
ARTICLE

Comparative analysis of mRNA and protein
degradation in prostate tissues indicates high
stability of proteins
Wenguang Shao 1,17, Tiannan Guo 1,2,3,17, Nora C. Toussaint 4,5, Peng Xue1,6, Ulrich Wagner7, Li Li8,

Konstantina Charmpi8, Yi Zhu1,2,3, Jianmin Wu 9, Marija Buljan1, Rui Sun2,3, Dorothea Rutishauser7,

Thomas Hermanns10, Christian Daniel Fankhauser 10, Cedric Poyet10, Jelena Ljubicic7, Niels Rupp7,

Jan H. Rüschoff7, Qing Zhong7,11, Andreas Beyer 8, Jiafu Ji12, Ben C. Collins 1, Yansheng Liu 13,

Gunnar Rätsch5,14, Peter J. Wild7,15 & Ruedi Aebersold 1,16

Deterioration of biomolecules in clinical tissues is an inevitable pre-analytical process, which

affects molecular measurements and thus potentially confounds conclusions from cohort

analyses. Here, we investigate the degradation of mRNA and protein in 68 pairs of adjacent

prostate tissue samples using RNA-Seq and SWATH mass spectrometry, respectively. To

objectively quantify the extent of protein degradation, we develop a numerical score, the

Proteome Integrity Number (PIN), that faithfully measures the degree of protein degradation.

Our results indicate that protein degradation only affects 5.9% of the samples tested and

shows negligible correlation with mRNA degradation in the adjacent samples. These findings

are confirmed by independent analyses on additional clinical sample cohorts and across

different mass spectrometric methods. Overall, the data show that the majority of samples

tested are not compromised by protein degradation, and establish the PIN score as a generic

and accurate indicator of sample quality for proteomic analyses.
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Precise and accurate measurements of different types of
molecules in tissue samples are essential for clinical diag-
nosis, prognosis, and therapy. High-throughput methods,

including next-generation sequencing1 and proteomic technolo-
gies2, allow for the measurement of thousands of molecules
expressed in tissue samples in different physiological and
pathological states, providing an improved understanding of
molecular mechanisms of diseases. However, pre-analytical fac-
tors such as artefactual degradation, in vitro modification of
molecules or loss through leakage may alter qualitative and
quantitative molecular patterns in clinical specimens, thus con-
founding measurements and clinical conclusions.

In living cells, mRNA levels are tightly controlled by balancing
the protection of mRNA molecules from unwanted degradation
and the directed degradation of specific RNA species by RNA-
degrading enzymes including ribonucleases (RNases). In isolated
tissue samples, this balance is frequently disrupted, leading to
artefactual changes in mRNA profiles that currently can hardly be
modeled. In a recent study, Romero and colleagues observed a
significant correlation between the storage time of peripheral blood
mononuclear cell samples at room temperature and extent of RNA
degradation3. Importantly, the observed decay rate varied for dif-
ferent transcripts3. While it remains controversial whether and how
the bias introduced by mRNA decay can be corrected in silico, in
most studies samples in which mRNA degradation exceeds an
arbitrary threshold, as measured by an objective score, are treated
separately or discarded3,4. For example, about 21% of prostate
tumors analyzed in a recent TCGA study were found to be sub-
stantially degraded and were excluded from further analysis4.

Similarly for proteins, homeostasis is also a complex and
tightly controlled process in living cells. Protein degradation is an
important component of protein homeostasis. It is catalyzed by
proteases and specific protein degradation pathways. In resected
or stored tissue samples, additional proteases, including caspases
associated with cell death pathways are activated, and the general
protein degradation system is altered. Using mass spectrometric
measurements of blood samples, a few studies have investigated
the effects of sample storage on protein stability. Remarkably, the
plasma proteome appeared to be highly stable even after storage
for a week at 4℃ or at room temperature in EDTA plasma
tubes5. However, storage time caused changes in antibody-
depleted plasma proteome profiling, probably due to structural
alteration of some proteins5.

