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Abstract
Objective
We took advantage of a large multinational recruitment to delineate genotype-phenotype correlations
in a large, trans-European multicenter cohort of patients with spastic paraplegia gene 7 (SPG7).

Methods
We analyzed clinical and genetic data from 241 patients with SPG7, integrating neurologic follow-up
data. One case was examined neuropathologically.

Results
Patients with SPG7 had a mean age of 35.5 ± 14.3 years (n = 233) at onset and presented with
spasticity (n = 89), ataxia (n = 74), or both (n = 45). At the first visit, patients with a longer disease
duration (>20 years, n = 62) showed more cerebellar dysarthria (p < 0.05), deep sensory loss (p <
0.01), muscle wasting (p < 0.01), ophthalmoplegia (p < 0.05), and sphincter dysfunction (p < 0.05)
than those with a shorter duration (<10 years, n = 93). Progression, measured by Scale for the
Assessment and Rating of Ataxia evaluations, showed a mean annual increase of 1.0 ± 1.4 points in
a subgroup of 30 patients. Patients homozygous for loss of function (LOF) variants (n = 65)
presented significantly more often with pyramidal signs (p < 0.05), diminished visual acuity due to
optic atrophy (p < 0.0001), and deep sensory loss (p < 0.0001) than those with at least 1 missense
variant (n = 176). Patients with at least 1 Ala510Val variant (58%) were older (age 37.6 ± 13.7 vs
32.8 ± 14.6 years, p < 0.05) and showed ataxia at onset (p < 0.05). Neuropathologic examination
revealed reduction of the pyramidal tract in the medulla oblongata and moderate loss of Purkinje
cells and substantia nigra neurons.

Conclusions
This is the largest SPG7 cohort study to date and shows a spasticity-predominant phenotype of LOF
variants and more frequent cerebellar ataxia and later onset in patients carrying at least 1 Ala510Val
variant.

From Sorbonne Université (G.C., C.E., B.F., M.-L.M., F.M., M.P., C.-S.D., G.S., A.D.), Institut du Cerveau et de la Moelle épinière (ICM), AP-HP, INSERM, CNRS, University Hospital Pitié-
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The key feature of hereditary spastic paraplegia (HSP) is the
progressive degeneration of corticospinal tracts.1 To date, 79
loci are known to be involved and are classified as spastic
paraplegia genes (SPG1–SPG79).2 The first identified gene
among autosomal recessively transmitted spastic paraparesis
was SPG7.3 Cerebellar atrophy does not always translate into
cerebellar signs in patients.4–6 However, cerebellar ataxia may
be the predominant symptom, as confirmed by reports that
found SPG7 to be responsible for up to 19% of undiagnosed
cerebellar ataxias.7,8 Cerebellar atrophy and peripheral neu-
ropathy have also been reported in heterozygous relatives of
patients with SPG7.6

SPG7 encodes paraplegin, a mitochondrial inner mem-
brane metalloprotease.9,10 This protein forms the hetero-
oligomeric protease complexes with the homologous
ATPase AFG3L2.9 Consequences of an impaired complex
include mitochondrial dysfunctions.9 SPG7 and AFG3L2
levels are high in Purkinje neurons11; in addition, SPG7 is
expressed in pyramidal cortical neurons and spinal motor
neurons.12

The SPG7 gene has 17 exons and variants of unknown
significance have been frequently reported.4,5,13, A re-
current variant, Ala510Val, shows a minor allele frequency
of 0.5% in public databases such as GnomAD. Initially
considered to be a nonpathologic variant, its pathogenicity
was established by yeast complementation assay.14 More-
over, this variant is found more frequently in patients than
controls.8,15–17

Despite extensive clinical variability, few genotype-phenotype
correlations have been established.18 We aimed to delineate
the progression of clinical features and to define correlations
between genotypes and phenotypes by exploring a large
population with SPG7 from several European centers that
includes follow-up data for many patients.

Methods
We analyzed the clinical and genetic data of 241 patients (194
index patients, 47 affected relatives). Geographic origin was
European in most (French n = 86, Netherlands n = 49,
German n = 35, Belgium n = 23, Italy n = 8, Great Britain n =
2, Greece n = 1); some came from North Africa or Middle
East (n = 10); and geographic origin was unknown for 26
patients. All patients with SPG7 carried 2 disease-causing
variants and had at least 1 neurologic examination. Patients
were followed up at the French National Reference Center
for Rare Diseases “Neurogenetics” in Paris (n = 106) and

Strasbourg (n = 2), the German Center for Neurodegenera-
tive Diseases (Tubingen, Bonn, Munich, Rostock, University
Hospitals) and collaborating German hospitals (Kiel,
Bochum) (n = 53), Radboud University Nijmegen Medical
Centre (n = 49), Antwerp University Hospital (n = 24), and
the Medea Institute in Conegliano and Bosisio Parini (n = 7).
Some patients (n = 90) have been previously reported: n = 84;
n = 719; n = 166; n = 4918; n = 120; n = 98. Data were collected
systematically with the ataxia and spastic paraparesis databases
of each center, for clinical follow-up and research purposes
(Spatax network), between 1995 and 2018. Clinical and im-
aging data were retrieved and critically reviewed. Genetic
diagnosis was reached differently, depending on the local fa-
cilities and year of sampling, by either direct sequencing of
SPG7 coding regions or high-throughput panel sequencing
and exome sequencing, sometimes completed by multiplex
ligation-dependent probe amplification to detect deletions or
duplications within the SPG7 gene.

