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Abstract

Objective: To examine the prospective associations between exposure to perfluoroalkyl 

substances (PFASs) and longitudinal measurements of glucose metabolism in high-risk overweight 

and obese Hispanic children.

Methods: Forty overweight and obese Hispanic children (8–14 years) from urban Los Angeles 

underwent clinical measures and 2-hour oral glucose tolerance tests (OGTT) at baseline 

and a follow-up visit (range: 1–3 years after enrollment). Baseline plasma perfluorooctanoic 

acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonic acid (PFHxS), and 
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the plasma metabolome were measured by liquid-chromatography with high-resolution mass 

spectrometry. Multiple linear regression models were used to assess the association between 

baseline PFASs and changes in glucose homeostasis over follow-up. A metabolome-wide 

association study coupled with pathway enrichment analysis was performed to evaluate metabolic 

dysregulation associated with plasma PFASs concentrations. We performed a structural integrated 

analysis aiming to characterize the joint impact of all factors and to identify latent clusters 

of children with alterations in glucose homeostasis, based on their exposure and metabolomics 

profile.

Results: Each ln (ng/ml) increase in PFOA and PFHxS concentrations was associated with a 

30.6 mg/dL (95% CI: 8.8–52.4) and 10.2 mg/dL (95% CI: 2.7–17.7) increase in 2-hour glucose 

levels, respectively. A ln (ng/ml) increase in PFHxS concentrations was also associated with 17.8 

mg/dL increase in the glucose area under the curve (95% CI: 1.5–34.1). Pathway enrichment 

analysis showed significant alterations of lipids (e.g., glycosphingolipids, linoleic acid, and de 

novo lipogenesis), and amino acids (e.g., aspartate and asparagine, tyrosine, arginine and proline) 

in association to PFASs exposure. The integrated analysis identified a cluster of children with 

increased 2-h glucose levels over follow up, characterized by increased PFAS levels and altered 

metabolite patterns.

Conclusions: This proof-of-concept analysis shows that higher PFAS exposure was associated 

with dysregulation of several lipid and amino acid pathways and longitudinal alterations in glucose 

homeostasis in Hispanic youth. Larger studies are needed to confirm these findings and fully 

elucidate the underlying biological mechanisms.
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1. Introduction

Type 2 diabetes is a silent epidemic in youth and its incidence has continuously increased 

over the past 2 decades, with the fastest rise observed among Hispanics compared to 

non-Hispanic whites (Lascar et al., 2018; Mayer-Davis et al., 2017). Young-onset type 2 

diabetes has a more aggressive disease phenotype that can lead to premature development 

of complications and long-term adverse health effects with direct impacts on quality of life 

(Lascar et al., 2018). A growing body of evidence indicates that early life environmental 

exposures can result in metabolic abnormalities and increased type 2 diabetes risk in later 

life (Alderete et al., 2017; Alonso-Magdalena et al., 2011; Heindel et al., 2017), yet there 

has been little study of the environmental contributions to diabetes risk in minority ethnic 

groups.

Perfluoroalkyl substances (PFASs) include chemicals that have been used for decades as 

industrial surfactants and in textile coatings, firefighting foams and consumer products (e.g., 

cookware, food containers, and clothing) (Grandjean and Clapp, 2014). Rodent studies 

suggest that perinatal and/or early postnatal exposure to PFOA, PFOS and PFHxS induces 

increased insulin levels and impaired glucose tolerance in off-spring (Hines et al., 2009; 

Wan et al., 2014; Lv et al., 2013; Zhao et al., 2011). Cross-sectional epidemiological 
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studies in adults from the National Health and Nutrition Examination Survey (NHANES) 

support observations from animal studies, showing that increased serum PFOA and PFOS 

levels were associated with increased fasting glucose (Liu et al., 2018), increased insulin 

levels, and insulin resistance (indicated by increased homeostatic model assessment for 

insulin resistance, HOMA-IR) (Lin et al., 2009). Further, PFOA serum levels was positively 

associated with diabetes prevalence in US men in the NHANES study (He et al., 2017), and 

a higher incidence of type 2 diabetes in women in the Nurses’ Health Study II (He et al., 

2017). Few previous studies assessed associations between PFASs exposures with diabetes 

risk in children. The National Health and Nutrition Examination Survey (NHANES) 

study suggested that increased serum perfluorononanoic acid (PFNA) concentrations were 

associated with decreased β-cell function and increased risk for hyperglycemia in US 

adolescents (aged 12–20 years) (Lin et al., 2009), while the European Youth Heart Study 

showed that childhood PFOA exposure at 9 years of age was associated with decreased 

β-cell function at 15 years of age (Domazet et al., 2016). However, a pregnancy cohort 

in the US showed negative associations between plasma PFAS concentrations and insulin 

resistance at the age of 8 years (Fleisch et al., 2017).