Little is known about protein degradation in tissue samples and
how it might affect downstream results. An in vitro study showed
that the rate of protein degradation in skeletal muscle tissue was
affected by incubating the samples with soluble amino acids (i.e.,
leucine) and chemical elements (i.e., calcium; zinc)6. Recent
technical advances in mass spectrometry (MS), specifically the
development of SWATH/DIA methods have made highly
reproducible quantification of thousands of proteins in clinical
cohorts consisting of hundreds of samples a reality7,8. The
question whether protein degradation, if present in clinical
samples, affects the quality of proteomic measurements and thus
introduces a bias in biological and clinical conclusions is therefore
of great and acute importance, particularly for clinical cohort
studies.

Here, we comprehensively compare the degradation patterns of
mRNA and protein in a prostate cancer tissue cohort. We subject
68 pairs of adjacent tissue samples to RNA-Sequencing (RNA-
Seq) or proteomic analysis by pressure cycling technology (PCT)
coupled with SWATH mass spectrometry7. We develop a score,
the Proteome Integrity Number (PIN), to objectively quantify the
proteome-wide degree of degradation in each sample. We
benchmark the PIN algorithm using a set of ground-truth sam-
ples in which the levels of proteome degradation were artificially

controlled and independently validated, and assess the relative
degree of mRNA and protein degradation in adjacent samples.
Our results show that protein degradation, although present and
detectable, has a minimal impact on proteomic measurements in
the clinical cohort tested, and is relatively independent of mRNA
degradation. We also establish the PIN score as an accurate
indicator of sample quality for proteomic analyses of clinical
samples and show that the PIN score is robust across different
types of clinical samples and mass spectrometric measurement
methods. Our results thus provide important information and
resources for proteomic measurements in clinical cohort studies.

Results and discussion
Development and validation of the PIN algorithm. To estimate
the degree of protein degradation in a sample, we first introduced
an individual protein integrity score (iPIS) for each measured
protein. This score quantifies the relative abundance of semi-
tryptic peptides, the likely products of protein degradation by
endo- and exo-proteases, in relation to the total number of
peptides detected from the protein. To estimate an overall degree
of protein degradation on the sample level, the PIN of each
sample is then calculated as the arithmetic mean of all iPIS values
(Fig. 1). Numerically, a PIN ranges from zero to one. A higher
PIN indicates a smaller fraction of protein degradation products
and thus a higher degree of proteomic integrity of the sample.
Even though the PIN score makes no statement about the extent
of degradation of proteins that were not identified in the data set,
which for the most part are proteins of low abundance, it
nevertheless provides an almost complete picture of protein
degradation on the sample level. This is due to the abundance
distribution of proteins in cells, which implies that more than
99% of the total protein mass is represented in the top five orders
of magnitude of protein abundance, the range approximately
covered by mass spectrometric measurements9. Another advan-
tage of focusing on proteins with higher abundance is an
increased likelihood that semi-tryptic peptides, which usually
show lower mass spectrometric signals compared with fully
tryptic peptides, can be consistently and reliably quantified
(Supplementary Fig. 1a, b).

To validate the PIN algorithm, we performed a benchmarking
study (Supplementary Note 1). A set of ‘ground truth’ samples
was generated in which the levels of proteome degradation for
each sample were known and calibrated. Specifically, six samples
(A-F) of protein extracts of HeLa Kyoto cells were treated with
different amounts of the low specificity protease Proteinase K to
generate samples of progressively increasing protein degradation,
and nine samples were prepared without treatment as controls
(Table 1). As an orthogonal validation method, sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was
applied to the biological replicates of six treated samples and
one control sample. As shown in Fig. 2a, the treated samples
demonstrated strong and progressive evidence of proteome
degradation as expected—intact proteins breaking into their
smaller sub-units, resulting in the presence of a larger number of
low molecular weight bands in the gel image and concurrent
depletion of the higher molecular weight bands.

