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Summary

The putative Plasmodium Translocon of Exported Proteins (PTEX) is essential for transport of 

malarial effector proteins across a parasite-encasing vacuolar membrane into host erythrocytes, but 

the mechanism of this process remains unknown. Here we show PTEX is a bona fide translocon 

by determining near-atomic resolution cryoEM structures of the endogenous PTEX core complex 

of EXP2, PTEX150 and HSP101, isolated from Plasmodium falciparum in the engaged and 

resetting states of endogenous cargo translocation with CRISPR/Cas9-engineered epitope tags. 

EXP2 and PTEX150 interdigitate to form a static, funnel-shaped pseudo-sevenfold symmetric 

protein-conducting channel spanning the vacuolar membrane. Tethered above this funnel, the 

spiral-shaped AAA+ HSP101 hexamer undergoes a dramatic compaction that allows three of six 

tyrosine-bearing pore loops lining the HSP101 channel to dissociate from the cargo, resetting the 
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translocon for the next threading cycle. Our work reveals the mechanism of P. falciparum effector 

export, enabling structure-based design of drugs targeting this unique translocon.

Malaria has devastated major civilizations since the dawn of humanity and remains a 

significant burden to our society, responsible for nearly half a million deaths annually1. This 

infectious disease is caused by Plasmodium parasites, which invade and reproduce within 

human erythrocytes, inducing the clinical symptoms of malaria2,3. These parasites export 

hundreds of effector proteins to extensively remodel host erythrocytes, which have limited 

capacity for biosynthesis4–6. Collectively known as the exportome, these proteins create the 

infrastructure necessary to import nutrients, export waste, and evade splenic clearance of 

infected erythrocytes7. Most of these proteins bear a 5-residue motif, the Plasmodium 
Export Element (PEXEL)8–10. The malaria parasite conceals itself inside a parasitophorous 

vacuole (PV) derived from invagination of the host cell plasma membrane during invasion11 

(Fig. 1a). Following secretion into the PV, proteins destined for export are unfolded and 

transported across the PV membrane (PVM) into the host cell in an ATP-dependent 

process12,13. To accomplish this, it was proposed that the parasite has evolved a unique 

membrane protein complex, the Plasmodium Translocon of Exported Proteins (PTEX)14. 

PTEX is the only known point of entry to the host cell for exported proteins and an attractive 

drug target, as disrupting PTEX blocks delivery of key virulence determinants, inducing 

parasite death15,16.

PTEX was suggested to be a >1.2MDa membrane protein complex with a core composed of 

the HSP101 ATPase and two novel proteins, PTEX150 and EXP2 (Fig. 1a)14,17. HSP101 

belongs to the Class 1 Clp/HSP100 family of AAA+ ATPases, PTEX150 has no known 

homologs beyond the Plasmodium genus, and EXP2 is a PVM protein14,18 conserved among 

vacuole-dwelling apicomplexans19. All three core components are essential for protein 

export and parasite survival15,16,20. A model of PTEX-mediated translocation was proposed 

in which HSP101 unfolds and threads proteins through an oligomeric EXP2 transmembrane 

channel spanning the PVM, with PTEX150 playing a structural role between EXP2 and 

HSP10114–17. However, without structural information, the global architecture of PTEX, the 

stoichiometry of its components, and direct evidence for the proposed molecular mechanism 

have proven elusive.

In this study, we purify PTEX directly from the human malaria parasite P. falciparum and 

determine near-atomic resolution cryoEM structures of the complex in multiple functional 

states. Our atomic models reveal the architecture and mechanism of this unique translocon 

and pave the way for development of novel therapeutics against this promising new malarial 

drug target.

Architecture of the PTEX core complex

To purify PTEX from P. falciparum, we used CRISPR/Cas9 editing to introduce a 3xFLAG 

epitope tag on the endogenous HSP101 C-terminus (Extended Data Fig. 1a–c) and purified 

the endogenously assembled PTEX core complex directly from parasites cultured in human 

erythrocytes (Extended Data Fig. 1d–f). CryoEM analysis yielded two distinct 

conformations of PTEX particles, one extended (195Å) and the other compact (175Å) (Fig. 
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1b-c). Endogenous cargo polypeptide densities are visible in the central pore of HSP101 in 

both structures (Fig. 1b-c, Extended Data Fig. 2–3). Based on differences in the arrangement 

of HSP101 subunits relative to the cargo between the two conformations, we designated 

them as the engaged and resetting states, respectively. Both maps are at near-atomic 

resolution, varying from 3–3.6Å in the transmembrane (TM) and core regions to 5–8Å in the 

periphery (Fig. 1b-c, Extended Data Fig. 4). Clear sidechain densities throughout most 

regions of both maps (Fig. 1b-c, Extended Data Fig. 5, Supplementary Videos 1–2) enabled 

us to build de novo atomic models of the three constituent proteins for both conformational 

states (Fig. 1d-e), each containing 20 subunits with 6,898 amino acid residues modeled. All 

subunits were built independently, as conformations varied between subunits.

Both structures reveal PTEX to be a tripartite membrane protein complex with a 6:7:7 

stoichiometry and a calculated mass of 1.6MDa, composed of a hexameric HSP101 protein-

unfolding motor tethered to a PVM-spanning, pseudosymmetric funnel formed by seven 

protomers of EXP2 interdigitating with seven protomers of PTEX150 (Fig. 1d–k, 

Supplementary Video 3). Two transiently associated21 accessory proteins, PTEX88 and 

TRX214, are not observed in our structures. At the PVM, each EXP2 monomer contributes a 

single TM helix to form a sevenfold (C7)-symmetric protein-conducting channel spanning 

the membrane (Fig. 1j-k). Six HSP101 protomers are tethered atop the PTEX150/EXP2 

funnel in a hexameric right-handed spiral, with a gap between the bottom-most and top-most 

protomers (Fig. 1f-g, Supplementary Video 4). The HSP101 hexamer is oriented such that a 

single unbroken channel extends from the top of the HSP101 hexamer to the bottom of the 

heptameric EXP2 transmembrane pore (Fig. 1l–n, Extended Data Fig. 2d). The most 

constricted point along the channel occurs in HSP101, measuring 4Å and 10Å in diameter, 

in the engaged and resetting states, respectively (Fig. 1l). The seventh EXP2 and PTEX150 

protomers are situated beneath the gap between HSP101 protomers 1 and 6, accommodating 

the remarkable symmetry mismatch between the asymmetric HSP101 hexamer and the 

pseudo-sevenfold-symmetric PTEX150/EXP2 tetradecamer (Fig. 1f-k, Extended Data Fig. 

2e–j). Analyses of our PTEX150 and EXP2 structures with four commonly used structural 

similarity search programs22–25 revealed no consistent structural similarities to any known 

proteins, including the pore-forming toxin Hemolysin E (HlyE), with which EXP2 was 

previously speculated to share structural homology14. Below, we describe the structural 

details of the individual proteins in the engaged state, followed by a comparison of the two 

states that suggests a mechanism of translocation.