The mechanisms underlying the effects of PFASs exposure on dysregulated glucose 

metabolism and diabetes risk remain unknown. In a high-throughput targeted metabolomics 

study, PFOA exposure has been associated with metabolic disruption in liver tissue of 

mice, such as alterations in lipid metabolism (e.g., glycerophospholipids, linoleic acid, and 

arachidonic acid) and amino acids (e.g., tyrosine, tryptophan, arginine and proline) (Yu et 

al., 2016). To our knowledge, only one human study has examined PFASs exposure and 

the plasma metabolome showing that circulating levels of PFASs in elderly adults was 

associated with dysregulated glycerophosphocholines and fatty acids metabolism (Salihovic 

et al., 2019). Dysregulation of lipid and amino acid pathways have been well-characterized 

and found to be strongly associated with the risk of developing type 2 diabetes in human 

studies (Guasch-Ferre et al., 2016; Padberg et al., 2014). Collectively, results from these 

studies indicate that PFASs exposure might cause metabolic perturbations in lipid and amino 

acid pathways, thereby contributing to increased risk for type 2 diabetes.

The objective of this study was to examine the associations between PFASs exposure 

and longitudinal measurements of glucose metabolism in overweight and obese Hispanic 

children. We also aimed to understand the underlying metabolic disturbances due to PFASs 

exposure by performing a high-resolution metabolomics analysis. We hypothesized that 

higher PFASs exposures would be associated with dysregulated glucose homeostasis and 

alterations in key metabolic pathways implicated in type 2 diabetes pathophysiology.

2. Methods

2.1. Study population

We examined participants from the Study of Latino Adolescents at Risk of Type 2 Diabetes 

(SOLAR) project, which is a longitudinal cohort that recruited participants in two waves 

from 2001 to 2012 (Goran et al., 2004; Weigensberg et al., 2003). Participants lived in Los 

Angeles, California, and were recruited predominantly from metabolic clinics as well as 

word of mouth, health fairs, and advertisements in the local communities. Inclusion criteria 
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were Hispanic/Latino ethnicity (defined as self-reported race/ethnicity for all participants, 

parents, and grandparents), age- and sex-specific BMI equal or above the sex- and age

specific 85th percentile of the Centers for Disease Control and Prevention (CDC) growth 

charts, and absence of type 1 or type 2 diabetes. Participants were also excluded if they were 

using a medication or diagnosed with a condition known to influence insulin and/or glucose 

metabolism or body composition. Participants underwent repeated, detailed phenotyping 

for clinical risk factors of type 2 diabetes using as well as body composition testing. 

The original sample size from the full cohort was 258 children with the necessary 2-hour 

OGTT outcome measures, covariate data, and plasma samples. Of these 258 children, we 

chose a random sample of 40 for this proof-of-concept study. These 40 participants did not 

significantly differ from the 258 based on important characteristics such as age, body fat 

percent, or measures from the 2-hour OGTT (Supplementary Table 1). These participants 

had their baseline visit between the 2001–2011 and were followed for an average of 1.3 

years (standard deviation: 0.5). Study protocol was approved by the University of Southern 

California (USC) Institutional Review Board (IRB) and informed written consent (parental 

consent for participants < 18 years) and assent (when applicable) were obtained for each 

participant before initiation of the study.

2.2. Clinical assessments

Participants attended annual clinical visits at the Los Angeles County Hospital or the USC 

University Hospital. At the visits, participants received a comprehensive medical history and 

physical examination and pubertal staging was determined using the Tanner scale (Marshall 

and Tanner, 1969; Marshall and Tanner, 1970). Height (m) and weight (kg) were measured 

to determine body mass index (BMI) and the age- and sex-specific CDC growth charts were 

used to classify BMI status (Kuczmarski et al., 2000). A DEXA scan was also performed 

to determine body fat percent using a Hologic QDR 4500 W (Hologic, Bedford, MA). A 

2-hour OGTT was performed at each clinical visit using a glucose load of 1.75 g per kg 

body weight, to a maximum of 75 g, of anhydrous glucose dissolved in water. Baseline and 

post-challenge samples were assayed for glucose and insulin at fasting as well as 30, 60, 

and 120 min after glucose intake and were used to calculate glucose and insulin areas under 

the curve (AUC).The homeostatic model assessment (HOMA-IR), an estimate of insulin 

resistance, was calculated using fasting glucose and insulin values from the 2-hour OGTT 

by using the formula: HOMA-IR = fasting glucose (mg/dL) × fasting insulin (μU/mL) / 

405 (Matthews et al., 1985). Glucose was assayed using a Yellow Springs Instruments 

analyzer (YSI INC. Yellow Springs, OH, USA) that uses a membrane bound glucose oxidase 

technique. Lastly, insulin was assayed using an automated enzyme immunoassay (Tosoh 

AIA 600 II analyzer, Tosoh Bioscience, Inc., South San Francisco, CA, USA).