We then calculated the PIN score as an indicator of proteome
integrity of each sample in the benchmarking datasets, by
applying the PIN algorithm to the quantitative peptide matrix
obtained from SWATH-MS measurements. Not surprisingly, the
PIN values of the treated samples decreased with progressing
protein degradation. Interestingly, the PIN values showed a
strong linear relationship (R2: 0.94) with the amount (on a
logarithmic scale) of Proteinase K added, suggesting that PIN
values are accurate indicators of the degree of protein degradation
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(Supplementary Fig. 2). After statistical analysis that estimates a
P-value indicating the probability of observing such a specific PIN
value under the null hypothesis that the sample was not degraded,
we were able to confidently identify the samples with protease
treatment (Table 1 and Fig. 2b) with different statistical
significances. For example, three samples treated with the highest
amounts of protease added were identified as most extensively
degraded, with P-values below 1e−5; next, two samples were
identified as degraded with P-values between 1e−5 and 0.001; the
sample treated with the minimal amount of protease was
identified as moderately degraded with a P-value of 0.04 (Fig. 2b).
Overall, we showed that PIN values provide precise measure-
ments of proteomics samples to infer protein degradation
(Supplementary Figs. 2 and 3) and that the workflow is sensitive
and robust to identify degraded samples of various extents with
correct statistical significances (Table 1; Fig. 2b; Supplementary
Table 1 and see Supplementary Note 1 for details).

Comparative analysis of transcript and protein degradation.
Next, to further evaluate the degree of mRNA and protein
degradation in directly comparable tissue samples, we produced
68 pairs of adjacent tissue punches from resected prostates of 24
prostate cancer patients (Fig. 3a and Supplementary Table 2) and
analyzed the degradation of transcripts and proteins, respectively.
For each pair, one punch was analyzed using PCT-SWATH,
while the adjacent punch was analyzed with RNA-Seq. Overall,
we measured 14,593 expressed genes using RNA-Seq. By per-
forming targeted data extraction against an assay library con-
taining ions of 51,969 tryptic peptides and 4530 semi-tryptic
peptides, we detected in total 3056 proteins represented by 29,818
peptides, consisting of ions of 27, 685 tryptic peptides and 2133
semi-tryptic peptides.

We assessed the degradation of mRNA in each tissue sample
using mRIN, which estimates degradation by quantifying the 3′
bias of each gene. Assuming that the transcriptome of most

Table 1 The overall experimental design and results of the benchmarking study

Sample # biological replicates # technical replicates Proteinase K concentration (μg/μl) PIN P-value

A 2 2 0.0200 0.645 3.17E-17
B 2 2 0.0100 0.714 2.07E-13
C 2 2 0.0040 0.850 2.73E-06
D 2 2 0.0020 0.868 2.15E-05
E 2 2 0.0010 0.900 9.87E-04
F 2 2 0.0005 0.933 0.039
Control 18 2 N.A. 0.964 0.721

P-values were obtained from the PIN algorithm by probability distribution fitting
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Fig. 2 The benchmarking study to validate the PIN algorithm. a The uncropped SDS-PAGE gel showing the effect of sample treatment with different
amounts of protease on the proteome level. Lanes: 1, MW Marker; 2, Controls (without protease treatment); 3–8, Samples F-A as defined in Table 1.
b Scatter plot of sorted PIN values of the samples of the benchmarking study. The samples with P-values above 0.05 are marked in blue; those with
P-values between 0.001 and 0.05 are in coffee; those with P-values between 1e−5 and 0.001 are in orange; those with P-values below 1e−5 are in dark red
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samples is not degraded, we detected substantial mRNA
degradation (mRIN <−0.04; P-value < 0.01) in 13 (19.1%) out
of 68 prostate tissue samples (Fig. 3b, Table 2 and Supplementary
Table 3). This level of significant degradation is in accordance
with mRNA degradation observed in a previous study4. Here,
unsupervised hierarchical clustering of gene expression profiles
separated seven samples into a distinct cluster. Of these, five
samples exhibited a significant degree (P-value < 0.01) of mRNA
degradation (Supplementary Fig. 4a). The remaining two samples
showed intermediate degradation (P-values: 0.017 and 0.045),
indicating that mRNA degradation would probably lead to
distorted biological conclusions by introducing unanticipated
bias.