EXP2 forms a heptameric protein-conducting channel across the PVM

Residues G27-S234 of EXP2 are well resolved in our structure, accounting for 80% of the 

mature protein (Extended Data Fig. 6a). EXP2 is a single-pass transmembrane protein 

consisting of a kinked 60Å-long N-terminal TM helix followed by a globular body domain 

and ending in an assembly domain composed of a linker helix followed by the assembly 

strand (Fig. 2a-b). The body domain contains five helices (B1–5), stabilized by an 

intraprotomer C113-C140 disulfide bond (Fig. 2c).

Seven EXP2 protomers (labeled A-G) oligomerize to form a funnel-shaped C7-

pseudosymmetric 216kDa heptamer spanning the PVM (Fig. 2d–e). The TMD and body 
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helices B1–3 are symmetric throughout all seven protomers (Extended Data Fig. 3a-b). This 

symmetry is broken by inter-protomer conformational variations in body helices B4–5 and 

the assembly domain, which stretch upwards in some protomers to maintain contacts with 

the asymmetric HSP101 hexamer situated above the EXP2 funnel. This variation is most 

pronounced in EXP2 protomers F and G (Extended Data Fig. 3a-b).

In the EXP2 heptamer, the amphipathic TM helices twist slightly around each other, creating 

a 37Å-long C7-symmetric protein-conducting channel that spans the PVM and forms the 

stem of the funnel (Fig. 2d-e). The membrane-facing surface of the EXP2 channel is coated 

with hydrophobic residues, while the inner surface is lined with charged and polar residues, 

creating an aqueous pore (Fig. 2e). The body domains, positioned in a wider ring atop the 

transmembrane channel on the vacuolar face of the PVM, form the mouth of the funnel. This 

orientation is consistent with previous analyses of EXP2 topology14,20. Furthermore, a 

detergent belt is clearly visible in 2D class averages and density maps (Extended Data Fig. 

7–8), defining the residues in the TMD that would be buried in the PVM. A ring of 

positively charged residues where the stem meets the mouth of the funnel is positioned to 

interact with the negatively charged phosphates of the membrane surface (Extended Data 

Fig. 8a).

The PTEX150(S668-D823) heptamer acts as an adaptor between HSP101 

and EXP2

Of the 993 residues in PTEX150, S668-D823 are well resolved in our structure and form a 

hook with a shaft (Fig. 3a-b). The hook domain consists of three short helices (H1–3) joined 

by several long loops. Directly N-terminal and C-terminal to the hook domain, the shaft is 

composed of proximal and distal shaft domains (Fig. 3a-b). The remaining 80% of 

PTEX150, not visible in our structures, is predicted to be intrinsically disordered (average 

disorder tendency of 0.83 in IUPred26,27, with scores above 0.5 indicating disorder), unlike 

the rigid structured core of PTEX150 (S668-D823) (average disorder tendency score of 0.42, 

indicating ordered structure), suggesting that this 80% of the protein is too mobile to be 

observed and may be flexibly arranged outside the stable PTEX core.

Seven PTEX150(S668-D823) hooks (labeled a-g) oligomerize, forming a flange-shaped C7-

pseudosymmetric heptamer (Fig. 3c) that fits into the mouth of the EXP2 channel. Each 

hook lies in the groove between adjacent EXP2 body domains, and the tip of the hook curls 

down into the mouth of the EXP2 pore (Fig. 3d). A vertical, heptameric ring of H2 helices 

sits in the mouth of the EXP2 funnel, forming a conduit between the hexameric HSP101 and 

heptameric EXP2 central pores (Extended Data Fig. 2g–j). In this way, PTEX150(S668-

D823) serves as an adaptor between HSP101 and EXP2, providing a continuous protected 

path for unfolded cargo.
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Endogenous cargo is observed bound in the channel of the HSP101 protein 

unfoldase

Class 1 Clp/HSP100 AAA+ ATPases are highly conserved hexameric protein unfoldases 

associated with diverse functions, which are known to thread polymeric substrates through a 

central pore28,29. HSP101 is a 598kDa hexamer exemplifying the canonical Class 1 Clp/

HSP100 domain architecture30,31, with a substrate-binding N-terminal domain (NTD)32 

followed by two AAA+ nucleotide-binding domains (NBD1 and NBD2), each containing a 

cargo-binding pore loop (L1 and L2, respectively) that extends into the central pore (Fig. 4a-

b). Additionally, HSP101 contains a C-terminal domain (CTD), and a coiled-coil middle 

domain (MD) insertion in the C-terminal end of NBD1 (Fig. 4a-b).

Unlike Class 2 HSP100s [Ref 33], Class 1 HSP100s form three-tiered hexamers, where the 

NTDs, NBD1s and NBD2s form the top, middle, and bottom tiers, respectively30,31. In our 

engaged state structure, the NBD1 and NBD2 tiers are arranged in a right-handed ascending 

spiral30,31,34 (Fig. 4c). A layer of weaker density above the NBD1 tier may correspond to 

the NTDs, which are likely dynamic (Extended Data Fig. 8b). The MDs encircle the upper 

NBD1 tier. The central pore of the spiral is lined with pore loops bearing tyrosines in a spiral 

staircase pattern. The tyrosine sidechain densities intercalate with a 45Å-long density clearly 

visible in the middle of the chaperone pore (Fig. 4c-d, Supplementary Video 5), which 

closely resembles unfolded cargo polypeptide densities reported in recently published 

cryoEM structures of homologous HSP100s bound to cargo31,33 (Extended Data Fig. 2a–d). 

The unfolded PTEX cargo polypeptide chain modeled into this 45Å-long density matches 

very closely (RMSD of 1.09–1.25Å) with the unfolded cargo polypeptides in these cargo-

bound homolog structures (Extended Data Fig. 2a–c).

Key interactions for PTEX assembly and a potential mechanism for 

regulation

While the three PTEX components share extensive binding interfaces, we describe only the 

two most intriguing interactions here. In EXP2 protomers A-F, the assembly strand 

augments the CTD β-sheet in the HSP101 protomer situated directly above (Fig. 5a-b). 

Protomer G occupies the space beneath the gap between HSP101 protomers 1 and 6 (Fig. 

1f–k). This hydrogen bond-mediated interaction tethers the HSP101 hexamer to the 

transmembrane funnel, positioning the central pore exit directly above the entrance to the 

PTEX150/EXP2 pore. We hypothesized that this interaction is essential for assembly of the 

PTEX core complex, and that the complex must be stably assembled to be active. We tested 

this using genetic functional complementation in live parasites.