2.3. High-resolution metabolomics

High resolution metabolomics (HRM) profiling was completed using standardized methods 

(Soltow et al., 2013). Samples were prepared and analyzed in a single batch and included six 

analyses of pooled human plasma (CHEAR-Ref) for quality control purposes and reference 

standardization. Plasma aliquots were removed from storage at −80 °C, thawed and 50 μL 

was treated with 100 μL of ice-cold LC-MS grade acetonitrile. Plasma was then equilibrated 

for 30 min on ice, centrifuged (16.1 × g at 4 °C) for 10 min to remove precipitated proteins, 
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transferred to a 200 μL autosampler vial and maintained at 4 °C until analysis (< 22 

h). Sample extracts were analyzed using liquid chromatography and Fourier transform high

resolution mass spectrometry (Dionex Ultimate 3000, Q-Exactive HF, Thermo Scientific). 

The chromatography system was operated in a dual pump configuration that enabled parallel 

analyte separation and column flushing. For each sample, 10 μL aliquots were analyzed 

in triplicate using hydrophilic interaction liquid chromatography (HILIC) with electrospray 

ionization (ESI) source operated in positive mode for metabolomic profiling and reverse 

phase chromatography with ESI operated in negative mode for quantification of PFASs. 

Analyte separation for HILIC was accomplished by a 2.1 mm × 50 mm × 2.5 μm Waters 

XBridge BEH Amide XP HILIC and an eluent gradient (A = 2% formic acid, B = water, 

C = acetonitrile) consisting of an initial 1.5 min period of 2.5% A, 22.5% B, 75% C 

followed by a linear increase to 2.5% A, 77.5% B, 20% C at 4 min and a final hold of 1 

min. RPC separation was by 2.1 mm × 50 mm × 3 μm endcapped C18 column (Higgins) 

using an eluent gradient (A = 2% 5 mM ammonium acetate, B = water, C = acetonitrile) 

consisting of an initial 2 min period of 5%A, 90%B, 5%C, followed by a linear increase 

to 5%A, 0%B, 95%C at 6 min and held for the remaining 4 min. For both methods, 

mobile phase flow rate was held at 0.35 mL/min for the first 1.5 min, increased to 0.5 

mL/min and held for the final 4 min. The high-resolution mass spectrometer was operated 

at 120,000 resolution and mass-to-charge ratio (m/z) range 85–1275. Probe temperature, 

capillary temperature, sweep gas and S-Lens RF levels were maintained at 200 °C, 300 °C, 1 

arbitrary units (AU), and 45, respectively, for both polarities. Additional source tune settings 

were optimized for sensitivity using a standard mixture, positive tune settings for sheath 

gas, auxiliary gas, sweep gas and spray voltage setting were 45 AU, 25 AU and 3.5 kV, 

respectively; negative settings were 30 AU, 5AU and −3.0 kV. Maximum C-trap injection 

times of 100 milliseconds and automatic gain control target of 1 × 106 for both polarities. 

During untargeted data acquisition, no exclusion or inclusion masses were selected, and data 

was acquired in MSI mode only. Raw data files were then extracted using apLCMS (Yu et 

al., 2009) with modifications by xMSanalyzer (Uppal et al., 2013). Uniquely detected ions 

consisted of m/z, retention time and ion abundance, referred to as m/z features. Prior to data 

analysis, m/z features were batch corrected using ComBat (Johnson et al., 2007) and filtered 

to remove those with coefficient of variation (CV) ≥ 100% and > 10% non-detected values.

2.4. Quantification of plasma levels of PFASs

Concentrations of PFOA, PFOS and PFHxS were quantified by reference standardization 

using the LC-HRMS method described in Section 2.3 with reverse phase chromatography 

for analyte separation and negative mode ESI (Go et al., 2015). Analyte identification was 

confirmed by matching MS2 ion dissociation patterns, precursor m/z and retention time 

to authentic reference standards, and concentrations in the Children’s Health Exposure 

Analysis Resource (CHEAR) pooled plasma reference sample were quantified by methods 

of addition and comparison against NIST standard reference material 1950 (Metabolites in 

Frozen Human Plasma) (Simon-Manso et al., 2013). Using the CHEAR reference samples, 

the response factor for each analyte was determined using the M-H adduct, and plasma 

concentrations were calculated in study samples by single point calibration via response 

factors (calculated as the ratio between the known concentration of the compound being 

quantified and ion intensity in CHEAR reference samples. Calculated limit of detection 
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(LOD) for PFOA, PFOS and PFHxS was 0.02, 0.1 and 0.03ng/mL, respectively. PFOA, 

PFOS, and PFHxS were detected in 97.5%, 97.5%, and 100% of participants. Due to the 

moderate to high correlation of PFAS (r from 0.4 to 0.7, Table 2), we also performed a 

principal component (PC) analysis for the 3 PFAS (PFOA, PFOS, PFHxS), and we selected 

the first component (“PC1”), as a composite variable representing PFAS burden, which 

explained 96.7% of the variance. This variable was used as the primary exposure variable in 

the integrated analysis with the metabolites and the outcomes of interest.