We then computed the PIN values for the 68 prostate tissue
samples to estimate the degree of protein degradation. The PIN
values of this set of samples ranged from 0.937 to 0.964 (mean:
0.953; standard deviation: 0.005) (Fig. 3b and Supplementary
Table 3). After statistical analyses, we identified four (5.9%)
samples with substantial protein degradation (PIN: 0.937, 0.940,
0.941, and 0.941) at a significance level with P-values below 0.01
(Table 2). Based on protein expression profiles, three of these
samples were clustered within a subgroup of 10 samples in which
the other seven samples did not show significant degradation
based on the PIN values, suggesting that in this set of samples,
protein degradation would not likely bias biological and clinical
conclusions by introducing a subgroup of samples with
substantial protein degradation (Supplementary Fig. 4b).

Since the tissue samples for RNA-Seq and proteome analysis
were from adjacent tissue regions, we assumed an equal degree of
pre-analytical variation for each sample pair from a specific
tissue. We then asked whether mRNA and proteins were
degraded to a similar extent in a specific tissue. Interestingly,
none of the samples with substantial protein degradation showed
severely degraded mRNA, and vice versa. Further, we observed a
negligible correlation between mRNA degradation and protein
degradation (Spearman rho: 0.147; P-value: 0.232) (Fig. 3b).

Therefore, our results reveal negligible dependency between
transcriptome and proteome degradation in this set of samples.

We then compared the degree of degradation at the level of
individual transcripts and proteins in this sample cohort. We
observed that at the same significance level (P-value < 0.01), fewer
samples exhibited degradation at the protein than the transcript
level. Only 5.9% of the samples displayed statistically significant
protein degradation, whereas 19% did at the transcript level.
Moreover, the P-values of degraded samples of transcripts were
much more significant than those of proteins (Table 2), indicating
that the degree of mRNA degradation was higher in the sample
cohort studied.

Of note, the five samples with the most extensive mRNA
degradation were exclusively derived from two patients (Fig. 3c).
In contrast, proteomic degradation displayed no bias to patients
(Fig. 3d). Moreover, 11 out of 13 samples with significant mRNA
degradation were from tumor samples (Table 2), suggesting that
mRNA degradation occurs more frequently in tumors compared
to benign tissues. One possible explanation for this is the
deregulated mRNA degradation machinery associated with
tumors10.

To investigate the stability of each individual transcript and
protein, we further analyzed the degradation profiles of
transcripts and proteins across the sample cohort using mKS
(Fig. 4a) and iPIS matrices (Fig. 4b). Sorted by the degree of
degradation measured by mRIN (i.e., 3′ bias) and PIN (i.e.,
fraction of protein degradation products) on the sample level,
samples demonstrated consistently sorted degrees of degrada-
tion of individual molecules, confirming the effectiveness of
both scoring systems to measure degradation. In general, we
observed a higher degree of degradation at the transcriptome
level compared to the proteome level, with most proteins
exhibiting high stability in all samples, even in those with
lower PIN values. In the samples with significant mRNA
degradation, most genes were affected, thus indicating universal
degradation of transcripts (Fig. 4a and Supplementary Fig. 5a).
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In contrast, 2384 (78%) proteins with averaged iPIS equal to 1
were detected in all samples, which means that most proteins
that we have measured were not affected by protein degrada-
tion, even in the samples with lower PIN values, and that
protein degradation is more strongly protein specific (Fig. 4b
and Supplementary Fig. 5b). Therefore, our results highlight
the remarkable difference between universal degradation
at the transcriptome level and protein-specific degradation at
the proteome level observed in this study. The above results
are thus indicative that the pre-analytical variables causing
the respective mRNA and protein degradation are decoupled.
This could be possibly caused by the difference between the
mechanisms of mRNA and protein degradation (mediated
by RNase and proteases, respectively). An in-depth elucidation

of degradation mechanisms is beyond the scope of this
manuscript.

