelids and/or upper limb slight myoclonic jerks.

Computational modeling—A computational model of the negative feedback loop 

between TC neurons and thalamic reticular nucleus (nRT) neurons was built to assess the 

oscillatory response of thalamic slices in WT and DS mice. Excitability in TC and nRT 

neurons was described using the Hodgkin-Huxley formalism, based on previous modeling 

(Paz et al., 2013, Destexhe et al., 1994), with some parameters fitted from present 

intracellular recordings. The nRT model included the leak, fast sodium, delayed rectifier 

potassium, low-threshold calcium (CaT), calcium-activated potassium (SK) and calcium-

activated non-specific cationic (CAN) currents, and the TC model incorporated the leak, fast 

sodium, delayed rectifier potassium, low-threshold calcium (CaT) and hyperpolarization-

activated (H) currents. Both neuron models included first-order calcium dynamics. The 

negative feedback loop between TC and nRT neurons was implemented with AMPA and 

NMDA currents at synapses from TC to nRT neurons and GABA–A and GABA–B currents 

at synapses from nRT to TC neurons. A noise current with zero mean was introduced in both 

nRT and TC neurons to account for the stochasticity observed experimentally in the thalamic 

circuit. The WT domain was defined, in the space of CaT and SK maximal conductances of 

the nRT neuron, as the parameter region yielding realistic nRT action potential firing 

frequencies and circuit oscillations with burst numbers and durations consistent with those 

obtained in slices. The DS domain was defined as the region with a similar CaT maximal 

conductance range but with lower SK maximal conductance, consistent with the smaller ISK 

found in intracellular nRT recordings in DS mice.

Thalamic reticular nucleus neuron: The membrane potential of the nRT neuron model 

followed 

CV̇nRT = − IL
nRT + INa

nRT + IK
nRT + ICaT

nRT + ISk
nRT + ICAN

nRT + IAMPA
TC nRT + INMDA

TC nRT + INoise
nRT + IIn j

RT
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, where the leak current was IL
nRT = gL

nRT VnRT − VL
nRT . The action potential currents INa

nRT

and IK
nRT were derived from [(Traub et al., 1991)], with doubled kinetics and a leftward shift 

of sodium inactivation and potassium activation voltage–dependences (−10 mV and −20 mV, 

respectively) to qualitatively reproduce the action potentials’ properties observed 

experimentally in mice nRT neurons. The T–type calcium current ICaT
nRT  was derived from 

(Destexhe et al., 1994), with activation and inactivation kinetics respectively slowed by 

factors 10 and 2, to account for voltage–clamp data observed (~200 ms inactivation at −75 

mV) and reversal potential computed as VCaT
nRT = 103RT /(2F)log CanRT

Ext /CanRT , with CanRT
Ext

the extracellular calcium concentration, R the gas constant, T the absolute temperature and F 
the Faraday constant. The SK–type calcium–activated potassium current was 

ISK
nRT = gSK

nRTmSK
nRT2 VnRT − VSK

nRT , with second order activation(Destexhe et al., 1994),

(Adelman et al., 2012) following mSK
n· RT = αSK

nRTCanRT 1 − mSK
nRT − βSK

nRTmSK
nRT with 

αSK
nRT = 2CaSK, 1/2

nRT τSK, 1/2
nRT −1

 and βSK
nRT = 2τSK, 1/2

nRT −1
. The non–specific cationic CAN 

current followed: ICAN
nRT = gCAN

nRT mCAN
nRT2 VnRT − VCAN

nRT , with first-order activation 

mCAN
n•RT = αnRT

nRTCaCAN 1 − mCAN
nRT − βCAN

nRT mCAN
nRT , with αCAN

nRT = 2CaCAN, 1/2
nRT , τCAN, 1/2

nRT −1
 and 

βCAN
nRT = 2τCAN, 1/2

nRT −1
. Calcium dynamics followed first-order dynamics 

CanRT
• = − 2rSVICaT

nRT /(2F) + CanRT
0 − CanRT /τCa

nRT, where the surface to volume ratio is 

rSV = r1
nRT 1 − r1

nRT /r0
nRT + r1

nRT2/ 3r0
nRT2 −1

 with r0
nRT the soma radius and r1

nRT the width 

of a sub–membrane shell where calcium freely diffuses, CanRT
0  is the basal intracellular 

calcium concentration and τCa
nRT the intracellular calcium time constant. Parameters were: 