2.5. Statistical analysis

Geometric means (GMs), and interquartile ranges were calculated for plasma concentrations 

of all PFASs. Additionally, Spearman correlation coefficients among PFAS concentrations 

were calculated. Since the distribution of PFASs were right-skewed, exposures were natural 

log transformed for statistical analyses. Changes in metabolic outcomes were calculated as 

the respective follow-up measure subtracted from the baseline measure (e.g., fasting glucose 

at follow-up – baseline fasting glucose). We fitted generalized additive models (GAM) 

with penalized spline smooth terms and visually assessed plotted splines to determine 

linearity of exposure–outcome associations. We found no evidence of nonlinear associations 

of PFAS concentrations with type 2 diabetes outcomes except for the association of PFHxS 

concentrations with changes in the glucose AUC (pGAM < 0.05). We therefore fitted 

multiple linear regression models to estimate the relationships between change in metabolic 

outcomes (i.e., fasting glucose and insulin, glucose and insulin AUC, HOMA-IR) in relation 

to each PFAS exposure, as continuous natural log–transformed plasma concentrations at 

baseline. For glucose AUC and PFHxS, cubic spline models were also fitted to investigate 

the non-linear association. Baseline pubertal status was classified as pre-puberty (Tanner 

Stage 1), puberty (Tanner Stage 2–4), and post puberty (Tanner Stage 5). A modified version 

of the Hollingshead Four-Factor Index of Social Status was used to assess socioeconomic 

status in participants where information was available (n = 33). This index takes into 

account the occupation and education of each parent/guardian residing in the child’s home 

in order to generate a single measure of a family’s social status. Social position was then 

categorized as ≤25th percentile (n = 10), > 25th percentile and < 75th percentile (n = 

19), ≥75th percentile (n = 4), and missing (n = 7). Multiple linear models adjusted for 

the baseline outcome, baseline social position, age, sex, and change in age at follow-up 

(Model 1). Models were further adjusted for baseline pubertal status as well as baseline and 

change in body fat percent at follow-up as adiposity and puberty are strong predictors of the 

outcome of interest (Model 2). Selections of covariates retained in the models were based 

on directed acyclic graphs (Supplementary Fig. 1) (Textor et al., 2011). Prior studies have 

shown more pronounced associations between PFASs exposure and insulin resistance in 

females (Halldorsson et al., 2012), therefore effect modification by sex was examined via an 

interaction term and stratification. As an exploratory analysis, effect modification of obesity 

(≥98th versus < 98th CDC percentile) and puberty (Tanner 1 versus Tanner 2–5) were also 

examined.

The metabolome-wide association study was performed in order to identify metabolites 

and global metabolic changes associated with PFASs exposure, including PFOA, PFOS 

and PFHxS. This untargeted analysis fitted multiple linear models that were used to 
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examine the associations between plasma PFASs concentrations (independent variables) 

and the log2 transformed m/z features (dependent variables) after controlling for baseline 

age, sex, and social position. The log-2 transformation of metabolite data was used to 

meet the assumptions of linear regression. The m/z features with a Benjamini-Hochberg 

false discovery rate (FDR) of ≤20% (Benjamini and Hochberg, 1995) were then selected 

for visualization by Manhattan plots and metabolic pathway enrichment analysis using 

Mummichog (Li et al., 2013) with 10,000 permutations. Using this pathway enrichment 

analysis, we then identified significantly dysregulated pathways associated with PFASs 

exposure (p ≤ 0.05).

We performed an integrated latent variable analysis to characterize the joint impact of 

all factors and identify latent clusters of children with alterations in glucose homeostasis, 

based on their PFAS exposure and metabolomics profile by LUCIDus R package (https://

CRAN.R-project.org/package=LUCIDus). For the estimation of the number of latent 

clusters, we used Bayesian Information Criteria. We used the PFASs composite variable 

as the primary exposure variable instead of the three individual PFASs since highly 

correlated exposure parameters invalidate the presumption in this analysis. Metabolites 

were annotated using adduct of protonated ion (M + H) (Supplementary Table 2) and 

were selected from the most significantly altered metabolic pathways (based on p value 

and the numbers of significant metabolite features) associated with the plasma PFAS in 

the Mummichog analysis. The outcome variable was determined as the change in 2-hour 

post-load glucose levels from baseline to follow-up visit (binary: increase vs. decrease). 