The extent of proteomic measurements affected by degrada-
tion. As we confirmed the presence of protein degradation in
this set of prostate tissues, we further examined how degrada-
tion would affect our proteomic measurements and the clinical
conclusions from the study. We defined proteins with averaged
iPIS scores below 0.8 (Supplementary Fig. 5b) as degradation-
prone proteins in the respective study. To examine whether any
bias in biological conclusions would be introduced, we com-
pared the dendrograms of hierarchical clustering using quan-
titative proteomic data with and without these proteins.
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Fig. 4 Visualization of degradation at the level of individual transcripts and proteins. a Heatmap (bottom) of mKS matrix illustrating the degree of
degradation of each individual transcript (rows), with samples (columns) ordered by mRINs. The bar plot (top) displays each sample’s mRIN (median
centered). Samples with significant mRNA degradation are highlighted in yellow in the bar plot (n= 68). b Similar to a, but for iPIS matrix with samples
ordered by the PIN values. Four samples with significant protein degradation are highlighted in yellow in the bar plot (n= 68)

Table 2 mRINs and PINs with their associated P-values of the degraded prostate tissues

Patient ID Tissue type mRNA Protein

mRIN P-value PIN P-value

mRNA degraded samples 33 Tumor −0.210 1.6E−40 0.955 0.542
35 Tumor −0.203 3.9E−38 0.956 0.649
33 Tumor −0.161 4.6E−25 0.949 0.187
35 Benign −0.127 7.9E−17 0.947 0.133
35 Tumor −0.113 6.2E−14 0.951 0.303
37 Tumor −0.096 1.2E−10 0.951 0.276
14 Tumor −0.087 2.6E−09 0.951 0.286
38 Tumor −0.073 3.6E−07 0.963 0.997
37 Tumor −0.070 7.9E−07 0.947 0.125
33 Benign −0.064 4.7E−06 0.951 0.255
38 Benign −0.063 6.2E−06 0.957 0.697
7 Tumor −0.053 8.6E−05 0.955 0.542
31 Tumor −0.043 8.5E−04 0.956 0.649

Protein degraded samples 16 Benign −0.004 0.212 0.937 9.4E-05
10 Tumor 0.030 0.895 0.940 0.0015
37 Benign −0.028 0.012 0.941 0.0028
12 Tumor 0.013 0.576 0.941 0.0052

The degraded tissues were significantly degraded at either transcript or protein level (P-value < 0.01). P-values were obtained from the mRIN and PIN algorithm, respectively
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Overall, the two dendrograms were highly similar to each other,
with a cophenetic correlation coefficient of 0.94. As shown in
Fig. 5a, b, only five samples slightly changed their positions
between the dendrograms upon removal of degradation-prone
proteins. These observations further suggest that the biological
conclusions were not substantially affected by protein degra-
dation. This can be explained as follows. First, in this study,
only 149 degradation-prone proteins were detected (Fig. 4b and
Supplementary Fig. 5b). These proteins make up 4.9% of the
3056 proteins measured, a fraction of proteins that is likely too
small to cause a clustering rearrangement of the total proteome.
Second, we used the most intense peptide that could be con-
sistently detected across the sample cohort for protein quanti-
fication in the present study. In this way, only of 3.5% proteins
on average were quantified by semi-tryptic peptides, which
further reduced the effect of protein degradation. This is
exemplified by two representative proteins (Supplementary
Fig. 1a, b). Although a few semi-tryptic peptides of these two
proteins were detected, the most intense and most reproducibly
detected peptides were fully tryptic.

In quantitative proteomics, peptides are quantified as
surrogates for proteins, and proteins usually generate several
peptides that are mass spectrometrically analyzed and can
be used for quantification. To reliably quantify abundances of
proteins, it is necessary to select the most representative
peptides11 and usually semi-tryptic peptides are not searched
as candidates in a routine proteomics data analysis, as
the sensitivity of peptide identifications would be likely
reduced due to search space expansion. In addition,
detection of semi-tryptic peptides was less consistent than that
of fully tryptic peptides (Fig. 5c). Further, compared to fully
tryptic peptides, a weaker covariation of semi-tryptic peptides
with other peptides generated from the same protein was
observed (Fig. 5d). These observations suggest that semi-tryptic
peptides, albeit indicative of protein degradation extent, should
be excluded for protein quantification in routine proteomic
experiments12.