Knockdown of EXP2 produces a lethal defect in parasite growth and export that can be 

rescued by a mutant version of EXP2 lacking the last 54 residues20. Thus, the amino acids 

immediately following the assembly strand are not essential for PTEX function. However, 

complementation with a version of EXP2 lacking an additional 12 residues, removing the 

assembly strand, failed to rescue these phenotypes (Fig. 5c–f). These results demonstrate 
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that the EXP2 assembly strand is critical to PTEX function, consistent with an essential role 

in docking the HSP101 unfoldase to the EXP2 membrane channel to facilitate translocation.

A strong, albeit lower resolution claw-shaped density extends from the end of each modeled 

PTEX150(S668-D832) shaft to the HSP101 MD above, terminating in a three-turn helix 

resting atop the midpoint of the MD. This helix forms a strong interaction with HSP101 

Y488 and Y491 in claws a-e (Extended Data Fig. 8d-e) but is not visible in claw f in the 

engaged state. Claw g appears to form an additional interaction with the N-terminal end of 

the HSP101 protomer 1 MD (Extended Data Fig. 8d). The MD is known to play a critical 

role in regulating ATPase and unfoldase activities in related HSP100s [Ref 35,36], 

suggesting the importance of this interaction.

Atomic details of the two observed states suggest a mechanism for 

translocation

In addition to the above-described engaged (195Å) state, a more compact (175Å) resetting 
state of PTEX was also observed. Much of PTEX150(S668-D823) and EXP2 remain 

unchanged between the engaged and resetting states, with a dramatic hinge-like swinging 

motion in the HSP101 hexamer accounting for the 20Å height difference. The TMD and 

B1–3 helices of EXP2 exhibit C7-symmetry, remaining identical between states 

(Supplementary Video 6). The deviation from C7-symmetry in the B4–5 helices and 

assembly domain is less pronounced in the resetting state (Extended Data Fig. 3b-c), likely 

due to the more planar arrangement of HSP101 protomers. As in the engaged state, slight 

inter-protomer variations in the PTEX150(S668-D823) H2–3 region bridge the gap between 

EXP2 and HSP101, maintaining a continuous protected path for unfolded cargo proteins.

The spiral staircase of HSP101 tyrosine pore loops in the engaged state collapses into a 

planar “C” shape in the resetting state (Supplementary Video 7), with a freedom of 

movement possibly conferred by the gap between HSP101 protomers 1 and 630,31. 

Originating at the interface between the NBD2 domains of HSP101 protomers 3 and 4, 

HSP101 protomers 4–6 swing downwards and outwards, creating a deep vertical cleft 

through the central pore of the hexamer. This motion pulls the NBD2 loops in protomers 4–6 

away from the unfolded cargo (Extended Data Fig. 3d-e,h-i, Supplementary Video 6–7). A 

shorter (19Å vs 45Å), unfolded cargo density remains visible, bound to the NBD2 loops in 

protomers 1–3, while no peptide density is visible in protomers 4–6 (Fig. 6a, Extended Data 

Fig. 3h-i). Furthermore, the NBD1 domain of protomer 3 rotates outward, such that the 

R361 arginine finger remains within 5.2Å of the ATPγS in the protomer 4 NBD1, while the 

nucleotide in the protomer 4 NBD2 shifts 7.5Å away from the R859 arginine finger in 

protomer 3 (Extended Data Fig. 3f-g).

Discussion

We propose a PTEX-mediated mechanism of protein translocation via a cyclic process 

involving at least two discrete states (Fig. 6b, Supplementary Video 6–7), which we have 

captured by purifying PTEX complexes directly from parasites actively translocating cargo. 

The pore loops in HSP101 NBD2 form two hands which work together to thread the cargo 
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protein through the central pore. NBD2 loops from HSP101 protomers 1–3 form the passive 

hand, located closest to the PTEX150(S668-D823)/EXP2 funnel, which stays fixed between 

states (Fig. 6a-b). NBD2 loops from HSP101 protomers 4–6 form the active hand, which 

moves along the channel axis (above the passive hand), grasping the unfolding peptide and 

feeding it through the passive hand. In the engaged state, all six NBD2 pore loops grip the 

unfolded peptide in the spiral staircase formation (Fig. 6a-b). As the HSP101 hexamer 

collapses into the resetting state, the active hand moves downwards, feeding the newly 

unfolded peptide through the passive hand, into the PTEX150(S668-D823)/EXP2 funnel 

below. The passive hand then grips the unfolded peptide, preventing it from slipping back 

toward the HSP101 apical entrance while the active hand swings outward, releasing the 

cargo (Fig. 6a-b). Finally, the active hand moves upwards to grasp the unfolding protein 

further upstream, transitioning back into the engaged state. With this elegant cyclic feeding 

mechanism, the unfolded cargo protein is threaded through the translocon, across the PVM 

and into the host cell cytosol.

The states captured here may be two of several states in the processive phase of 

translocation. Additional states likely exist for cargo-recognition. Although we did not 

observe PTEX-free HSP101 oligomers as suggested by Elsworth et al.37, we did observe 

additional, seemingly cargo-free PTEX complexes (Extended Data Fig. 9) which did not 

refine to better than 7Å, suggesting conformational heterogeneity in the absence of 

stabilizing cargo interactions. Cargo-PTEX interactions during cargo-recognition may be 

transient, possibly explaining why we did not observe the HSP101 NTDs or other 

components potentially required for cargo-recognition. Without these details, the 

mechanisms for cargo-recognition and subsequent refolding after translocation remain 

unclear, although some evidence suggests involvement of exported parasite chaperones38 or 

co-opted host chaperonins39. Interestingly, based on secondary structure prediction and 

PTEX150 truncation experiments37, PTEX150 residues D838-F912 may occupy the claw 

(PTEX150 D838-E873) and three-turn helix (PTEX150 S884-F912) densities that remain 

unassigned in our structures.

Our work demonstrates the advantages of obtaining structures of challenging protein 

complexes in functionally relevant states by imaging samples purified directly from 

endogenous sources. Direct observation of the native PTEX core provides compelling 

evidence that this complex, comprising EXP2, PTEX150 and HSP101, is a bona fide 
translocon embedded in the PVM that serves as the gateway for the malaria parasite 

exportome. In addition to establishing the role of EXP2 as the membrane-spanning pore of 

PTEX and providing insight into the mechanism of this essential protein translocating 

machine, our structures reveal a unique interaction between the EXP2 assembly domain and 

the HSP101 C-terminal domain which is indispensable for PTEX function. These highly 

sought-after atomic structures of PTEX provide exciting possibilities for designing a new 

class of drugs inhibiting this essential gatekeeper of the malarial exportome.
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Materials and Methods

Cells

P. falciparum strain NF54attB [Ref 40] was used exclusively in the study. De-identified, IRB-

exempt expired RBCs were obtained from the blood bank at the St. Louis Children’s 

Hospital. PCR amplified regions from the NF54attB genome were found to match the 

genome sequence for 3D7, a sub clone of NF54. The prescence of the cg6 localized attB 

sequence was verified by successful Bxb1-mediated integration at that site.