The LUCIDus package provides effect estimates for the association of estimated latent 

clusters with changes in 2 h glucose levels. It also provides the distribution of exposure 

and metabolites in each identified cluster (assigned based on the posterior probability using 

cutoff point of 0.05) (Supplementary Table 3).

All statistical analyses were performed using SAS, version 9.4 (SAS, Institute, Cary, NC) 

and the R statistical environment version 3.1.2.

3. Results

3.1. Characteristics of the study population

Overweight and obese Hispanic children (BMI percentile, mean ± SD: 96.8 ± 3.5) included 

in this study were between 8 and 14 years of age at baseline (Table 1). Half of children 

were female, and most were in the early to mid-stages of puberty. On average, children had 

normal fasting (< 100 mg/dL) and 2-hour glucose levels (< 140 mg/dL) at baseline. Mean 

fasting insulin levels were 16.1 mg/dL (SD 17.1) and mean HOMA-IR was 3.5 (SD 2.5). 

Fasting glucose levels were significantly higher in the follow up clinical visit compared to 

baseline (mean: 89.4 mg/dL vs. 97.7 mg/dL, p < 0.05, Table 1).

3.2. Plasma PFASs were associated with clinical risk factors for type 2 diabetes

PFOS, PFOA, and PFHxS were detected in 97.5% of participants and geometric means 

were 12.22, 2.78, and 1.65 ng/ml, respectively (Table 2). PFASs concentrations showed 

moderate to high pairwise correlations, with the stronger correlation seen between PFOA 
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and PFOS (Spearman r = 0.71) (Table 2). As shown in Table 3 and Fig. 1, for each 

ln-unit increase in PFOA and PFHxS concentrations, there was 30.6 mg/dL (95% CI: 8.8–

52.4) and 10.2 mg/dL (95% CI: 2.7–17.7) increase in 2-hour glucose levels between the 

baseline and follow-up visit, respectively. Additionally, for each ln-unit increase in PFHxS 

concentrations, there was a 17.8 mg/dL increase in the glucose AUC (95% CI: 1.5–34.1). 

There was no evidence for effect modification by sex; however, there was evidence for 

effect modification by pubertal status when examining the relationships between PFHxS and 

glucose AUC (pinteraction = 0.03). For each ln-unit increase in PFHxS concentrations, there 

was a 46 mg/dL (95% CI: 16.3–75.5) increase in the glucose AUC among children who 

were in puberty or post-puberty (Tanner Stage 2–5) while this relationship was not observed 

among prepubertal children (Tanner Stage 1) (β = 63.8; 95% CI: −59.2–186.9). Lastly, there 

was no effect modification by BMI status (Pinteractions ≥ 0.2) and PFASs exposures were not 

significantly associated with other metabolic outcomes (i.e., fasting glucose, fasting insulin, 

and insulin AUC, HOMA-IR).

3.3. PFASs exposure was associated with plasma metabolites and metabolic pathways

To identify metabolic alterations associated with PFASs, we performed the metabolome

wide association study and identified 149, 298, and 17 metabolite features associated with 

plasma concentrations of PFOA, PFOS and PFHxS, respectively, at FDR < 20% (Fig. 

2). We next performed the Mummichog pathway enrichment analysis with the input of 

all detected metabolite features correlated with PFOA, PFOS and PFHxS, and identified 

24 metabolic pathways that were associated with PFASs exposure (Fig. 3). Exposure to 

PFASs was associated with dysregulation of multiple lipid metabolic pathways that included 

glycosphingolipid metabolism, fatty acid metabolism, de novo lipogenesis, and linoleic acid 

metabolism (Fig. 3). A series of amino acid metabolic pathways were also associated with 

PFASs exposure, including aspartate and asparagine, tyrosine, and arginine and proline 

metabolism (Fig. 3). Other significantly altered metabolic pathways included amino sugar 

metabolism, vitamins and cofactors (e.g., vitamin B3 and 9), as well as nitrogen metabolism.

3.4. Identification of subgroups of children with alterations in glucose homeostasis using 
an integrated latent variable analysis

Two latent clusters were identified. “Cluster 2” was associated with increased 2 h hour 

glucose levels between the baseline and follow-up visit (Fig. 4, red line connecting “Cluster 

2” and the outcome). The OR for increased 2 h glucose levels at follow up associated with 

this cluster was 8.63 (compared to “Cluster 1”). This “high-risk” cluster was also positively 

associated with the PFAS composite variable (blue line connecting PFAS to “Cluster 2”) 

and with an altered plasma metabolites pattern. This pattern was characterized by increased 

plasma levels (blue lines connecting “Cluster 2” to metabolites) of palmitic acid (de novo 

lipogenesis pathway), hydroperoxylinoleic acid (HPODE, linoleate metabolism), tyrosine 

and phenylalanine (tyrosine metabolism), and arginine (arginine and proline metabolism). 