CnRT = 1μFcm−2, gL
nRT = 0.033mScm−2, VL

mRT = − 75mV, gNa
nRT = 35mScm−2, VNa

nRT = 50mv, 

gK
nRT = 10mScm−2, VK

nRT = − 80mV, CanRT
Ext = 2mM, gCaT

nRT  and gSK
nRT as detailed in legends, 

VSK
nRT = − 80mV, CaSK, 1/2

nRT = 10μM, τSK, 1/2
nRT = 100ms, gCAN

nT = 0.015mSCm−2, VCAN
nRT = 30mV, 

CaCAN, 1/2
nRT = 10μM, τCAN, 1/2

nRT = 150ms, CanRT
0 = 0.1μM, τCa

nRT = 50ms, r0
nRT = 5μm, 

r1
nRT = 1μm.

TC neuron: The model of TC neurons was as described(Paz et al., 2013), with: 

CV̇TC = − IL
TC + INa

TC + IK
TC + ICaT

TC + IH
TC + IGABA − A

nRT TC + IGABA − B
nRT TC + INoise

TC ) + Iin j
TC and 

parameters corresponding to the physiological condition.

Synaptic architecture: The negative feedback loop between TC and nRT neurons was 

implemented as the interaction of one RTN and one TC neuron. The TC→nRT connexion 

comprised AMPA and NMDA components. The AMPA current was 

IAMPA
TC nRT = gAMPAmAMPA VnRT − V AMPA  with glutamatergic activation kinetics following 

first order deactivation with time constant τAMPA and soft–bound increment at every TC 
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action potential: mAMPA
• = − mAMPA/τAMPA + 1 − mAMPA Δ mAMPAδ t − tSpike

TC , where δ() 

is the Dirac function and tSpike
TC  represents TC spike arrival times. The NMDA current was 

INMDA
TC nRT = gNMDAmNMDAXNMDA VnRT VnRT − VNMDA  with a glutamatergic activation 

scheme similar to that of the current and where the voltage–dependence was taken from 

(Lacey et al., 2012). The nRT→TC connexion comprised GABA–A and GABA–B 

components with formalisms similar to that of AMPA currents. To model synaptic 

interactions between TC and nRT thalamic populations, every spike of each model neuron 

evoked ten spikes in the other neuron of the model, with delays uniformly distributed within 

1–3 ms. Synaptic parameters were gAMPA = 0.3mScm−2, VAMPA = 0mV, τAMPA = 1ms, 

ΔmAMPA = 0.25, gNMDA = 0.2mScm−2, VNMDA = 0mV, τNMDA = 75ms, ΔmNMDA = 0.1, 

gGABA − A = 0.45mScm−2, VGABA−A = −95mV, τGABA−A = 1ms, ΔmGABA−A = 0.25, 

gGABA − B = 0.05mScm−2, VGABA−B = −95mV, τGABA−B = 75ms, ΔmGABA−B = 0.1.

Source of noise in nRT and TC neurons: We introduced a source of noise in nRT and TC 

neurons. Multiple sources of noise exist in real neurons, notably due to the stochasticity in 

the gating dynamics of membrane and synaptic channels. Introducing stochasticity allows 

network oscillations to end at one point – because of membrane voltage fluctuations – as 

observed experimentally (without noise, oscillations are endless in the model, once 

triggered). To do so, we added to nRT and TC neurons a small stochastic current mimicking 

noisy fluctuations in intrinsic and synaptic currents, INoise
nRT , TC = gNoise

nRT , TC(t) VnRT , TC − VNoise , 

where time–varying conductances gNoise
nRT , TC(t) were built as standard normally–distributed 

random processes, filtered with time constant τNoise and normalized to admit a given 

standard deviation σNoise. Note that these conductance had zero mean, so they had no net 

depolarizing/hyperpolarizing effect on the membrane potential of nRT and TC neurons per 

se and their sole influence was to introduce stochasticity. The time–varying conductances 

affecting nRT and TC neurons, gNoise
nRT (t) and gNoise

TC (t), were independent. Stochastic 

parameters were σNoise = 10−3mScm−2, VNoise = 0mV, τNoise = 20ms.