General utility of the PIN algorithm. To demonstrate the gen-
eral utility of the PIN algorithm (Supplementary Note 2), we
applied it to additional datasets from clinical proteomics research
studies that included various types of clinical samples (specifically
prostate tissue, breast tissue, gastric tissue, and human plasma),
different sample storage methods (specifically formalin-fixed
paraffin-embedded (FFPE) and fresh frozen samples) and dif-
ferent MS instruments, data acquisition and proteomics techni-
ques (specifically data-dependent acquisition (DDA) vs. data-
independent acquisition (DIA); iTRAQ labeling vs. label-free
quantification; whole samples vs. fractionated samples). The
diversity of these studies (Supplementary Table 4) allowed us to
demonstrate the general utility of the PIN algorithm across the
commonly used MS platforms and sample types and to investi-
gate generic issues related to protein degradation in different
(clinical) sample types (Supplementary Figs. 6–12; detailed in
Supplementary Note 2). For example, the study of breast cancer
tissue samples also confirmed the previous observations reported
in13, as a high degree (91.7%) of overlapped samples was iden-
tified by the PIN algorithm and stated in the original report
(Supplementary Figs. 6 and 7). Further, the study of gastric cancer
tissue samples confirmed the aforementioned observation that the
pre-analytical variables causing the respective mRNA and protein
degradation are decoupled (Supplementary Figs. 8 and 9).

In summary, our results uncover remarkable stability of
proteins in primary clinical tissue specimens, and consolidate
the foundation for protein-based clinical diagnosis using mass
spectrometry-based bottom-up proteomics. Protein degradation,
although present, affected only a relatively limited number of
measured proteins, and we only identified four samples with
substantial degradation in a clinical cohort of 68 samples.
Importantly, protein degradation was relatively independent of
mRNA degradation, indicating that pre-analytical variables
causing mRNA and protein degradation were decoupled. These
findings have important implications for the use of proteomic
measurements (e.g., SWATH/DIA MS) in clinical studies,
especially for large clinical cohorts, where pre-analytical variables

0

20

40

60

# 
O

cc
ur

re
nc

es
 a

cr
os

s
in

je
ct

io
ns

−0.2

0.2

0.6

1.0

M
ed

ia
n 

P
ea

rs
on

c d

a b

Sample3–5 Sample3–5Sample1 Sample1Sample2 Sample2

Fully tryptic
peptides

Semi-tryptic
peptides

Fully tryptic
peptides

semi-tryptic
peptides

Fig. 5 Detailed mRNA and protein degradation characteristics. a Hierarchical clustering of all proteins quantified in the sample cohort. b Hierarchical
clustering of quantified proteins without degradation-prone proteins. c The reproducibility of fully tryptic peptides was higher than that of semi-tryptic
peptides, as demonstrated in the box plot. d A stronger covariation of fully tryptic peptides across 68 samples with other peptides generated from the same
protein was observed, compared with that of semi-tryptic peptides. The line within the box represents the median, the borders of the box represent the
interquartile range and the whiskers represent smallest and largest values no more than 1.5 times the interquartile range; n= 27,685 for fully tryptic
peptides, n= 2133 for semi-tryptic peptides

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10513-5

6 NATURE COMMUNICATIONS |         (2019) 10:2524 | https://doi.org/10.1038/s41467-019-10513-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


cannot be precisely and equally controlled (Supplementary
Note 2). Finally, to identify proteomic samples with substantial
degradation, the PIN algorithm (Supplementary Fig. 13 and
Supplementary Note 3) developed here is generally applicable to
data generated from any bottom-up proteomic datasets by only
modifying the search strategy during data analysis without the
requirement of any additional experiments. This is especially
useful for SWATH/DIA MS datasets, where complete proteome
maps, including potential degradation products, are digitally
recorded in an unbiased manner.

Methods
Prostate cancer tissue specimens. Sixty-eight prostate tissue samples of 24
patients (Supplementary Table 2) were collected within the ProCOC study14.
From each patient, a pair of adjacent punches (inner diameter 1 mm) of
malignant and benign tissue, respectively, was collected from low-grade prostate
tumors. In patients with intermediate and high-grade tumors, we collected
pairs of punches from two histologically distinct regions of malignant tissue and
a pair of punches of benign tissue. From each pair of tissue punches, one sample
was analyzed using RNA-Seq and one by PCT-SWATH. All relevant ethical
regulations have been complied. The Cantonal Ethics Committee Zurich (KEK-
ZH) has approved all procedures involving human material, and each
prostate cancer patient has signed an informed consent form (KEK-ZH-No.
2008-0040).