We compared clinical features of patients with homozygous
missense variants, with homozygous loss-of-function (LOF)
variants, or with a nonsense variant on 1 allele and missense
variants on the other allele. We studied the clinical con-
sequences of the Ala510Val variant and identified genetic
differences in patients with cerebellar ataxia or spasticity at
onset. We analyzed the progression of the clinical signs in
patients who had follow-up and by comparing the clinical
signs at the first visit in 3 groups of patients: with disease onset
at the most 10 years before the clinical examination, between
10 and 19 years, and >19 years.

Patients were assessed with a standardized evaluation form.
The categorical scale of disability was as follows: 0, no func-
tional handicap; 1 = no functional handicap but signs at
examination; 2 = mild, able to run, unlimited walking; 3 =
moderate, unable to run, limited walking without aid; 4 =
severe, walking with 1 stick; 5 = walking with 2 sticks;
6 = unable to walk, requiring a wheelchair; and 7 = confined
to bed. The disease progression index was calculated as the
ratio between the disability stage and disease duration in
years. Symptoms at onset such as stiff legs/spastic gait or
unsteadiness and gait/balance impairment were collected as
reported by the patients. A subgroup of patients were evalu-
ated with the Scale for the Assessment and Rating of Ataxia
(SARA; maximum score 40).21 Transmission was classified as
autosomal recessive, autosomal dominant (based on a positive
first-degree familial history combined with the presence of
2 variants in the SPG7 gene), or sporadic (only 1 index in
the family and absence of consanguinity). Segregation of
the variants was assessed in family members for suspected

Glossary
HSP = hereditary spastic paraplegia; LOF = loss of function; SARA = Scale for the Assessment and Rating of Ataxia; SCA =
spinocerebellar ataxia; SPG = spastic paraplegia gene.
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autosomal dominant cases when DNA was available. Variants
were classified as missense or LOF (including nonsense,
splicing, frameshift variants, deletions, duplications, and in-
frame deletions). Pathogenicity of the variants was obtained
by an in silico approach by 5 prediction programs (SIFT,
PolyPhen, LRT, M-Cap, and MutationTaster). Brain MRIs
and EMGs were collected when available. The degree of
cerebellar atrophy was evaluated by the physicians involved in
this study on T1- or T2-weighted sagittal sequences.

Neuropathology
One patient was involved in a brain donation program and
signed an informed consent form for brain neuropathologic
examination and research. The brain was removed post-
mortem, and the right hemisphere and right half of the
brainstem were fixed by immersion in 4% formaldehyde (10%
formalin); systematic samples from the other hemisphere were
frozen at −80°C. After formalin fixation, a systematic sampling
protocol was applied. The samples involved the vermis and the
cerebellar hemisphere, the whole hemi-brainstem (8 samples),
the spinal cord at the upper cervical level, the basal nuclei, the
hippocampus, and the cerebral cortex. The samples were
embedded in paraffin and cut at a thickness of 5 μm. The
sections were deparaffinized in graded alcohol and stained
with hematoxylin & eosin and Luxol Fast Blue for myelin.
Immunohistochemistry was performed on selected samples
with primary antibodies for tau protein, β-amyloid, α-synu-
clein, TAR DNA-binding protein 43, ubiquitin, p62, and
CD68 (for activated microglia). Double immunostaining for
myelin (myelin basic protein) and phosphorylated neurofila-
ments was performed to assess myelin pallor and to distinguish
demyelination from degeneration.

Statistical analyses
Statistical analyses were performed with SAS software 9.4.
Data are expressed as mean ± SD or frequency (number).
Qualitative variables were compared between groups with the
Fisher exact test, and quantitative variables were compared by
analysis of variance, followed by a post hoc test when neces-
sary. We compared clinical examinations at the first visit to
account for disease duration (<10, 10–19, ≥20 years). We
used the McNemar exact test for qualitative variables to
compare the clinical characteristics of the patients between 2
consecutive visits.

Standard protocol approvals, registrations,
and patient consents
All patients have been examined in clinical settings during
their usual follow-up. Informed consent was obtained
according to the regulations of each European country and
the local ethics committee.

Data availability
Anonymized data presented in this article will be made
available at the request of a qualified investigator. Requests
should be made to Alexandra Durr (alexandra.durr@icm-
institute.org).

Results
At the first visit, 241 patients with SPG7 (136 men and 105
women) were included, with a mean age at examination of
50.4 ± 14.1 years. The mean age at reported disease onset was
35.5 ± 14.3 years (n = 233), and the mean disease duration
was 15.1 ± 13 years (n = 233). The patients had a mean
disability stage of 3.3 ± 1.2 (n = 223) and a mean SARA score
of 10.6 ± 6 (n = 55).