Parasite culture and genetic modification for PTEX purification

P. falciparum culture was performed as described with the exception that RPMI was 

supplemented with 0.5% Albumax I 41. All plasmid construction was carried out by Infusion 

cloning (Clontech) unless otherwise noted. Integration of a 3xFLAG fusion at the 

endogenous HSP101 C-terminus was accomplished with CRISPR/Cas9 editing. A Cas9 

target site was chosen just upstream of the hsp101 stop codon 

(TAATAGTAAAGCTAAAAACT) and the guide RNA seed sequence was synthesized as a 

sense and anti-sense primer pair (sense shown) 5’- 

TAAGTATATAATATTTAATAGTAAAGCTAAAAACTGTTTTAGAGCT

AGAA −3’, annealed and inserted into the BtgZI site of the plasmid pAIO 42, resulting in 

the plasmid pAIO-HSP101-CT-gRNA1. A 5’ homology flank (up to but not including the 

stop codon) was amplified from P. falciparum NF54attB genomic DNA using primers 5’-

GACGCGAGGAAAATTAGCATGCATCCTTAAGGAGATTCTGGTATGCCACTTGGTTC

-3’ and 5’- CTGCACCTGGCCTAGGGGTCTTAGATAAGTTTATAACTAAGTT 

TTTAGCTTTACTATT-3’, incorporating a synonymous shield mutation in the protospacer 

adjustment motif of the gRNA target site within the hsp101 coding sequence. A 3’ 

homology flank (beginning 3 bp downstream of the stop codon) was amplified using primers 

5’- 

CACTATAGAACTCGAGAATTACGCATATATATATATATATATATATATAACATGGGTTG-

3’ and 5’- 

GAACCAAGTGGCATACCAGAATCTCCTTAAGGATGCATGCTAATTTTCCTCGCGTC

-3’F. The flank amplicons were assembled in a second PCR reaction using primers 5’- 

CACTATAGAACTCGAGAATTACGCATATATATATATATATATATATATAACATGGGTTG-

3’ and 5’- 

CTGCACCTGGCCTAGGGGTCTTAGATAAGTTTATAACTAAGTTTTTAGCTTTACTAT

T-3’ and inserted between XhoI and AvrII in pPM2GT41. The GFP tag between AvrII and 

EagI in this vector was then replaced with sequence encoding a 3xFLAG tag using the 

primer 5’- 

CTTAGTTATAAACTTATCTAAGACCCCTAGGGACTACAAGGACGACGACGACAAGG

ATTATAAAGATGATGATGATAAAGATTATAAAGATGATGATGATAAATGACGGCCGC

GTCGAGTTATATAATATATTTATG-3’ and a QuikChange Lightning Multi Site-Directed 

Mutagenesis kit (Agilent), resulting in the plasmid pPM2GT-HSP101–3xFLAG. This 

plasmid was linearized at the AflII site between the 3’ and 5’ homology flanks and co-

transfected with pAIO-HSP101-CT-gRNA1 into P. falciparum NF54attB parasites40. 

Selection with 10 nM WR99210 was applied 24 hours after transfection. Once parasites 
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returned from selection, integration at the intended site was confirmed by PCR with primers 

5’-CGAAAACTTTTATGGTATTAATATAACAG-3’ and 5’-

CCTTGTCGTCGTCGTCCTTG-3’ and a clonal line was isolated by limiting dilution.

For PTEX purification, HSP101–3xFLAG parasites were synchronized by serial treatment 

with 5% w/v D-sorbitol and then expanded while shaking to increase singlet invasion events 

and maintain synchrony. For each preparation, ~2×1010 parasite-infected erythrocytes were 

collected at the ring stage (typically ~500 mls of 2% hematocrit culture at ~20% 

parasitemia). Erythrocytes were lysed in 10x pellet volume of cold phosphate buffered saline 

(PBS) containing 0.0125% saponin (Sigma, sapogenin content ≥10%) and EDTA-free 

protease inhibitory cocktail (Roche or Pierce). Released parasites were washed in cold PBS 

containing EDTA-free protease inhibitory cocktail and washed cell pellets were frozen in 

liquid nitrogen and stored at −80°C.

Affinity purification of PTEX core complex from parasite pellets

Frozen parasite pellets were resuspended in Lysis Buffer (25mM HEPES pH 7.4, 10mM 

MgCl2, 150mM KCl, 10% Glycerol) and homogenized using a glass Dounce tissue 

homogenizer. The membrane fraction was isolated from the homogenized lysate by 

centrifugation at 100,000g for one hour. The membrane pellet was solubilized in 

Solubilization Buffer (25mM HEPES pH 7.4, 10mM MgCl2, 150mM KCl, 10% Glycerol, 

0.4% Triton X-100) and the solubilized membranes were then applied to anti-FLAG M2 

Affinity Gel resin (Sigma). The resin was washed extensively in Wash Buffer (25mM 

HEPES pH 7.4, 10mM MgCl2, 150mM KCl, 10% Glycerol, 0.015% Triton X-100), after 

which the protein was eluted from the affinity resin with Elution Buffer (25mM HEPES pH 

7.4, 10mM MgCl2, 150mM KCl, 2mM ATPγS, 0.015% Triton X-100, 500µg/ml FLAG 

peptide).

The presence and relative abundance of the three PTEX core components were verified by 

silver stained SDS-PAGE and tryptic digest liquid chromatography-mass spectrometry 

(Extended Data Fig. 1d-e). The extremely low yields achievable when purifying PTEX 

directly from P. falciparum parasites prohibited the conventional approach of evaluating 

sample quality by size exclusion chromatography. Thus, during the iterative process of 

screening for optimal purification conditions, sample quality was assessed by negative stain 

(uranyl acetate) transmission electron microscopy in an FEI TF20 microscope equipped with 

a TVIPS 16 mega-pixel CCD camera. Briefly, small datasets of ~100,000 particles were 

collected and 2D class averages were generated in RELION43,44 to assess the presence of 

sufficient numbers of intact PTEX particles yielding “good” class averages exhibiting 

distinct features. For example, C7 symmetry could be recognized in top views, and the 

characteristic Clp/HSP100 layers were visible in side views (Extended Data Fig. 6a–c).

Cryo Electron Microscopy

3µl aliquots of purified PTEX core complex were applied to glow-discharged lacey carbon 

grids with a supporting ultrathin carbon film (Ted Pella). Grids were then blotted with filter 

paper and vitrified in liquid ethane using an FEI Vitrobot Mark IV or a home-made manual 
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plunger. CryoEM grids were screened in an FEI Tecnai TF20 transmission electron 

microscope while optimizing freezing conditions.

Higher resolution cryoEM images were collected on a Gatan K2-Summit direct electron 

detector in counting mode on an FEI Titan Krios at 300kV equipped with a Gatan Quantum 

energy filter set at a 20 eV slit width. Fifty frames were recorded for each movie at a pixel 

size of 1.04Å at the specimen scale, with a 200 ms exposure time and an average dose rate 

of 1.2 electrons per Å2 per frame, resulting in a total dose of 60 electrons per Å2 per movie. 