Simulation protocols: In simulations mimicking intracellular recordings in nRT neurons, all 

synaptic conductances and the noise conductance were set to zero, the TC model was not 

computed and the nRT neuron was stimulated with Iln j
nRT = − 0.5μAcm−2 for 500 ms, as 

applied experimentally. In network simulations, the optogenetic stimulation applied to TC 

neurons was mimicked with IIn j
TC = − 3μAcm−2 for 25 ms.

Definition of WT and DS domains in the gCaT
nRT, gSK

nRT  parameter space: To define WT 

and DS domains, we first selected the gCaT
nRT  range in which the nRT neuron model produced 

realistic action potential firing frequencies in the range 50–230 Hz, as found experimentally. 

This domain corresponded to gCaT
nRT 0.7 − 1.3mScm−2. In this gCaT

nRT  range of realistic nRT 
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spiking frequencies, the WT domain was operationally defined as gSK
nRT values for which the 

nRT–TC network model produced oscillations ranging within 5–35 bursts and lasting within 

0.5–6 s, as found experimentally. These criteria defined a domain corresponding to large 

gSK
nRT values (~1 – 2.5mScm−2), with large AHP repolarizations, as found observed in 

intracellular nRT recordings (Figure 1). The DS domain was then defined – within the gCaT
nRT

range of realistic nRT spiking frequencies – as models with gSK
nRT values smaller than those 

found in the WT domain, consistent with the smaller size of the ISK in intracellular nRT 

recordings of DS mice (Figure 1H,I).

Numerical simulations: Ordinary differential equations were solved using the forward 

Euler scheme with 0.01 ms time step. Simulated time was 25 s maximum and was 

interrupted after 300 ms in the absence of discharge. The maps for circuit simulations were 

obtained taking the mean of 30 repetitions of the network simulations with different noise 

realizations. The specific quantitative details of the results obtained obviously depended on 

parameter values but the behaviors observed were qualitatively very robust with regard to 

variations in intrinsic and synaptic parameter.

QUANTIFICATION AND STATISTICAL ANALYSIS

All numerical values are given as means and error bars are standard error of the mean (SEM) 

unless stated otherwise. Data analysis was performed with MATLAB (SCR_001622), Origin 

9.0 (Microcal Software, SCR_002815), GraphPad Prism 6 (SCR_002798), and SigmaPlot 

(SCR_003210).

Comparison of thalamic circuit oscillations in thalamic slices—We used custom 

MATLAB software to detect extracellular spikes based on taking the first derivative of the 

MU signal and thresholding over background. Spikes were excluded if their waveform lasted 

2 ms longer. An experienced user confirmed parameter settings to optimize for all 

recordings. Bursts were defined as three or more spikes per burst, with the max interburst 

interval as 1.2 s. We quantified the number of total evoked bursts and oscillation duration 

recorded in the most active VB channels using on average 10–20 sweeps per recording. All 

data were compared using a Mann-Whitney test, with alpha = 0.05. (*p < 0.05, **p < 0.01, 

***p < 0.001).

Analysis of electrophysiological properties

The input resistance (Rin) and membrane time constant (τm): were measured from the 

membrane hyperpolarizations in response to low intensity current steps (−20 to −60 pA) in 

linear portion of the V–I plots. Rin and τm were compared with Mann-Whitney test, with α 
= 0.05, (ns, non-significant, p > 0.05) using GraphPad Prism 6 (SCR_002798).

T currents (IT): Data for IT half-maximal voltage (V50%) were taken from the Boltzmann 

function calculated using Origin 9.0 (Microcal Software, SCR_002815). Most data were 

compared using a Mann-Whitney test, with alpha = 0.05 (*p < 0.05, **p < 0.01, ***p < 

0.001). Number of APs on first burst measured against hyperpolarization step was compared 
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through individual unpaired t tests not corrected for multiple comparisons, with alpha = 

0.05, (*p < 0.05, **p < 0.01, ***p < 0.001). Mann-Whitney tests and individual unpaired t 

tests were done using GraphPad Prism 6 (SCR_002798).