There were 167 familial cases, 64 without other affected in
their families, and 10 with unknown familial history. There
were 12 families (6%) with transmission of the disease from 1
generation to the next despite the presence of 2 variants in the
index case (figure 1). These apparently dominantly inherited
forms were more often reported in patients who had cere-
bellar symptoms at onset (10 patients with cerebellar onset vs
3 patients with spastic onset, p < 0.05). Segregation of 1 of the
2 variants from the index case was confirmed for only 2
families (AAD-796 and FSP-554) and was reported else-
where.6 In these 2 families, the heterozygous parent showed
mild cerebellar atrophy and cerebellar signs, and both parents
carried the p.Arg485_Glu487del variant.6 DNA was not
available for the other families to analyze segregation.

Overall genotype-phenotype correlations
All variants are shown in figure 2, with the presence of
a cluster of missense variants in the peptidase domain (be-
tween the 13th and 16th exons, amino acid positions
555–727). New variants are listed in supplementary table 4
(available from Dryad, doi.org/10.5061/dryad.sb4kr01).

On the basis of genotype, patients homozygous for LOF
variants presented significantly more often with pyramidal
signs and diminished visual acuity (table 1) than patients
homozygous for missense variants.

Comparison between patients carrying the
Ala510Val variant and those carrying
other variants
The Ala510Val variant was the most frequent variant in our
patients (table 2). Indeed, 141 patients (58.5%) carried at
least 1 Ala510Val variant, including 45 patients (18.7%) ho-
mozygous for this variant. The presence of the Ala510Val
variant, even on 1 allele, was associated with significantly later
disease onset than in noncarriers of this variant (37.6 ± 13.7 vs
32.8 ± 14.6 years, p = 0.01, n = 233), with no further differ-
ences in patients homozygous for Ala510Val . Clinically, at the
first examination, the Ala510Val carriers did not differ in
disease severity measured by disability stage (3.2 ± 1.1 vs 3.3 ±
1.2, p = 0.5, n = 223) or SARA score (10.8 ± 6.1 vs 10.1 ± 5.5,
p = 0.7, n = 55) compared to patients carrying other variants.
However, patients carrying the Ala510Val variant had a lower
frequency of pyramidal signs (86% vs 97%, p = 0.01), in-
cluding brisk reflexes (76% vs 92%, p = 0.01) and sphincter
dysfunction (38% vs 53%, p = 0.02); diminished visual acuity
(6% vs 24%, p < 0.001); and pes cavus (17% vs 30%, p = 0.02).
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Symptoms at onset: Cerebellar ataxia
vs spasticity
At onset, more patients reported stiff legs and spastic gait
(n = 89) than unsteadiness and gait or balance impairment
(n = 74). A third group presented either a combination of
cerebellar ataxia and spastic gait (n = 45) or other features
such as dysarthria, diplopia, diminished visual acuity, and
neuropathic pain. The presence of the Ala510Val variant
was significantly associated with cerebellar signs at onset
(p = 0.01).

Clinical progression between the first and the
second clinical examinations
Data from 2 consecutive follow-up examinations were avail-
able for 98 patients, with a mean interval between the 2
examinations of 5.0 ± 5.9 years (median 3 years [quartile 1 = 1
year; quartile 3 = 7 years]). The number of associated clinical
signs increased significantly in the second evaluation, espe-
cially cerebellar ataxia (66.3% vs 78.3%, p = 0.003, n = 92),
cerebellar dysarthria (42% vs 57%, p < 0.001, n = 93), and
pyramidal syndrome (89.3% vs 96.8%, p < 0.05, n = 94), with
increased presence of the extensor plantar reflex (71.6% vs
81.5%, p < 0.05, n = 81), dystonia (2.3% vs 11.5%, p < 0.01,
n = 87), muscle wasting (10.3% vs 29.9%, p < 0.001, n = 87),
ptosis (4.7% vs 16.7%, p < 0.01, n = 84), dysphagia (15.3% vs
28.2%, p < 0.01, n = 78), decreased vibration sense at the
ankles (44.3% vs 64.8%, p < 0.001, n = 88), cognitive im-
pairment (8% vs 19.3%, p < 0.01, n = 88), and diminished
visual acuity (7.4% vs 14.1%, p < 0.05, n = 81). In the

subgroup of patients with at least 2 SARA scores (n = 30), the
mean progression of cerebellar ataxia measured by SARA
score was 4.0 ± 4.0 with a mean annual progression of
1.0 ± 1.4.

Retrospectively, there was no change in disability, measured
by functional stage, between the 2 visits for 48% (43 of 89) of
the patients. Among the 46 patients for whom the disability
stage increased, the mean annual increase of the disability
progression index was 0.08 ± 0.31 per year. The stability in
half of the patients over time indicated a slowly progressive
disease.

Evolution of neurologic signs based on
disease duration
The clinical presentation of the patients with SPG7 at first visit
differed significantly, depending on disease duration (<10
years n = 93, 10–19 years n = 79, ≥20 years n = 62). Cerebellar
dysarthria, deep sensory loss, and peripheral wasting were
more predominant in the group who had the disease the
longest. Ophthalmoplegia was observed more frequently with
longer disease duration, as well as sphincter dysfunction (table
3). The stage of disability increased with disease duration, but
taking into consideration the disease progression index, pro-
gression was significantly faster in the group with the shortest
duration of disease than in the others. The rapid progression
in the first stage of the disease appears to reach a plateau in the
advanced phases; these data should be confirmed in a longi-
tudinal study.