The final dataset consists of a total of 25,000 movies recorded in four separate sessions.

Image processing and 3D reconstruction

Frames in each movie were aligned, gain reference-corrected and dose-weighted to generate 

a micrograph using MotionCor2 [Ref 45]. Aligned and un-dose-weighted micrographs were 

also generated and used for contrast transfer function (CTF) estimation using CTFFIND4 

[Ref 46] and PTEX particle picking by hand and using Gautomatch47.

1,508,462 particles were extracted from 19,752 micrographs and initially binned by a factor 

of 2. After two rounds of reference-free two-dimensional (2D) classification in RELION, 

422,713 particles were selected as “good” particles from distinct 2D class averages 

representing different views of the PTEX core complex. These particles were then used in a 

one-class ab initio reconstruction followed by homogeneous refinement in CryoSPARC48, 

yielding a 4.8Å ab initio 3D map.

The original 422,713 “good” particles were then aligned in a 3D refinement in RELION 

using the 4.8Å CryoSPARC map as an initial reference. All subsequent image-processing 

steps were performed using RELION. After this refinement, the particles were unbinned, 

their centers recalculated and used to re-extract particles from the original micrographs 

without binning. The newly extracted, unbinned particles were then aligned with a second 

3D refinement yielding a ~4.5Å reconstruction.

An exhaustive, iterative search of classification and refinement conditions was used to sort 

out different conformations and further improve resolution (Extended Data Fig. 9). Briefly, 

upon further sorting using 3D-classification without alignment, we identified two 

homogenous particle subsets corresponding to the engaged and resetting states (Extended 

Data Fig. 9). Particles in the two subsets were refined separately, yielding full maps with 

overall resolutions of 4.16Å and 4.23Å, respectively.

Focused 3D classification without alignment followed by focused refinement was used to 

further improve the resolution of mobile regions of the structure in both states. C7 symmetry 

was applied in the focused 3D classification and refinement steps of the heptameric halves, 

comprising EXP2 and PTEX150, yielding a 3.4Å engaged state map and a 3.5Å resetting 
state map (Extended Data Fig. 3,9). The same procedure, except with C1 symmetry, was 

applied to the hexameric half of the engaged state, yielding a 4.09Å map (Extended Data 

Fig. 3,9). This last step was also applied to the hexameric half of the resetting state, but did 

not yield improvements in resolution. Further efforts of focused 3D classification and 

refinement of individual HSP101 protomers, individual claws, and HSP101 N-terminal 
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domain densities in the two states did not ultimately yield improvements in resolution in 

either state.

Model Building and Refinement

Map interpretation was performed with UCSF Chimera49 and COOT50. P. falciparum 
protein sequences were obtained from the National Center for Biotechnology Information 

(NCBI)51 and the PlasmoDB52 protein databases. PHYRE2 [Ref 53] secondary structure 

predictions were used as an aid for initial manual sequence registration. Models for a single 

monomer of HSP101, PTEX150, and EXP2 in the engaged state were all built de novo. This 

first model for each protein monomer was then placed into the density maps of other 

protomers to aid de novo modeling of subsequent protomers. Individual protomers in the 

complex were then manually remodeled to ensure a close fit between densities and models. 

The same process was repeated for the resetting state. Manual refinement targeting protein 

geometry alone was done primarily along the periphery and flexible regions of the complex 

(e.g., the MDs of HSP101). While their densities and backbone traces were visible, we were 

unable to model the claw with its connected three-turn helix, nor one of the 12 MD loops in 

the resetting state (Fig. 5g,h). The three-turn helix displayed a few bulky side chains 

interacting with the MD of HSP101, however the lack of backbone connection to our atomic 

model of the complex and the limited visibility of smaller side chains in this region have 

made sequence assignment challenging.

Manual refinement targeting both protein geometry and fit with the density map was used 

primarily in the core regions where resolution was higher and noise was minimal. Rotamers 

were fit manually in COOT and improved using the ‘Back-rub Rotamers’ setting. The 

resulting models for the complexes were subjected to the phenix.real_space_refine program 

in PHENIX54. Following this step, Molprobity55 reported less than ideal clash scores and 

map-to-model cross-correlation. To improve the geometry and fit, manual adjustments were 

made to protein geometry and density map fit, with the additional step of using Molprobity55 

clash dots and sphere-refinement in COOT.

The complex was then broken into three portions: (1) symmetric regions of EXP2 and 

PTEX150, (2) HSP101, and (3) the full PTEX complex. These model segments were fed 

back to phenix.geometry_minimization in PHENIX and then to phenix.real_space_refine 

using simulated annealing and global minimization applying Emsley’s Ramachandran 

restraints50. Following another round of manual checks and improvements, all models were 

subjected to phenix.real_space_refine with default settings one last time.

All figures and videos were prepared with UCSF Chimera, Pymol56, and Resmap57. 

Molprobity was used to validate the stereochemistry of the final models.

Genetic complementation

For expression of a complementing second copy of truncated EXP2, the exp2 coding 

sequence up to codon position 221 was amplified with primers 5’- 

CGAATAAACACGATTTTTTCTCGAGATGAAAGTCAGTTATATATTT 

TCCTTTTTTTTGTTATTCTTCG-3’ and 5’-AATCAACTTTTGTTCGCTAGCTTTCTTTG 

ATTCCATAGATTTCAATTTCTCTTCC-3’ and inserted into the plasmid pyEOE-attP-
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EXP2–3xMYC20 between XhoI and NheI, resulting in the plasmid pyEOE-attP-EXP2∆222–

287-3xMYC. This plasmid was co-transfected with pINT40 into EXP2apt::HSP101–3xFLAG 

conditional knockdown parasites20 at the mature schizont stage using a Nucleofector 2b and 

Basic Parasite Nucleofector kit 2 (Lonza). Selection with 2µM DSM1 [Ref 58] was applied 

24 h post transfection (in addition to 2.5 µg/ml Blasticidin S and 1 µM anhydrotetracycline 

(aTc) for maintenance of endogenous EXP2 translational control by the aptamer system) to 

facilitate integration into the attP site engineered in the benign cg6 locus through integrase 

mediated attB x attP recombination. Following return from selection, parasites were cloned 

by limiting dilution, and expression of EXP2∆222–287-3xMYC was confirmed by western 

blot.

Parasite growth assays

EXP2apt::∆222–287 parasites were extensively washed to remove aTc and plated with or 

without 1µM aTc in triplicate at an initial parasitemia of 1%. Media was changed every 48 h 

and 1:1 subculture was performed every other day beginning on day 4 to avoid culture 

overgrowth. Parasitemia (percent of total red blood cells (RBCs) infected) was measured 

every 24 h by flow cytometry on a FACSCanto (BD Biosciences) by nucleic acid staining of 

cultured RBCs with PBS containing 0.8 µg/ml acridine orange. Cumulative parasitemias 

were back calculated based on the subculture schedule and data were fit to an exponential 

growth equation to determine rate constants using Prism (Graphpad).