SK currents (ISK): were recorded at a constant holding voltage following a hyperpolarizing 

step to gate IT as described (Cueni et al., 2008). Apamin subtraction was carried out by 

digitally subtracting averaged traces (typically 2 – 5 sweeps) obtained following bath 

application of 100 nM apamin. This subtraction protocol to measure ISK was adapted from 

(Cueni et al., 2008). We assessed the quality and stability of voltage–clamp control in these 

recordings as described (Cueni et al., 2008). First, we tested whether apamin–sensitive 

currents, obtained by digital subtraction, remained stable for the period required to perform 

application of pharmacological substances via the bath or through the recording pipette (~10 

min). Second, we carried out the subtraction when all recording conditions, such as input 

resistance, series resistance and capacitive currents remained unaltered before and after 100 

nM apamin application. See also Figures S1G and S1H.

What is the advantage of using a Steady-state inactivation (SSIT) protocol for 
quantifying IT and ISK?: SSIT used to measure IT allows us to have a well-controlled 

voltage-clamp as shown by the fact that the decay time constants (orange lines show decay 

exponential fit) of the IT do not vary depending on the voltage step used to deinactivate the 

IT (see Figure S1G). The voltage-clamp was verified before and after apamin application, 

and cells that showed more than 10% of variation in voltage clamp were excluded from the 

study. Although IT is small with this SSIT protocol, it has a major advantage of offering a 

well-controlled voltage-clamp which allows a reliable quantification of IT, which is well-

established for measuring IT in brain slices from adult animals (see (Paz et al., 2010)). Note 

that the subtraction by this optimized SSIT method, with small amplitude IT, does not 

require clipping of the subtraction artifact as has been used in previous studies. Thus, the 

kinetics of the ISK activation can be obtained without artifact using the SSIT protocol.

Analysis of cortical rhythm modulation by selective optical activation of 
thalamic neurons during free behavior

ECoG spectral analysis: Spectrogram images in Figures 3 and 5 were generated for 

frequencies between 0 and 25 Hz using the short-time Fourier transform with 0.5 s 

Hamming windows and 98% overlap between segments. The power spectral density 

estimates were plotted as the mean values of the spectrogram at each point at 0–25 Hz 

during the seizure event.

Optogenetic seizure interruption analysis: To compare the effects of light on EcoG power, 

we calculated relative changes in averaged band power between pre-stimulus (PreStim, 2 s 

before light pulse) and post-stimulus (PostStim, 2 s after end of light pulse) periods across 

multiple recording trials (Figure 5). Average power at 1–25 Hz was calculated using a 

modified periodogram. The difference between groups was analyzed using a Mann-Whitney 

rank sum test (p < 0.005).
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Reticular thalamic neurons (nRT) are hyperexcitable in Dravet syndrome (DS)

• This results from a potassium SK channel deficiency

• Boosting SK in nRT neurons treats DS non-convulsive seizures

• Disrupting bursting of thalamocortical neurons stops DS nonconvulsive 

seizures
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Figure 1. SK Deficiency in nRT Neurons Underlies Enhanced Cellular Bursting in DS Mice
(A) Representative traces show that Dravet syndrome (DS) neurons (red) exhibit enhanced 

post-inhibitory rebound burst firing upon hyperpolarization induced by −60 pA current 

pulses, compared to wild-type (WT) (black). The number of APs in the rebound burst are 

marked above.

(B) Number of APs in the rebound burst (WT, n = 30 cells, 4 mice; DS, n = 43 cells, 6 

mice). Data are represented as means ± SEMs, compared with parametric t test with Welch’s 

correction and α = 0.05, **p < 0.001.
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(C–G) T-type calcium current (IT) is similar in nRT neurons from DS mice and WT 

littermates.

(C) Representative traces showing IT from nRT cells of DS animals and WT littermates (C–

F: DS, n = 26 neurons, 6 mice; WT, n = 14 neurons, 4 mice).

(D) IT density, maximal amplitude divided by individual cell capacitance.

(E) IT decay time constant.

(F) IT half-maximal voltage (V50%) taken from Boltzmann function.

(G) Normalized IT amplitude plotted as a function of the pre-pulse membrane potential best 

fitted with a Boltzmann function (R2 = 0.99 for both fits) (DS, n = 16 cells, 6 mice; WT 

littermates, n = 13 cells, 4 mice).

(H) ISK traces obtained by digital subtraction in nRT neurons from a WT (black) mouse and 

a DS (red) mouse (also see Figures S1G and S1H and Method Details).