Figure 1 Pedigrees of the 12 families with a dominant inheritance pattern

Index case is indicated by an arrow.
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Brain MRI and EMG
During follow-up, we collected 137 individual brain MRIs.
Cerebellar atrophy of varying severity was present in 80
patients (58.4%) (figure 3). There was no correlation be-
tween severity of atrophy and specific variants. EMG
data were available for a small group of patients (n = 23)
with a mean age at examination of 55 ± 13.9 years and
a mean disability stage of 3.7 ± 1.1 and showed the main
peripheral involvement to be sensorimotor axonal neu-
ropathy (n = 20).

Neuropathologic findings in SPG7
Individual AAR-247-004 died of pancreatic cancer at the age
of 56 years. The parents were not related and had a normal
neurologic examination at 68 and 66 years of age. The onset
of SPG7 disease occurred at 30 years of age with gait in-
stability. She subsequently suffered from stiff legs. She
needed walking aids by 45 years of age and a wheelchair by
50 years of age. She was dysarthric without swallowing dif-
ficulties. Clinical evaluation at the age of 55 years showed

pyramidal syndrome with spasticity of the lower limbs, bi-
lateral extensor plantar reflex, and a mild proximal weakness
of the lower limbs. Deep sensation was impaired, and she had
a cerebellar syndrome (SARA score 16.5 of 40). Oculomotor
examination showed asymmetric ptosis, saccadic pursuit, and
a limitation of vertical gaze. Brain MRI was performed at 40
and 55 years of age and revealed cerebellar atrophy with
vermis predominance. Nerve conduction studies were nor-
mal at both 43 and 55 years of age. Neuropsychological as-
sessment was performed at 55 years of age, showing normal
cognitive efficiency but apathy and depressive signs. Mus-
cular biopsy revealed mitochondrial abnormalities with cy-
tochrome oxidase– negative fibers. The genetic test, at 56
years of age, confirmed the presence of compound hetero-
zygote variants c.1749G>C(p.Trp583Cys) in exon 13 and
c.2181+2dup(p.?) in exon 16.

Neuropathologic examination
The brain weight was 1,256 g. The vermis of the cerebellum
was atrophic (figure 4A). The pyramids of the medulla

Figure 2 Representation of all detected variants of this study

Representation of the SPG7 gene with functional domains (FtsH family, ATPases associated with diverse cellular activities, peptidase M41 family) and all
detected variants. Previously reported variants are shown in gray; missense variants are shown in bold. UTR = untranslated region.
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oblongata were small. The spinal cord at the cervical level was
slightly altered; there was no myelin pallor in the lateral, an-
terior, or posterior columns. The anterior horns were normal.
The pyramids of the medulla oblongata were small but
without myelin pallor. The vermis of the cerebellum was se-
verely atrophic; there was a loss of Purkinje cells with empty
baskets, torpedos, and Bergmann glia (figure 4, B–D). The
cerebellar hemispheres, the dentate nucleus, and the inferior,
middle, and superior cerebellar peduncles were normal, as
well as the pontine nuclei and the locus coeruleus. There was
some degree of neuronal loss in the pars compacta of the
substantia nigra, as shown by the presence of extrapyramidal
pigments (figure 4E). The pars reticulata was also affected and
appeared gliotic. The subthalamic nucleus, striatum, and
pallidum were normal. The hippocampus was remarkable

with a thin dentate gyrus (figure 4F). There were some Betz
cells in the motor cortex; one of them appeared chromato-
lytic. There was unusual thinning of the granular layer of
the dentate gyrus. The CD68 antibody did not show
inflammation foci; the pyramidal tract did not contain an
abnormal number of microglia. Tau, β-amyloid, TAR DNA-
binding protein 43, and α-synuclein immunostaining was
negative. The anti-ubiquitin and p62 staining did not label any
inclusion.

Discussion
We report data from 241 European patients with SPG7, in-
cluding 98 with neurologic follow-up, in a collaborative effort

Table 1 Clinical comparison at the first visit between patients harboring different genotypes

Homozygous missense
(n = 77)

Heterozygous missense LOF
(n = 99)

Homozygous LOF
(n = 65) p Value

Age at disease onset, mean ± SD (n = 233), y 38.2 ± 14.3 (n = 73) 35.4 ± 13.6 (n = 96) 32.7 ± 14.7 (n = 64) 0.08

Disease duration, mean ± SD (n = 233), y 16.2 ± 12.4 (n = 73) 15.2 ± 15.3 (n = 96) 13.6 ± 9.8 (n = 64) 0.49

SARA score, mean ± SD (n = 65) 10 ± 5.2 (n = 20) 10.7 ± 6.9 (n = 25) 11.6 ± 5.2 (n = 10) 0.80

Disability stage (maximum value 7), mean ± SD
(n = 223)