RNA-Seq. RNA sequencing was performed at the Functional Genomics Center
Zurich. RNA-Seq libraries were generated using the TruSeq RNA stranded kit with
PolyA enrichment (Illumina, San Diego, CA, USA). Libraries were sequenced on an
Illumina HiSeq 2500 (Illumina, San Diego, CA, USA) producing an average of
109,198,783 2 × 126 bp paired-end reads per sample. Reads were mapped to the
human reference genome (GRCh37) using the STAR aligner (version 2.4.2a)15.
FeatureCounts16 was used to determine read counts for all genes annotated in
ENSEMBL v75. The mRNA expression profile was generated using log2 trans-
formed transcripts per million (TPM) values, from genes whose averaged TPM
values were larger than 4. mRIN17 was used to estimate the degree of mRNA
degradation and P-value of each sample. mRIN uses a modified
Kolmogorov–Smirnov (KS) statistic to quantify the 3′ bias per gene. Cohort-
normalized KS statistics were stored as mKS matrix, in which columns represent
samples and rows represent expressed genes. The mRIN score of an individual
sample was defined as the negative mean mKS overall genes in the respective
sample.

PCT-SWATH. PCT-SWATH analyses7,18,19 were performed as follows. After
washing away O.C.T.®, each tissue punch was lysed and digested using PCT and
the PCT-MicroPestle system (Pressure Biosciences Inc., South Easton, MA), fol-
lowed by C18 cleanup. One microgram of total peptide mass from each sample, as
measured by NanoDrop A280, was analyzed in duplicate by SWATH-MS on a
5600 TripleTOF mass spectrometer (Sciex) coupled with a 1D+ Nano LC system
(Eksigent, Dublin, CA). A two-hour gradient and 32 fixed SWATH window
scheme were adopted as described7.

SWATH data analysis. A SWATH assay library was compiled from 79 data-
dependent acquisition (DDA) MS analyses of prostate tissues in a TripleTOF 5600
mass spectrometer. These DDA tandem mass spectra (MS/MS) were searched by
Comet20 and X!Tandem21 using the default settings with the enzyme set semi-
tryptic, to enable the identification of potential degradation products. The search
results were validated by PeptideProphet22 and combined by iProphet23, and
further filtered at a false discovery rate (FDR) of 1% at the peptide level (iProphet
probability: 0.7777). The identified spectra were imported into a redundant spectral
library by SpectraST24. A consensus tandem mass spectral library was then con-
structed by SpectraST. The generated library was further converted to TraML using
the tool ConvertTSVToTraML, with decoy assays appended using the
OpenSwathDecoyGenerator.

The SWATH.wiff files were first converted into profile mzXML using
msconvert25. Through the iPortal workflow manager, the resulting 136
SWATH-MS mzXML files were analyzed by OpenSWATH26 by default settings
as previously described, except that the following parameters were modified: m/
z extraction window= 0.05 Thomson; RT extraction window= 600 s. After the
targeted extraction of fragment ion chromatograms, pyprophet27 was used to
calculate a single discriminant score from a subset of the scores (library_corr
yseries_score xcorr_coelution_weighted massdev_score norm_rt_score
library_rmsd bseries_score intensity_score xcorr_coelution log_sn_score
isotope_overlap_score massdev_score_weighted xcorr_shape_weighted
isotope_correlation_score xcorr_shape) and to estimate the q-value to facilitate
FDR control. TRIC28 was then run on the pyprophet results to perform the
feature alignment to re-rank peak groups obtained in the original targeted
extraction stage with the following parameters (realign_method: spline,

dscore_cutoff: 1, target_fdr: 0.01, max_rt_diff: auto_3medianstdev, method:
global_best_overall). The identified peptide ions with m_score below 0.000908
(to enable an FDR of 0.01) were then kept and only proteotypic peptides, that
are uniquely attributable to one single protein, were kept for the remaining
analysis. Replicates were merged for each sample, and proteins that were
consistently detected over 50% of the samples were accepted for protein
quantification using the most intense peptide.