It was also characterized by decreased plasma levels (grey lines connecting “Cluster 

2” to metabolites) of sphingomyelin (glycosphingolipid pathway), linoleic acid (linoleate 

metabolism) and aspartate (aspartate and asparagine metabolism) (Fig. 4 and Supplementary 

Table 3). In order to characterize these clusters qualitatively, we assigned each child to 

one of two clusters based on an estimated probability >0.5 for membership within a 
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cluster. Children assigned to the “high-risk” cluster (i.e. “Cluster 2”) had higher PFAS 

concentrations, associations reflective of the metabolites of previously mentioned to define 

“Cluster 2”, and a substantially increased risk for higher 2 h glucose levels than children in 

cluster 1 (Supplemental Table 3).

4. Discussion

This is the first prospective study in Hispanic children to study environmental chemical 

exposures and alterations in glucose homeostasis using longitudinal clinical measures 

of insulin and glucose metabolism. We found that higher plasma PFASs concentrations 

were associated with dysregulated glucose levels following an oral glucose tolerance test. 

We also combined, for the first time, plasma PFASs chemical analysis and untargeted 

metabolomics analyses showing that PFASs exposure may be associated with changes in 

key metabolic pathways underlying type 2 diabetes pathophysiology such as metabolism of 

glycosphingolipids, fatty acid, linoleic acid, tyrosine, aspartate and asparagine, arginine and 

proline.

Several prospective studies in adults have shown that PFASs exposure may be associated 

with increased risk for type 2 diabetes (Halldorsson et al., 2012; Sun et al., 2018; Matilla

Santander et al., 2017). While longitudinal studies in children are scarce, a previous 

prospective study in Danish children (Domazet et al., 2016) found an association between 

PFOA exposure and decreased beta-cell function at age 15 years. Plasma concentrations 

of PFOS and PFOA in the Danish children were 3-times higher than the concentrations 

observed in the Hispanic youth in the current study. However, a recent pregnancy cohort 

study in the U.S. found that children with higher PFASs exposure had lower insulin 

resistance (Fleisch et al., 2017). The discrepancies in results among studies may be 

due to differences in study design, population demographics, or PFASs concentrations 

distributions. However, in the current study, PFASs concentrations were comparable to the 

average serum concentrations quantified for PFOS, PFOA and PFHxS in adolescents and/or 

Mexican Americans in NHANES between 1999 and 2010, and almost twice as high as the 

PFASs concentrations reported for the same NHANES subpopulations between 2011 and 

2014, which is likely due to the decreasing environmental levels of these substances in U.S. 

and elsewhere (Fourth National Report on Human Exposure to Environmental Chemicals, 

2017).

In the current study, PFASs exposure was only associated with the change in 2-hour glucose 

levels and the change in the glucose AUC but no other metabolic outcomes (e.g., change 

in fasting glucose and insulin levels, HOMA-IR). This may be due to the fact that the 

current study included otherwise healthy overweight and obese Hispanic youth. Further, it is 

possible that euglycemia in the fasting state was maintained despite important physiological 

changes in insulin resistance and β-cell function that may only be observed following 

a glucose challenge. Additionally, the consequences of insulin resistance may be more 

apparent after an oral glucose challenge when greater insulin levels are needed to maintain 

normoglycemia compared to the fasting state (Gerich, 2003). We also found that higher 

PFHxS concentrations were associated with an increase in the glucose AUC among children 

who were in puberty or post-puberty. Work by our group has shown reductions in insulin 
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sensitivity and β-cell function during the pubertal transition (Goran and Gower, 2001). 

Therefore, any declines in insulin sensitivity and/or β-cell function that resulted from PFASs 

exposure may have been exacerbated by the normal declines that are seen during this 

transition. It is possible that discrepancies between findings in this study and prior work in 

adolescents (Lin et al., 2009; Domazet et al., 2016) may be due to failing to account for 

pubertal status.

The exact mechanisms underlying the associations between PFASs and diabetes-related 

traits remain uncertain. Rapid advancement in metabolomics technologies provides us a 

unique tool to examine the metabolic perturbations in response to environmental exposures 

(Salihovic et al., 2016; Andrianou et al., 2017). Consistent with another human study on 

PFAS (Salihovic et al., 2019), and other studies examining persistent organic pollutants (e.g. 

organochlorine pesticides) and alterations in plasma metabolome (Salihovic et al., 2016), we 

found that plasma PFASs concentrations were significantly associated with dysregulation of 

multiple lipid pathways (e.g., metabolism of glycosphingolipid, fatty acid, and linoleic acid). 