(I) ISK density, maximal current divided by individual cell capacitance. Data are represented 

as means ± SEMs, compared with the Mann-Whitney U test. **p = 0.0085. (WT, n = 8 cells, 

3 mice; DS, n = 10 cells, 3 mice).

(J and K) SK2 relative mRNA expression levels (encoded Kcnn2, short, J, and long, K, 

transcript variants) normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

mRNA, in nRT. Expression levels were calculated using the ΔΔCT method and expressed as 

arbitrary units. Mann-Whitney U test, **p < 0.01.

(L) Number of APs on the rebound burst, plotted against hyperpolarization step (mV) with 

vehicle or 100 μM EBIO treatment. WT, n = 6 neurons, 3 mice; DS, n = 6 neurons, 3 mice. 

Data are represented as means ± SEMs. Data points compared by individual unpaired t test, 

not corrected for multiple comparisons, *p < 0.03.

(M) Schematic of the minimal thalamic circuit used for computational modeling, including 

TCVB and nRT neurons, TCVB to nRT a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid (AMPA) and N-methyl-d-aspartate (NMDA) excitatory synapses, and nRT to TCVB 

GABA-A and GABA-B inhibitory synapses. Only the nRT neuron (black) is simulated 

(synaptic currents are absent) to obtain the results shown in Figures 1N and 1O.

(N) Voltage traces of an nRT neuron in the WT parameter domain (black trace; 

gCaT
nRT = 0.85mScm−2 and gSK

nRT = 2mScm−2) and of a neuron in the DS domain with decreased 

SK maximum conductance (red trace; gCaT
nRT = 0.85mScm−2 and gSK

nRT = 0.1mScm−2), in 

response to a hyperpolarizing injected current iin j
nRT = − 0.5μAcm−2 for 500 ms.

(O) Map of the average number of APs in the rebound burst in the nRT neuron model as a 

function of gCaT
nRT , gSK

nRT  maximal conductance parameters. APs numbers are computed over 

30 simulations with different realizations of noise in the model. The means of these average 

numbers of APs are indicated in the WT (white) and DS (red) domains.
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Figure 2. SK Deficiency in nRT Neurons Underlies Intra-thalamic Circuit Hyperexcit-ability in 
DS Mice
(A) Representative evoked intra-thalamic circuit oscillations in thalamic slices from WT and 

DS mice. Black circles indicate stimulation artifact. Left and right boxes indicate sections of 

the recording that were expanded, bottom left and right, respectively. Double-sided arrow 

indicates the length of the evoked oscillation in DS recording. Top right inset: schematic of 

the intrathalamic oscillatory microcircuit between VB and nRT. Stimulation of the internal 

capsule (black circle and lightning bolt) leads to an interplay of activity between nRT and 

TCVB cells that resembles a ping-pong game causing a circuit oscillation whose strength can 

Ritter-Makinson et al. Page 25

Cell Rep. Author manuscript; available in PMC 2019 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



be assessed by VB recordings in horizontal thalamic slice preparations (see also Figure 

S6F).

(B–D) Data analyzed by the Mann-Whitney U test,WT, n = 9 mice; DS, n = 12 mice. Data 

are represented as means ± SEMs.

(B) Duration of evoked oscillation, **p < 0.01.

(C) Number of bursts within the evoked oscillation, *p < 0.05.

(D) Burst frequency within the evoked oscillation, **p < 0.01.

(E) Schematic of the full nRT-TCVB circuit used for the computational modeling of thalamic 

oscillations in WT and DS conditions.

(F) Top: representative nRT and TCVB voltage traces triggered by a stimulus (*) mimicking 

the electrical stimulation of the internal capsule, in the WT and DS conditions. Bottom: 

probability distributions of the duration of oscillations in the circuit over 1,000 simulations 

with different realizations of the stochastic current. The mean oscillation duration in the 

nRT-TCVB circuit model in the DS condition is ~5 times that in the WT condition. The 

maximal conductances are as in Figure 1N.