3.3 ± 1.1 (n = 73) 3.1 ± 1.2 (n = 91) 3.4 ± 1.2 (n = 59) 0.25

Women/men, % (n) 40/60 (31/46) 42/58 (42/57) 49/51 (32/33) 0.54

Sporadic case (n = 64), n (%) 17 (26) 29 (45) 18 (28) 0.70

Autosomal recessive (n = 154), n (%) 51 (33) 60 (39) 43 (28)

Autosomal dominant (n = 13) n (%) 4 (31) 7 (54) 2 (15)

Cerebellar ataxia, % (n) 66 (48/73) 61 (57/93) 60 (38/63) 0.80

Cerebellar dysarthria, % (n) 40 (29/72) 37 (34/92) 36 (23/63) 0.89

Brisk reflexes, % (n) 82 (55/67) 80 (70/88) 88 (51/58) 0.44

Babinski sign, % (n) 63 (42/67) 80 (70/87) 75 (43/57) 0.04

Pyramidal syndrome, % (n) 82 (60/73) 95 (89/94) 95 (60/63) 0.01

Pes cavus, % (n) 14 (10/69) 23 (21/91) 31 (19/61) 0.07

Parkinsonism, % (n) 6 (4/69) 4 (4/94) 3 (2/62) 0.84

Dystonia, % (n) 1 (1/71) 4 (4/95) 3 (2/62) 0.63

Muscle wasting, % (n) 18 (13/71) 17 (16/93) 13 (8/61) 0.74

Abnormal vibration at ankles, % (n) 59 (43/73) 29 (27/92) 57 (35/61) <0.0001

Ophthalmoplegia, % (n) 14 (9/65) 15 (13/88) 19 (10/54) 0.78

Ptosis, % (n) 6 (3/54) 2 (2/77) 6 (3/50) 0.60

Diminished visual acuity, % (n) 7 (4/55) 6 (5/84) 31 (19/62) <0.0001

Dysphagia, % (n) 16 (9/58) 10 (8/79) 17 (8/48) 0.51

Sphincter dysfunction, % (n) 39 (27/69) 41 (38/92) 55 (32/58) 0.15

Cognitive impairment, % (n) 6 (4/71) 8 (8/95) 8 (5/63) 0.81

Abbreviations: LOF = loss of function; SARA = Scale for the Assessment and Rating of Ataxia.

e2684 Neurology | Volume 92, Number 23 | June 4, 2019 Neurology.org/N

Copyright © 2019 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

http://neurology.org/n


that allowed us to study the largest SPG7 cohort available to
date. Clinical features matched previous work that defined
SPG7 as a relevant cause of late-onset spastic ataxia.5,6,18,22,23

Lower limb spasticity or cerebellar ataxia, both affecting gait
stability, was present at onset, making it difficult to consider
SPG7 as primarily anHSP or an ataxia gene.24We were able to
show that, among patients with a disease duration >20 years,
88% had pyramidal syndrome and 72% had cerebellar ataxia.
The predominance of pyramidal signs and symptoms was
significantly associated with the presence of homozygous
LOF variants rather than missense variants, suggesting that
the loss of paraplegin function drives spasticity. We could
speculate that LOF of paraplegin still allows AFG3L2 to form
functional oligomeric m-AAA protease. This could compen-
sate for loss of paraplegin in the cerebellum because of the
high AFG3L2 cerebellar expression, while in the spinal cord,

AFG3L2 is poorly expressed. Missense variants, on the other
hand, may form dysfunctional heteromeric complexes with
AFG3L2 in the cerebellum and may disturb AFG3L2 func-
tion. Nonsense variants on both alleles predisposed patients
to a more severe and complicated phenotype, with more fre-
quent ophthalmologic involvement. Diminished visual acuity
occurred in 31% of patients carrying homozygous LOF var-
iants. Paraplegin is one of the metallopeptidases involved in
the OPA1 cleavage, a protein that regulates mitochondrial
fission/fusion processes andmitochondrial cristae structure.25

The impaired balance of the different forms of OPA1 could
be more severe in the presence of LOF variants, leading to
optic atrophy even in the absence of OPA1 mutations.26

Furthermore, we confirm that the Ala510Val variant is the
most common variant in patients (58.5%), showing a minor
allele frequency of 0.5% in public databases, in agreement

Table 2 Clinical comparison at the first visit between patients harboring at least 1 Ala510Val variant and patients with
other variants

p.Ala510Val (n = 141) Other variants (n = 100) P Value

Age at disease onset, mean ± SD (n = 233), y 37.6 ± 13.7 (n = 134) 32.8 ± 14.6 (n = 99) 0.01

Age at examination, mean ± SD (n = 241), y 52.6 ± 12.7 (n = 141) 47.4 ± 15.4 (n = 100) 0.03

Disease duration, mean ± SD (n = 234), y 15.2 ± 13.6 (n = 135) 14.9 ± 12.3 (n = 99) 0.82

SARA score, mean ± SD (n = 55) 10.8 ± 6.2 (n = 40) 10.1 ± 5.5 (n = 15) 0.73

Disability stage (maximum value 7), mean ± SD (n = 223) 3.2 ± 1.1 (n = 130) 3.3 ± 1.2 (n = 93) 0.46

Disease progression index (function/disease duration), mean ± SD (n = 221) 0.4 ± 0.4 (n = 128) 0.4 ± 0.5 (n = 93) 0.74