Importantly, alteration of such lipid metabolites was also reported to be associated with 

type 2 diabetes risk in metabolomics studies, as reviewed elsewhere (Guasch-Ferre et al., 

2016; Padberg et al., 2014). Glycosphingolipids are suggested to modulate β-cell signaling 

pathways implicated in diabetic disease such as apoptosis, β-cells cytokine secretion, 

islet autoimmunity and insulin gene expression (Boslem et al., 2012; Janikiewicz et al., 

2015; Aerts et al., 2011). In a targeted metabolomics study, sphingomyelin was found 

to be negatively associated with risk of type 2 diabetes (Floegel et al., 2013), which is 

consistent with our findings in the integrated analysis showing decreased plasma levels of 

sphingomyelin in the subgroups at high risk of type 2 diabetes. A representative metabolite 

in de novo lipogenesis, palmitic acid, can mediate insulin signaling pathway and cause 

insulin resistance through increase synthesis of deleterious complex lipids and impaired 

function of cellular organelles (Palomer et al., 2018; Ma et al., 2015). Linoleic acid and its 

oxidized product HPODE, play an important role in inflammation, while decreased linoleic 

acid is suggested to predict insulin resistance and diabetes risk (Guasch-Ferre et al., 2016; 

Padberg et al., 2014; Roberts et al., 2014).

In the current study, PFASs exposure was strongly associated with alterations in numerous 

amino acid metabolism, which is generally consistent with the concept highlighted in a most 

recent review paper suggesting altered circulating levels of amino acids may modulate the 

risk of complications related to diabetes (Kahl and Roden, 2018). Specifically, we reported 

that tyrosine metabolism was one of the most affected pathways associated with PFASs 

exposure. Increased aromatic amino acids, such as tyrosine and phenylalanine, has been 

consistently found to be closely associated with hyperglycemia, insulin resistance and risk 

of developing diabetes in adults (Guasch-Ferre et al., 2016; Wang et al., 2011; Würtz et 

al., 2013), although the mechanisms underlying these associations are not fully understood. 

Muscle cells cultured with a mixture of amino acids including aromatic (e.g. tyrosine) and 

branched chain amino acids (BCAAs) resulted in activation of the Mmammalian target of 

rapamycin (mTOR), impairment in insulin-stimulated phosphorylation of Akt/protein kinase 

B, and subsequently reduced glucose uptake (Tremblay and Marette, 2001). Although we 

did not find associations between PFASs exposure and alterations in the branched chain 

amino acids (BCAA) pathways, tyrosine can affect BCAA levels, since BCAA and amino 
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acids compete for the same neutral amino acid transporter for cellular uptake (Adams, 2011; 

Fernstrom, 2005). We also found increased PFAS exposure was associated with the latent 

subgroup of participants at increased risk for developing type 2 diabetes, characterized by 

increased plasma arginine and decreased aspartate levels. These findings are in line with 

previous literature suggesting a positive association between arginine and risk of type 2 

diabetes (Guasch-Ferre et al., 2016) and decreased aspartate and asparagine levels in adults 

developing type 2 diabetes (Palmer et al., 2015).

This study is strengthened by its longitudinal study design, the use of robust repeated 

clinical measures of insulin and glucose metabolism, and the use of novel statistical 

approaches to predict subgroups of Hispanic youth with increased susceptibility to type 2 

diabetes based on their PFASs exposure and metabolomics profile. Detailed information 

regarding body fat percent and pubertal stage were also available and adjusted for in 

statistical models. Although we have adjusted for several factors that may affect glucose 

homeostasis, the latter is dependent on multiple exposures; thus, we cannot exclude the 

possibility of confounding from unmeasured variables such as diet. This proof-of-concept

study was designed in a relatively-small sample size, however, we showed markedly 

changes in glucose homeostasis and alterations in metabolic pathways associated with 

PFASs exposure. Although it would be informative to examine differences by weight status, 

the current study is limited for this type of analysis as it is focused primarily on obese 

children. We found that PFASs exposure was only associated with change in 2-hour glucose 

levels. These findings indicate that PFASs exposure may negatively affect β-cell function. 

However, effects on insulin resistance cannot be ruled out. Future studies should examine 

the effects of PFASs exposure on type 2 diabetes using robust methods to assess changes 

in insulin resistance and β-cell function (e.g., glucose clamp techniques and intravenous 

glucose challenge tests) (Bergman et al., 1979; DeFronzo et al., 1979). The study focused 

on Hispanic children and findings are of public health significance as Hispanics have a 

disproportionate burden of environmental exposures, high rates of type 2 diabetes in youth, 

and are underrepresented in clinical research (Lascar et al., 2018; Mayer-Davis et al., 2017).