(G, I, and K) Maps of the duration (G), burst number(I), and frequency (K) in the nRT-TCVB 

circuit model, as a function of CaT and SK maximal conductances, computed over 30 

simulations with different realizations of noise. The mean of these averages in the WT and 

DS domains (white and red boundaries, respectively) are indicated.(H, J, and L) Plots of 

means ± SEMs of the duration(H), burst number (J), and frequency (L) using 9 samples with 

randomly maximal conductances drawn from the WT domain and 12 samples with 

randomly maximal conductances drawn from the DS domain, with groups compared using 

the Mann-Whitney U test (H, **p = 0.0062; J, *p = 0.0208; L, **p = 0.0002).
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Figure 3. DS Mice Exhibit Non-convulsive Seizures Similar to Human Patients with DS
(A) Diagram of the mouse electrocorticography (ECoG) and thalamic depth electrode 

recording montage. ECoG was recorded from somatosensory (S1) and visual (V1) cortices, 

with depth electrodes implanted in the thalamus.

(B) Top: example of an ECoG signature of a representative non-convulsive seizure in DS 

mice recorded from S1 (black), along with simultaneous multiunit (MU) recordings in the 

thalamus—in this case, the ventrobasal thalamus (orange). Inset: magnification of ECoG 

poly-spikes overlaid on a slower oscillation. Bottom: spectrogram showing frequency 

components of the recorded seizure.

(C) MU recordings in the somatosensory thalamus simultaneously with ECoG show in both 

nRT and VB clusters of APs (“population bursts” of AP firing) phase locked with ECoG 

poly-spikes.

(D) Power spectral density of the seizure shown in (B). Peak fundamental frequency is 6–7 

Hz.

(E) Diagram of human EEG recording montage.

(F) Top: EEG signature of a non-convulsive seizure in a patient with DS recorded in two 

different locations on the scalp. Inset: spikes are not typical spike-and-wave discharges and 
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have a higher frequency component in addition to the slower oscillation. Bottom: 

spectrogram showing frequency components of the recorded seizure.

(G) Expanded EEG shows epileptic activity characterized by a sequence of poly-spikes 

overlaid on a slower oscillation (compare with C).

(H) Power spectral density of the seizure shown in (E). Peak fundamental frequency of the 

depicted seizure is ~5 Hz, but it can vary across the different cortical regions for the same 

seizure (see Figures S3 and S4).
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Figure 4. Local or Systemic EBIO Treatment Reduces Non-convulsive Seizure Frequency in DS 
Mice
(A) Diagram of targeting of the thalamus with guide cannulas and tungsten electrodes for 

unit recordings. Inset: depth electrodes were positioned in nRT.

(B) Quantification of effects of intra-nRT administration of EBIO (800 nL of 0.4 mM) on 

non-convulsive seizure number within 1 hr of infusion. Data are from n = 4 DS mice. *p = 

0.0189, two-tailed t test.

(C) Diagram of systemic administration of EBIO (25 mg/kg, subcutaneously [s.c.]).

(D) Quantification of effects of systemic administration of EBIO (25 mg/kg, s.c.) on non-

convulsive seizure number within 30 min of EBIO infusion. Data are from n = 9 DS mice. 

**p = 0.0039 Wilcoxon signed-rank test.

(E) Representative ECoG and multiunit activity (MUA) traces from one DS mouse after 

vehicle and EBIO treatments.
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(F) Magnification of the recordings indicated with red line in (E). Note the lack of seizures 

in ECoG and switch from bursting to single spike (arrows) firing mode after EBIO injection.
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Figure 5. Optogenetic Disruption of Thalamic Bursting Aborts Non-convulsive Seizures in DS 
Mice
(A) Diagram showing that nRT modulates cortical rhythms through the relay thalamus.

(B) Diagram of optogenetic targeting of the thalamus. Inset: depth electrodes were 

positioned in VB thalamus.

(C) Top: example of optogenetic seizure interruption of an ongoing non-convulsive seizure 

in a DS mouse. The blue bar corresponds to a brief (50 ms) pulse of blue light to activate 

SSFO-expressing thalamocortical neurons. Unilateral activation of SSFO in the thalamus 

immediately interrupts the seizure. Bottom: spectrogram showing frequency components of 

the recorded seizure and decrease in power after SSFO activation.

(D) Magnification of the seizure interruption shown in (C). Activation of SSFO switches 

burst firing in the thalamus to tonic firing.

(E) Quantification of 1–25 Hz broadband power 2 s before and after optogenetic 

manipulation. Data are from 32 trials across 4 mice. ****p < 0.0001 Mann-Whitney test.
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