Women/men, % (n) 41/59 (58/83) 47/53 (47/53) 0.42

Cerebellar ataxia, % (n) 66 (87/132) 58 (56/97) 0.2

Cerebellar dysarthria, % (n) 36 (51/131) 36 (35/93) 0.7

Brisk reflexes, % (n) 76 (96/126) 92 (80/87) 0.003

Babinski sign, % (n) 71 (89/125) 77 (66/86) 0.4

Pyramidal syndrome, % (n) 86 (116/134) 97 (93/96) 0.01

Pes cavus, % (n) 17 (22/129) 30 (28/92) 0.02

Parkinsonism, % (n) 4 (5/131) 5 (5/94) 0.74

Dystonia, % (n) 4 (5/134) 2 (2/94) 0.70

Muscle wasting, % (n) 19 (25/133) 13 (12/92) 0.27

Abnormal vibration at ankles, % (n) 47 (62/133) 46 (43/93) 1

Ophthalmoplegia, % (n) 15 (18/122) 16 (14/85) 0.84

Ptosis, % (n) 3 (3/103) 6 (5/78) 0.29

Diminished visual acuity, % (n) 6 (6/108) 24 (22/93) <0.001

Dysphagia, % (n) 15 (17/111) 11 (8/74) 0.51

Sphincter, % (n) 38 (49/129) 53 (48/90) 0.02

Mental retardation, % (n) 2 (3/134) 3 (3/95) 0.69

Cognitive impairment, % (n) 7 (10/134) 7 (7/95) 1

Abbreviation: SARA = Scale for the Assessment and Rating of Ataxia.
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with other reports.7,15,17,23,27 This variant was associated with
a delayed onset of disease and a less complicated phenotype,
that is, fewer pyramidal signs. This finding is similar to that
for the Canadian population, for which Ala510Val was the
most frequent variant and cerebellar features, including ataxia,
were more pronounced than spasticity.27 In contrast to the
recent report on the English cohort,23 we did not find a sig-
nificant difference in age at onset of the disease between
Ala510Val homozygous and Ala510Val compound heterozy-
gous patients. Because Ala510Val variants represented 73%
of the missense variant group, the cerebellar phenotype is
biased toward 1 single variant. A link between predominant
cerebellar presentation and null alleles has been reported,18

but this difference could be explained by a possible recruit-
ment bias.

We were able to study the progression in 30 patients with
cerebellar SPG7, because the mean annual progression of
SARA score was 1.0 ± 1.4. Compared to autosomal-dominant

spinocerebellar ataxias (SCAs), which show an annual SARA
progression of 2.1 for SCA1, 1.5 for SCA2, 1.6 for SCA3, and
0.8 for SCA6,28 SPG7 is comparable to SCA6 evolution. As for
SCAs, SPG7 is not restricted to cerebellar features, and the
SARA score may not reflect the entirety of the disease pro-
gression.29 The slow evolution is also reflected by the fact that
patients with SPG7 were still able to walk with a cane after 20
years of the disease, which is, for example, not the case for
patients with SCA1.30 Obviously, SARA does not quantify
spasticity, and the lack of the Spastic Paraplegia Rating Scale
scores31 limits our estimation of overall disease progression
because scoring was not done for the patients in this study,
explained only partially by the presence of the cerebellar
phenotype. The clinical picture became increasingly complex,
with an increased frequency of cerebellar dysarthria, sphincter
dysfunction, deep sensory loss, and muscle wasting over the
years. Horizontal eye gaze limitation, a possible sign of
mitochondriopathy, significantly increased in frequency dur-
ing disease progression. Intriguingly, this was uncoupled from

Table 3 Clinical presentation at first visit grouped by disease duration

Disease duration, y

p Value<10 (n = 93) 10–19 (n = 79) ≥20 (n = 6 2)

SARA score, mean ± SD 7.9 ± 3.6 (n = 20) 11.3 ± 7.7 (n = 16) 12.7 ± 5.5 (n = 19) 0.03a

Disability stage (maximum value 7), mean ± SD (n = 221) 2.6 ± 0.8 (n = 88) 3.5 ± 1.1 (n = 75) 3.9 ± 1.2 (n = 58) <0.0001b

Disease progression index (function/disease duration),
mean ± SD (n = 221)