5. Conclusions

In summary, this is the first prospective study to demonstrate that PFASs exposure was 

associated with longitudinal alterations in glucose homeostasis in overweight and obese 

Hispanic youth. Dysregulation of several lipid and amino acid pathways that have been 

linked with type 2 diabetes were also associated with PFASs exposure. Lastly, a novel 

integrated latent variable analysis demonstrated that the observed changes in glucose 

homeostasis were characterized by increased PFASs levels and altered plasma metabolite 

profiles. Findings from this proof-of-concept study suggest that PFASs may play an 

important role in the pathogenesis of type 2 diabetes; however, larger studies are needed to 

replicate findings and to fully elucidate the mechanisms explaining the diabetogenic effects 

of PFASs exposure.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Associations between plasma polyfluoroalkyl substances (PFASs) concentrations and 

change in measures of glucose homeostasis.

Effect sizes (β) and p values shown were adjusted for sex, baseline social position 

(categorical), pubertal status (categorical), baseline outcome, as well as baseline and change 

in age and body fat percent at follow-up.
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Fig. 2. 
Metabolite features significantly altered in association with PFASs plasma concentrations.

Y axis represents the negative log10P for correlation of each metabolite feature with (A) 

PFOA, (B) PFOS and (C) PFHxS. X axis represents each metabolite in the function of 

retention time. Models adjusted for baseline age, sex, and social position (categorical). 

Metabolites above the dashed horizontal line and solid green line were significant at FDR < 

20% and p < 0.05, respectively. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 3. 
Metabolic pathways associated with plasma PFASs concentrations.

The vertical axis represents the pathways (blue circles) with circle radius representing the 

numbers of associated metabolite features, and horizontal axis represents the negative log10 

(p-value) of each pathway. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 4. 
Structural integrated analysis of PFASs plasma concentrations and individual metabolites 

for the identification of a subgroup of children with increased risk for developing type 2 

diabetes.

The thick blue line connecting “PFASs exposure” to “Cluster 2” indicates positive 

association, while thin blue line serves as the reference group. The blue lines connecting 

“Cluster” to metabolites suggest positive associations and grey lines suggest negative 

associations. The red line connecting “Cluster 2” and “Increased change in 2-hr glucose 

levels” represents that children in the latent “Cluster 2” were at higher risk for developing 

type 2 diabetes (OR = 8.63), compared to those in “Cluster 1” (reference). (For 

interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.)
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Table 1

General baseline and follow-up characteristics of overweight and obese Hispanics participants living in urban 

Los Angeles, CA who had their baseline visits between 2001 and 2011.

Baseline mean (SD) Follow-up mean (SD)

Age (years) 11.4 ± 2.0 12.6 ± 2.2**
n

Sex (N; male, female) 19/21 19/21

Puberty status (%)* 33/55/12 22/53/25

BMI percentile (%) 96.8 ± 3.5 96.5 ± 4.5

Body fat percent (%) 38.6 ± 5.6 37.7 ± 6.3

Clinical fasting glucose (mg/dL) 89.4 ± 4.8 91.7 ± 5.7*

2-Hour glucose (mg/dL) 124.2 ± 17.9 125.4 ± 17.5

Fasting insulin (μU/mL)
a 16.1 ± 11.7 18.5 ± 13.0

2-Hour insulin (μU/mL)
a 151.9 ± 126.3 186.6 ± 164.4

Glucose AUC (mg/dL * min) 258.1 ± 30.8 260.5 ± 32.3

Insulin AUC (μU/mL * min)
a 328.2 ± 248.4 363.1 ± 230.3

HOMA-IR
a 3.5 ± 2.5 4.1 ± 3.0

*
Pubertal status was defined as pre-puberty, puberty, and post puberty.

a
Sample size is 39. Significance from pair t-test and npaired signed rank test denoted as **p < 0.0001 and *p < 0.05.
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Table 2

Distribution of polyfluoroalkyl substances (PFASs) concentrations and Spearman correlation coefficients for 

PFASs measured at baseline among overweight and obese Hispanic participants living in urban Los Angeles, 

CA who had their baseline visits between 2001 and 2011.

Exposure PFHxS PFOS PFOA

Plasma concentration of PFASs (ng/ml)

Geometric mean 1.65 12.22 2.78

Geometric mean SD 2 1.91 1.29

Minimum 0.47 1.95 1.88

Maximum 12.81 65.3 5.37

Below LOD (%) 2.5 0 2.5

Spearman correlation coefficients

PFHxS 1.00

PFOS 0.58** 1.00

PFOA 0.44* 0.71** 1.00

*
p-Value < 0.005.

**
p-Value < 0.0001.
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