The PIN algorithm. To indicate the stability of each individual protein, we define
the iPIS as one minus the ratio of total intensities of semi-tryptic peptides to those
of all peptides:

iPIS ¼ 1�
P

Intensitysemi�tryptic peptides
P

Intensityall peptides
ð1Þ

Semi-tryptic peptides are peptides that are truncated, possibly by proteases,
from one end (either N-terminal or C-terminal) of fully tryptic peptide. Note that
intensities were normalized by taking square roots of raw intensities by default in
the PIN package (For more option usages and descriptions, see Supplementary
Note 3 as the user manual for the PIN algorithm).

To indicate the degradation state of each sample, we define a global Proteome
Integrity Number (PIN) as the arithmetic mean of iPISs of all N proteins identified
in the sample:

PIN ¼
PN

i¼1 iPISi
N

ð2Þ
Samples showing extensive degradation, i.e., those containing a higher fraction

of semi-tryptic peptides have smaller PIN values, analogous to the same trend
apparent in the RIN and mRIN scoring theme for RNA. Conveniently, PIN values
range from zero (completely degraded samples) to one (samples showing no
indication of degradation).

To generate a statistically significant confidence value that can be used as an
objective cut-off to reject unsuitable samples, we calculated the P-value of a sample
with a specific PIN value that indicates the probability of observing such a specific
PIN value under the null hypothesis that the sample was not degraded at the
protein level.

To convert PIN values into P-values, we developed a statistical model, similar to
that proposed in the mRIN algorithm17. Assuming that PIN values of non-
degraded samples in a cohort follow a Weibull distribution with the scale
parameter λ and the shape parameter k, the P-value of a specific PIN value x can be
then calculated as the tail probability of observing x under the null distribution,
that is the cumulative distribution function P(X ≤ x) of a Weibull distribution F(x,
λ, k):

P�value ¼ P X � xð Þ ¼ Fðx; λ; kÞ ¼ 1� exp � x
λ

� �k
� �

ð3Þ
Starting with the inclusion of all samples of a cohort to construct the null

distribution, we estimated the first parametric set of λ1 and k1 in the Weibull
distribution by using the fitdistr function in the R package MASS, and performed
the Kolmogorov–Smirnov test (KS test) to assess goodness of fit (step A). By
calculating KS statistic (i.e., D score), the KS test examines how well the estimated
Weibull distribution was fitted with the empirically observed PIN values29,30. Then,
P-values of all samples were calculated using the function F(x, λ1, k1) and degraded
samples (P-values < 0.02 by default) were excluded in the further round of
constructing a null distribution (step B). Iteratively, step A and step B were
repeated until a null distribution was reliably generated and converged, when non-
degraded samples were used in the construction of null distribution and the
best fit (i.e., the smallest D score) was reached. Finally, P-values of all samples
were estimated by using the function Fðx; λconverged ; kconvergedÞ and the resulting
values were used to reject samples according to a user defined, objective
P-value threshold.

Downstream analysis and data visualization. The mKS and iPIS matrices
excluding missing values were clustered and visualized separately using the heat-
map.2 function in the R package gplots. The order of columns was sorted by
the degree of integrity, measured by mRIN and PIN, respectively, from lowest
(left) to highest (right). The cophenetic correlation coefficient was used to measure
the similarity between two dendrograms. Except for computational workflow
and experimental design, analyses and figures in this manuscript were performed
and visualized in R. Final figures were all prepared with Adobe Illustrator.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
RNA-Seq data have been deposited in the Sequence Read Archive with the BioProject
number PRJNA414084. Regarding proteomic analysis of the clinical cohort, the SWATH
raw data and analyzed data as well as assay libraries are deposited to the
ProteomeXchange Consortium via the PRIDE partner repository with the data set
identifier PXD007841. Regarding the benchmarking study, the SWATH raw data and
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analyzed data as well as assay libraries are deposited to the ProteomeXchange
Consortium via the PRIDE partner repository with the data set identifier PXD013622.
The source data underlying Figs. 2–4 are provided as a Source Data file. A reporting
summary for this Article is available as a Supplementary Information file. All other data
supporting the findings of this study are available from the corresponding authors on
reasonable request.

Code availability
To allow for generic evaluation of protein degradation of sample cohorts, PIN is provided
as an open-source R package at https://github.com/ProteomicsTools/PIN.
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