0.74 ± 0.6 (n = 88) 0.26 ± 0.09 (n = 75) 0.13 ± 0.04 (n = 58) <0.0001b

Cerebellar ataxia, % (n) 56 (50/89) 64 (49/76) 72 (43/60) 0.16

Cerebellar dysarthria, % (n) 29 (26/89) 36 (27/74) 55 (33/60) 0.01

Brisk reflexes, % (n) 80 (70/87) 91 (59/65) 77 (44/57) 0.09

Babinski sign, % (n) 73 (63/86) 73 (48/66) 76 (42/55) 0.91

Pyramidal syndrome, % (n) 91 (84/92) 93 (70/75) 88 (51/58) 0.58

Pes cavus, % (n) 27 (24/88) 18 (13/71) 19 (11/57) 0.35

Parkinsonism, % (n) 7 (6/90) 4 (3/73) 2 (1/58) 0.42

Dystonia, % (n) 1 (1/91) 3 (2/74) 7 (4/59) 0.15

Muscle wasting, % (n) 10 (9/90) 11 (8/74) 32 (18/57) 0.001

Abnormal vibration at ankles, % (n) 33 (30/90) 55 (40/73) 53 (31/58) 0.008

Ophthalmoplegia, % (n) 11 (9/82) 13 (9/70) 27 (14/52) 0.04

Ptosis, % (n) 3 (2/70) 3 (2/63) 9 (4/46) 0.31

Diminished visual acuity, % (n) 11 (9/81) 10 (7/67) 24 (12/51) 0.09

Dysphagia, % (n) 12 (9/72) 11 (7/63) 19 (9/48) 0.53

Sphincter dysfunction, % (n) 33 (28/84) 48 (35/73) 56 (33/59) 0.02

Cognitive impairment, % (n) 7 (6/90) 8 (6/76) 8 (5/59) 0.90

Abbreviation: SARA = Scale for the Assessment and Rating of Ataxia.
p Value: analysis of variance for quantitative data and Fisher exact test for qualitative variables.
a Significant difference for the SARA score between the first group (evolution <10 years) and the third group (evolution ≥20 years) (post hoc comparisons).
b Significant difference for the stage of disability between the first group (evolution <10 years) and the second group (evolution 10–19 years) and between the
first and third groups (evolution ≥20 years) (post hoc comparisons).
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optic atrophy, which appeared to be present from disease
onset, without decreased visual acuity for most patients.6

The presence of cerebellar atrophy by MRI was consistently
associated with SPG7, but its degree did not correlate with
severity of cerebellar signs (figure 3). When available, for
a small subgroup of patients, nerve conduction studies con-
firmed the presence of axonal sensorimotor neuropathy.

All index patients carried 2 variants, of which 6% were of
apparently dominant transmission, as already suggested by
others.6,15,18,32 The p.Arg485_Glu487del variant (the second
most common mutation present in 9.3% of our cohort) was
the most frequent in this group (3 families, 4 patients), and its
link to dominant transmission has already been suggested.18

Segregation has been confirmed and reported for only 2
autosomal-dominant families.6 The p.Leu78* variant15 was
not found in our patients. The other variants detected in the
dominant group were p.A286fs*, p.E320*, p.G349fs*,
p.P350Qfs*36, p.A510V, p.A658T, p.N739fs*, p.P750L, and
c.861+2dup(p.?). The possibility that variants in other HSP or

SCA genes are also present cannot be ruled out in the affected
heterozygous relatives, but we previously excluded the pres-
ence of a second variant in SCA28 in a subgroup of patients
with SPG7 because of the interaction of its gene product with
paraplegin.6 The potential dominant transmission in SPG7,
the possibility to present neurologic signs when carrying only
1 variant (as for parents in autosomal-dominant families), and
the high frequency of the A510V variant make genetic
counseling challenging.

The neuropathologic data from our postmortem study
showed clear involvement of the cerebellum, with the loss of
Purkinje cells and gliosis in the dentate nucleus. Despite the
conserved number of Betz cells, the pyramidal tract diameter
appeared to be reduced at the level of the medulla oblongata.
This shows that axonopathy is the hallmark of HSPs.
Until now, only 3 postmortem studies have been performed
in SPG7: 1 patient carrying a homozygous p.Arg470Gln var-
iants,18 1 patient homozygous for the p.Ala510Val variant,20

and our case carrying p.Trp583Cys and c.2181+2dup(p.?).
For the second patient, the authors mentioned the presence of

Figure 3 Brain MRIs of patients with SPG7 carrying different variants

Sagittal T1-weighted and T2-weighted (indicated by asterisk) brain MRIs showing different degrees of cerebellar atrophy. Age at brain MRI, disease duration
(DD), and variants are reported for each patient, and no evident correlation with the degree of atrophy can be seen.
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tau pathology, which we did not find in our patient, possibly
explained by the different variants and the greater age (i.e., 70
years for their patient vs 56 years for our patient).

This study assembled an unprecedented cohort of patients with
SPG7, showing cerebellar ataxia to be the most notable element
after the pyramidal syndrome. Genetic counseling will remain
difficult in families with seemingly dominant transmission and
requires functional experiments to be developed or the identi-
fication of biomarker(s) to prove variant pathogenicity.
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data. M. Anheim and L. Schöls: drafting/revising the manu-
script, data acquisition, accepts responsibility for conduct of
research and will give final approval. T. Deconinck: analysis or
interpretation of data, accepts responsibility for conduct of
research and will give final approval, acquisition of data.
P. Masrori: data acquisition, accepts responsibility for conduct
of research and will give final approval. B. Fontaine: drafting/
revising the manuscript, data acquisition, accepts re-
sponsibility for conduct of research and will give final
approval, contribution of vital reagents/tools/patients.
T. Klockgether: analysis or interpretation of data, accepts
responsibility for conduct of research and will give final ap-
proval, study supervision. M.G. D’Angelo and M.-L. Monin:
data acquisition, analysis or interpretation of data, accepts
responsibility for conduct of research and will give final ap-
proval. J. De Bleecker: data acquisition, accepts responsibility