Quantification of protein export

For evaluation of protein export by immunofluorescence assay (IFA), mature schizonts were 

purified on a magnetic column and allowed to invade fresh, uninfected RBCs with shaking 

for 3 hours before treatment with 5% w/v D-sorbitol to destroy unruptured schizonts. Pulse 

invaded cells were plated with or without 1 µM aTc and allowed to develop 24 h post 

invasion. Thin smears of infected RBCs were briefly air dried and immediately fixed in ice 

cold acetone for 2 minutes. After fixation, samples were blocked for 30 minutes in PBS+3% 

BSA followed by incubation for one hour with primary antibody solutions containing mouse 

anti-FLAG M2 mAb (detecting HSP101–3xFLAG to mark the PVM) and rabbit anti-SBP1. 

After washing, secondary antibody incubation was carried out for one hour with Alexa Fluor 

anti-mouse 488 and anti-rabbit 594 IgG antibodies (Life Technologies), each diluted 1:2000. 

After final washing, coverslips were mounted over each sample using Pro-long antifade 

Gold with DAPI (Life Technologies). Images were collected with an ORCA-ER CCD 

camera (Hamamatsu) using AxioVision software on an Axio Imager.M1 microscope (Zeiss) 

with a 100x oil immersion objective using the same exposure times for each image (300 ms 

for SBP1–594, 150 ms for FLAG-488). Ten images were acquired for each condition using 

the DAPI channel for field selection to avoid bias. Images were then analyzed using Volocity 

6.3 (PerkinElmer). The border of each single-infected erythrocyte was traced using the DIC 

channel as a guide to define a region of interest (ROI). The PVM was marked using the “find 

objects” measurement tool for the HSP101–3xFLAG-488 channel (automatic threshold 

setting with threshold offset set to −30% and minimum object size set to 0.5 µm2). 

Individual Maurer’s clefts were identified using the “find spots” measurement tool for the 

SBP1–594 channel (offset minimum spot intensity set to 40% and brightest spot within 

radius set to 0.5 µm). All spots within the PVM object boundary were then removed using 
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the “subtract” measurement tool and the number and fluorescent intensity of the remaining 

spots in each ROI were collected. Data were pooled from two independent experiments and 

plotted with Prism.

Antibodies

The following primary antibodies were used for IFA and western blot: mouse anti-FLAG 

mAb clone M2 (Sigma) (IFA: 1:500, WB 1:500); rabbit polyclonal anti-SBP1 [Ref 59] (IFA: 

1:500); mouse anti-cMYC mAb 9E10 (ThermoFisher) (WB: 1:300).

Extended Data
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Extended Data Figure 1. Generation of HSP101–3xFLAG parasites and analysis of purified 
PTEX .
a, Schematic showing strategy for endogenous tagging of P. falciparum hsp101 with 

3xFLAG using CRISPR/Cas9 editing. Diagnostic PCR primers and expected amplicon 

following successful integration are shown. sgRNA, single guide RNA; UTR, untranslated 

region; CAM, calmodulin promoter; PfU6, P. falciparum U6 promoter; hDHFR, human 

dihydrofolate reductase. b, Diagnostic PCR with genomic DNA template from NF54attB 

parent or two independent populations of HSP101–3xFLAG parasites. kb, kilobase pairs. 

The experiment was performed one time. c, Western blot of NF54attB and HSP101–3xFLAG 

parasites probed with mouse-anti-FLAG M2 antibody (Sigma) and goat-anti-mouse IRDye 

680 secondary (Li-cor). Arrowhead indicates full-length HSP101–3xFLAG (predicted 

molecular weight 102.9 kDa after signal peptide cleavage). kDa, kilodaltons. Data represent 

two independent experiments. d, Giemsa staining of parasite-infected human erythrocytes 

from which PTEX was purified. Scale bar: 5um. For source data, see Supplementary Figure 

3. e, Silver stained SDS-PAGE gel of the FLAG-purified PTEX sample. Identities of the 

bands labeled EXP2, PTEX150, and HSP101 were confirmed by tryptic digest LC-MS. f, 
Tryptic digest liquid chromatography-mass spectrometry (LC-MS) analysis of the FLAG-

purified PTEX sample. The PTEX core components are among the five most abundant 
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species detected in the purified sample. For gel and blot source data, see Supplementary 

Figure 1.
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Extended Data Figure 2. Detailed views of the PTEX protein-conducting channel and symmetry 
mismatch in the engaged state.
CryoEM densities and atomic models of cargo and pore loops from the near-atomic 

resolution structures of Clp/HSP100 ATPases YME161 (a), PTEX HSP101 (b), and 

HSP10431 (c). Tyrosine sidechain densities are clearly visible intercalating with the cargo 

densities. The modeled engaged state PTEX cargo has a calculated RMSD of 1.09Å and 

1.25Å to the published YME1 and HSP104 cargo models, respectively. Pore loops are 

labeled by NBD and protomer (e. g., D2PL,P1: NBD2 Pore Loop, Protomer 1). d, Side view 
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of the bisected engaged state PTEX cryoEM map. The protein-conducting channel, 

calculated using HOLE60, is shown superimposed over the bisected map in translucent white 

with a navy outline. The HSP101 NBD2 pore loop densities are colored by HSP101 

protomer, and the cargo density is colored pink. e-j, The transition from the assymetric 

HSP101 spiral to the C7 pseudosymmetric PTEX150(668–823)-EXP2 heptamer is depicted 

using a series of cross sections taken perpendicular to the central axis of the translocon, 

spanning the area of symmetry mismatch. The section of the translocon corresponding to 

each cross-sectional image is indicated with a brackets in (d).
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Extended Data Figure 3. Detailed comparisons of the engaged and resetting states.
a, Side and top views of the EXP2 heptamer in the engaged state. Symmetric portions that 

remain constant between protomers are colored in mint. Portions that vary between 

protomers are colored and labeled by protomer. b-c, Superposition of the seven EXP2 

protomers, labeled A-G, in the engaged (b) and resetting (c) states, colored as in (a). Ribbon 

diagrams of the resetting state (a) and engaged state (b) nucleotide binding pockets are 

shown for each protomer. d-e, Top view of HSP101 NBD1 (d) and NBD2 (e) in the engaged 
and resetting states, shown in simplified surface representation. The hinge point at the 
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interface between HSP101 protomers 3 and 4 is indicated. f-g, Ribbon diagrams of the 

resetting state (f) and engaged state (g) nucleotide binding pockets are shown for each 

protomer. ATPγS in each pocket is shown with corresponding cryoEM density (mesh). The 

R859 arginine finger (sidechain shown in red-orange) is positioned ~3–5.5Å from the 

phosphorous atom in the γ-phosphate of the ATPγS in the binding pocket of the 

neighboring protomer in all protomers except R859 in protomer 3 in the resetting state 