Figure 4 Cerebellum of patient AAR-247-004 with SPG7

(A) Macroscopic aspect of the cerebellum. Sagit-
tal section of the cerebellar vermis on the left and
of the hemisphere on the right. Note the contrast
between the severe atrophy of the vermis and
the relatively preserved size of the hemisphere.
(B) A closer view of a folium of the vermis
showing pallor of the album and an almost
complete loss of Purkinje cells. (C) Preserved
Purkinje cell marked with a black arrow, and loss
of a Purkinje cell shown by an empty basket (red
arrow). (D) Preserved Purkinje cell marked by
a black arrow, and a torpedo, evidence of axonal
alteration, marked by a red arrow. (E) Substantia
nigra pars compacta with the presence of extra-
cellular pigments as an evidence of moderate
neuronal loss (red arrows). The black arrow
shows 1 normal, pigmented neuron. (F) Hippo-
campus with a thin dentate gyrus marked by red
arrows and 2 neurons (CA4 sector) indicated by
black arrows. (A–D) Double labeling (histochem-
istry) of myelin (myelin basic protein in brown)
and axons (neurofilament in red). Scale bar: (A)
5 mm, (B) 2 mm, and (C and D) 50 μm. (E and F)
Hematoxylin & eosin stain with additional Luxol
for myelin in panel E. Scale bar: 100 μm.

e2688 Neurology | Volume 92, Number 23 | June 4, 2019 Neurology.org/N

Copyright © 2019 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

http://neurology.org/n


for conduct of research and will give final approval. I. Migeotte
and P. Charles: data acquisition, accepts responsibility for
conduct of research and will give final approval. M.T. Bassi:
drafting/revising the manuscript, data acquisition, accepts
responsibility for conduct of research and will give final ap-
proval, contribution of vital reagents/tools/patients, obtain-
ing funding. T. Klopstock and F. Mochel: drafting/revising
the manuscript, data acquisition, accepts responsibility
for conduct of research and will give final approval. E.
Ollagnon-Roman: drafting/revising the manuscript, accepts
responsibility for conduct of research and will give final ap-
proval, contribution of vital reagents/tools/patients. M.
D’Hooghe: data acquisition, accepts responsibility for con-
duct of research and will give final approval. C. Kamm:
drafting/revising the manuscript, analysis or interpretation of
data, accepts responsibility for conduct of research and will
give final approval, acquisition of data. D. Kurzwelly: drafting/
revising the manuscript, data acquisition, accepts re-
sponsibility for conduct of research and will give final ap-
proval. M. Papin: analysis or interpretation of data, accepts
responsibility for conduct of research and will give final ap-
proval. C.-S. Davoine: data acquisition, accepts responsibility
for conduct of research and will give final approval, G. Ban-
neau: drafting/revising the manuscript, analysis or in-
terpretation of data, accepts responsibility for conduct of
research and will give final approval. S. Tezenas du Montcel:
drafting/revising the manuscript, analysis or interpretation of
data, accepts responsibility for conduct of research and will
give final approval, statistical analysis. D. Seilhean: analysis or
interpretation of data, accepts responsibility for conduct of
research and will give final approval, acquisition of data. A.
Brice: drafting/revising the manuscript, study concept or
design, analysis or interpretation of data, accepts re-
sponsibility for conduct of research and will give final ap-
proval, study supervision. C. Duyckaerts: drafting/revising the
manuscript, data acquisition, accepts responsibility for con-
duct of research and will give final approval. G. Stevanin: data
acquisition, study concept or design, analysis or interpretation
of data, accepts responsibility for conduct of research and will
give final approval, study supervision, obtaining funding. A.
Durr: drafting/revising themanuscript, data acquisition, study
concept or design, analysis or interpretation of data, accepts
responsibility for conduct of research and will give final ap-
proval, statistical analysis, study supervision, obtaining
funding.

Acknowledgment
The authors acknowledge Jean-Philippe Azulay, MD, PhD;
Patrick Calvas, MD, PhD; Guilhem Sole, MD; Stephan Klebe,
MD; Susanne Otto, MD; Ali Benomar, MD; Cyril Goizet,
MD, PhD; Jerome De Seze, MD, PhD; Pascale Labouret,
MD; Pierre Labauge, MD, PhD; Anna Castrioto, MD, PhD;
and the ICM DNA bank.

Study funding
The study received funding from the Agence Nationale de la
Recherche (SPATAX-QUEST, to G.S.), the Connaitre les
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21. Schmitz-Hübsch T, du Montcel ST, Baliko L, et al. Scale for the assessment and rating
of ataxia: development of a new clinical scale. Neurology 2006;66:1717–1720.

22. Pfeffer G, Gorman GS, Griffin H, et al. Mutations in the SPG7 gene cause chronic
progressive external ophthalmoplegia through disordered mitochondrial DNA
maintenance. Brain 2014;137:1323–1336.

23. Hewamadduma CA, Hoggard N, O’Malley R, et al. Novel genotype-phenotype and
MRI correlations in a large cohort of patients with SPG7 mutations. Neurol Genet
2018;4:e279.
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