(sidechain shown in gold), where the ATPγS bound in the protomer 4 NBD2 nucleotide 

pocket has shifted ~7.5Å away from the protomer 3 R859 arginine finger. h-i, Enlarged side 

view of the atomic models of the HSP101 NBD2 pore loops and unfolded cargo polypeptide 

backbone in the engaged (h) and resetting (i) states, shown with corresponding cryoEM 

densities. Tyrosine sidechain densities are clearly visible intercalating with the cargo 

densities. The modeled PTEX cargo has a calculated RMSD of 1.09Å and 1.25Å to the 

published YME1 and HSP104 cargo models, respectively. Pore loops are labeled by NBD 

and protomer (e. g., D2PL,P1: NBD2 Pore Loop, Protomer 1).
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Extended Data Figure 4. Resolution assessments of the two PTEX states.
a-c,e-f Local resolution evaluations of the full PTEX map (a) and the focus-refined maps of 

the upper/hexameric (b) and lower/heptameric (c) halves of PTEX in the engaged state, and 

the full PTEX map (e) and the focus-refined map of the lower/heptameric (f) half of PTEX 

in the resetting state, calculated by Resmap57 and colored according to resolution. Maps are 

displayed at higher thresholds where the detergent belt is not visible for clarity, to avoid 

obscuring details of the transmembrane helices. d, Global resolution assessment of the 

engaged and resetting state maps as measured using the “Gold-standard” Fourier shell 
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correlation (FSC) curves generated by RELION43,44 by comparison of two independently 

refined “half-maps”. g, Map-to-model FSC curves demonstrating the degree of correlation 

between the refined PTEX models and the experimental cryoEM maps for the engaged and 

resetting states.
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Extended Data Figure 5. Representative regions of cryoEM density and atomic models.
Additional cryoEM densities (mesh) superposed with our atomic models for HSP101 (a), 

PTEX150(668–823) (b), and EXP2 (c). Displayed regions correspond to areas circled in 

magenta on guide figures (inset, upper right), and are colored as in guide figure: HSP101 

(cornflower blue), PTEX150(668–823) (salmon), EXP2 (mint). Terminal residues for each 

segment are labeled with the amino acid, residue number, protomer, and state.
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Extended Data Figure 6. Experimentally determined secondary structure elements and detected 
mass-spec fragments mapped to the primary sequences of the three PTEX proteins.
For EXP2 (a), PTEX150 (b), and HSP101 (c), secondary structure elements are shown as 

tubes (helices), lines (loops), and arrows (strands) above the corresponding sequence and are 

colored as in Fig. 2a, 3a, and 4a. In the sequences shown below, residues resolved in our 

structures are colored according to protein colors in Fig. 1c–f: EXP2 (mint), PTEX150 

(salmon) and HSP101 (cornflower). Signal peptide residues are colored gold. All residues in 

the mature proteins that are not resolved in our structures are shown in grey. The 3xFLAG 

residues at the C-terminus of HSP101 are colored green. Peptides detected in tryptic digest 
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LC-MS/MS analysis of the purified PTEX sample are shown as black lines below the 

corresponding sequences. Arrowheads above the EXP2 sequence indicate truncations sites 

described in this work and in Garten et al.20 immediately before (∆222–287, red arrowhead) 

and after (∆234–287, green arrowhead) the assembly strand. Arrowheads above PTEX150 

sequence indicate previously described truncation sites37 (∆847–993, red arrowhead; ∆869–

993, green arrowhead).
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Extended Data Figure 7. EM of the PTEX core complex.
a-c Representative negative stain micrograph (a), enlarged portion of micrograph (b), and 

two-dimensional class averages (c) of the PTEX core complex in multiple orientations. d,e 
Representative cryoEM micrograph (d) and two-dimensional class averages (e) of the PTEX 

core complex in multiple orientations. Arrow in upper left panel of (e) indicates the 

detergent belt, which is visible as a less-dense (dimmer) halo surrounding the denser 

(brighter) densities of the alpha helices visible in the TMD in side views. Scale bars are 

700Å, 700Å, 100Å, 200Å and 100Å, respectively.
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Extended Data Figure 8. Detergent belt, amino-terminal domain, and claw densities visible in 
maps at lower thresholds.
a, The engaged state PTEX150/EXP2 heptamer, displayed in surface representation and 

colored by electrostatic potential. The bottom half of the full engaged state density map is 

superimposed, showing the location of the detergent belt in relation with the EXP2 TMD. A 

ring of positively charged residues is clearly visible directly above where the PVM surface 

would normally lie. b,c Engaged state (b) and resetting state (c) maps were low-pass filtered 

to 6Å to improve clarity of low resolution details, and are shown overlaid, at two different 

thresholds to improve visibility of the detergent belt and the poorly-resolved N-terminal 

domains of HSP101 (teal, higher threshold; peach, lower threshold). d, Resetting state map 

of PTEX displayed at a lower threshold to show the strong claw-shaped densities extending 

from the PTEX150(668–823) shaft up to the HSP101 MD. e, Enlarged view of the 

interaction between HSP101 Y488 and Y491 and the three-turn helix, shown with 

corresponding cryoEM density (mesh).
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Extended Data Figure 9. Data processing workflow.
Illustration of workflow for 3D classification, and focused classification and refinement. 

Maps are displayed at higher thresholds where the detergent belt is not visible for clarity, to 

avoid obscuring details of the transmembrane helices.
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Extended Data Table 1

Cryo-EM data collection, refinement and validation statistics.

PTEX 
Engaged Full 
(EMDB-8951) 
(PDB 6E10)

PTEX 
Engaged Top 
(EMDB-8951) 
(PDB 6E10)

PTEX 
Engaged 
BoCoen 
(EMDB-8951) 
(PDB 6EI0)

PTEX 
Resetting Fun 
(EMDB-8952) 
(PDB 6E11)

PTEX 
Resetting Top 
(EMDB-8952) 
(PDB 6E11)

PTEX 
Resetting 
Bottom 
(EMDB-8952) 
(PDB 6E11)

Data collection and 
processing

Magnification ×105,000 ×105,000 ×105,000 ×105,000 n/a ×105,000

Voltage (kV) 300 300 300 300 n/a 300

Electron exposure (e-/Å2) 60 60 60 60 n/a 60

Defocus range (μm) −1 5 to – 40 −1 5 to – 40 −1 5 to – 40 −1 5 to – 40 n/a −1 5 to – 40

Pixel size (Å) 1.04 1.04 1.04 1 04 n/a 1.04

Symmetry nrcanl Cl Cl C7 Cl n/a C7

Initial particle traces (no) 1,508,462 1,508,462 1,508,462 1,508,462 n/a 1,508,462

Final purticle images 
(no)

  72,966   53,531   39,437   78,499 n/a 48,425

Map resolution (Å)
 FSC threshold

4.09
0.143

4 16
0.143

3.5
0.143

4.23
0.143

n/a 3.4
0.143

Map resolution range (Å) 3.2–7.5 3.0–7.0 2.8–3.6 3.2–7.5 n/a 2. 8–3.4

Refinement

Initial model wed (PDB 
cock)

n/a n/a n/a n/a n/a n/a

Model resolution (Å)
  FSC threshold

4.58
0.5

4.23
0.5

3.59
0.5

4.84
0.5

n/a 3.67
0.5

Model resoluion range 
(Å)

4.58 4.23 3.59 4.84 n/a 3.67

Map sharpening B factor 
(Å2)

−180 −180 −170 −180 n/a −160

Model compoution
 Non-hydrogen atoms
 Protein residues
 Legand

57,352
6,838
12

57,352
6,838
12

57,352
6,838
12

57,401
6,826
12

57,401
6,826
12

57,401
6,826
12

B factor (Å2)
 Protein
 Legand

n/a n/a n/a n/a n/a n/a

R.m.s. deviation
 Bond lengths (Å)
 Bond angles (°)

0.008
1.311

0.009
1.262

0.008
0.925

0.008
1.300

0.007
1.332

0.006
0.895

Validation
 MolProhety score
 (Clashscore
 Poor rotamers(%)

1.95
9.74
1.04

1.81
7.35
0.13

1.53
4.01
0.45

2.03
10.44
0.47

1.96
7.46
0.05

1.64
5.48
0.33

Ramachandran plot
 Favored (%)
 Allowed (%)
 Disallolwed (%)

93.96
5.53
0 51

94.01
5.76
0.23

94.99
4.69
0.33

91.91
7.65
0.44

89.98
9.58
0.44

94.98
5.01
0.00
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Global architecture of the PTEX core complex in two cargo-bound states.
a, Schematic of parasite-infected human erythrocyte. PPM: parasite plasma membrane. b-e, 

CryoEM maps (b-c) and atomic models (d-e) of the PTEX core complex. Horizontal lines 

represent the PVM bilayer, estimated based on the detergent belt density, visible at lower 

thresholds (see Extended Data Fig. 7). f-k, Top and side views of the HSP101 (f-g), 

PTEX150 (h-i), and EXP2 (j-k) cryoEM maps, coloured by protomer. l-n, Pore radius (l) 
and protein-conducting channel (m-n) calculated using HOLE60.
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Figure 2. EXP2 forms a heptameric pseudo-symmetric PVM-spanning pore.
a,b Linear schematic (a) and ribbon diagram (b) of the EXP2 monomer in the engaged state. 

Dashed gray boxes represent unmodeled regions. Inset: one EXP2 monomer (coloured) 

within the PTEX complex. c, Density (mesh) and model of C113-C140 disulfide bond. d, 

EXP2 heptamer, coloured as in (b). e, Cutaway of the EXP2 transmembrane channel with 

hydrophilic residues (pink) lining the inner protein-conducting pore and hydrophobic 

residues (yellow) on the outer, membrane-facing surface.
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Figure 3. PTEX150 forms a heptameric flange-shaped adaptor between EXP2 and HSP101.
a,b Linear schematic (a) and ribbon diagram (b) of the PTEX150(668–823) monomer in the 

engaged state. Dashed gray boxes represent unmodeled regions. Inset: one PTEX150(668–

823) monomer (coloured) within the PTEX complex. PS, proximal shaft; DS, distal shaft. c, 

The PTEX150(668–823) heptamer, colored as in (b). d, Views showing how one 

PTEX150(668–823) monomer hooks into the top of the EXP2 funnel.
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Figure 4. Endogenous cargo bound in the channel of the HSP101 hexamer.
a,b Linear schematic (a) and ribbon diagram (b) of the HSP101 monomer in the engaged 
state. c, Side view of the full (left) and bisected (right) HSP101 hexamer cryoEM map. 

NBD1 and NBD2 rings are coloured with light (NBD1) and dark (NBD2) blue gradients to 

emphasize the right-handed spiral shape of the hexamer. In the bisected map, NBD2 pore 

loop densities are coloured by protomer, ATPγS is colored magenta, and the cargo density is 

colored light pink. d, Enlarged side view of the atomic models of the HSP101 NBD2 pore 

loops and unfolded cargo polypeptide backbone, shown with densities. NBD2 pore loops are 
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colored as in (c) and labeled by protomer (e. g., D2PL,P1: NBD2 Pore Loop, Protomer 1). 

Vertical distances between pore loop tyrosines in D2PL,P1–6 are 6.52Å, 6.28Å, 6.38Å, 

6.96Å and 6.12Å, respectively.
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Figure 5. Interactions essential to PTEX function.
a,b Ribbon (a) and stick (b) models of the HSP101 CTD β-sheet augmented by the EXP2 

assembly strand, shown with corresponding cryoEM density (mesh). Segment outlined in 

red was truncated in functional complementation assays. c, Western blot of EXP2apt 

parasites complemented with EXP2∆222–287-3xMYC (predicted molecular weight: 27.8 

kDa after signal peptide cleavage). For blot source data, see Supplementary Fig. 1. d, 

Growth analysis of EXP2apt::∆222–287-3xMYC. Parasites were grown with or without aTc 

to maintain or knockdown endogenous EXP2 expression, respectively. One experiment 
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performed with three technical replicates is shown. Bar graph shows mean exponential 

growth rate constant (hr−1) determined from the fit of the two independent experiments and 

error bars indicate s.d. e, Immunofluorescence assay (IFA) detecting exported protein SBP1 

and HSP101–3xFLAG (as a PV marker) in EXP2apt::∆222–287-3xMYC parasites allowed 

to develop with or without aTc to 24 hr post invasion. Dashed line indicates the traced 

boundary of the RBC. DIC, differential interference contrast. f, Quantification of SBP1 

export IFA assays. Data are pooled from two independent experiments, n is the number of 

individual parasite-infected RBCs. Boxes and whiskers delineate 25th-75th and 10th-90th 

percentiles, respectively. All P values determined by an unpaired, two-sided t-test. All data 

shown represent two independent experiments.
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Figure 6. Mechanism of translocation.
a, Side views of the HSP101 pore loops with the unfolded cargo peptide backbone models 

(pink) built into the cryoEM densities (pink). Vertical distances between pore loop tyrosines 

in consecutive loops are: engaged D1PL,P1–6: 9.41Å, 8.61Å, 1.40Å, 3.34Å, 2.28Å; engaged 
D2PL,P1–6: 6.52Å, 6.28Å, 6.38Å, 6.96Å, 6.12Å; resetting D1PL,P1–6: 1.75Å, −2.70Å, 

−1.65Å, −0.78Å, 1.81Å; resetting D2PL,P1–6: 5.88Å, 4.56Å, −6.80Å, 2.25Å, 7.88Å. b, 
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Proposed stepwise feeding mechanism of translocation by PTEX. NBD1 and NBD2 pore 

loops and cargo are colored as in (a).
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