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Abstract

Wound healing is a complex process that consists of multiple phases, each of which are 

indispensable for adequate repair. Timely initiation and resolution of each of these phases namely, 

hemostasis, inflammation, proliferation and tissue remodeling, is critical for promoting healing 

and avoiding excess scar formation. While platelets have long been known to influence the healing 

process, other components of blood particularly coagulation factors and the fibrinolytic system 

also contribute to efficient wound repair. This review aims to summarize our current understanding 

of the role of platelets, the coagulation and fibrinolytic systems in cutaneous wound healing, with 

a focus on how these components communicate with immune and non-immune cells in the wound 

microenvironment. We also outline current and potential therapeutic strategies to improve the 

management of chronic, non-healing wounds.
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Introduction

The skin is a vital organ that serves as a barrier to external agents. A wound results from a 

break in continuity of the surface epithelium or underlying connective tissue secondary to 

either mechanical, thermal or chemical injuries. Wound healing is a homeostatic process that 
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restores skin integrity following injury or tissue damage and helps prevent the entry of 

infectious pathogens.

Wound healing is a delicate and dynamic process that involves four distinct, sequential 

phases that overlap in time: hemostasis, inflammation, proliferation and tissue remodeling 

(Figures 1 and 2).1–3 Timely initiation, effective progression and resolution of each phase is 

key to timely tissue regeneration and wound closure.

In this review, we focus on the role and significance of platelets, the coagulation and 

fibrinolytic systems in cutaneous wound healing, their interactions with the wound 

microenvironment, their contribution to the development of chronic wounds and therapeutic 

interventions that can improve wound healing.

Physiologic wound healing: phases, components, functions and mediators Hemostasis

Most wounds to the skin will cause leakage of blood from damaged blood vessels and result 

in rapid platelet recruitment. The formation of a clot then serves as a temporary shield 

protecting the denuded wound tissues and provides a provisional matrix over and through 

which cells can migrate during the repair process. The clot consists of platelets embedded in 

a mesh of cross-linked fibrin fibers derived by thrombin cleavage of fibrinogen, together 

with smaller amounts of plasma fibronectin, vitronectin, and thrombospondin.3,4

At injury sites, the clot serves as a reservoir of cytokines and growth factors that are released 

as activated platelets degranulate. Dense granule contents (ADP, serotonin and 

polyphosphate) promote additional platelet recruitment, aggregation and fibrin formation 

whereas alpha granules produce and release multiple chemokines, growth factors, pro-and 

anti-inflammatory mediators.5 Among them, platelet-derived growth factor (PDGF) is 

chemotactic for macrophages and promotes fibroblast proliferation.6,7 Epidermal growth 

factor (EGF) is also released from platelets and primarily serves as a keratinocyte 

proliferation signal.3 Other growth factors and chemokines secreted from platelets include 

CXC chemokine ligand-4 (CXCL-4), platelet factor 4 (PF4) and transforming growth factor-

β (TGF-β) that recruit inflammatory cells, promote keratinocyte migration, fibroblast matrix 

synthesis and remodeling.8,9 In addition to platelet-derived soluble mediators, platelets 

themselves establish heterotypic interactions with inflammatory cells recruited at wound 

sites. These neutrophil-platelet and macrophage-platelet interactions, mediated by integrin 

receptors and P-selectin on the surface of activated cells, upregulate inflammatory cell 

recruitment and facilitate progression into the inflammatory phase of wound healing.10,11 

The hemostasis phase leads to the formation of fibrin which is cross-linked at injury sites by 

factor XIII (FXIII).12,13 In addition to preventing bleeding, the fibrin clot serves an 

important role in cell adhesion, endothelial cell (EC) migration, angiogenesis and acts as a 

temporary extracellular matrix.14 The fibrin clot also serves as a host defense by containing 

bacterial spread.15,16 Recently, in a murine model of dermal infection, the fibrin biofilm 

retained blood cells and protected against transcutaneous microbial dissemination.17

Mechanistic insight from murine wound models—Genetically modified mouse 

models have proven extremely helpful at dissecting the contribution of specific coagulation 

factors in tissue repair (Table 1). Monroe et al. examined wound healing in mice with defects 
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in the initiation (low tissue factor) and propagation (low factor IX, hemophilia B) phases of 

coagulation. In hemophilia B mice, dermal wound healing was delayed and bleeding into the 

granulation tissue was noted. Pretreating hemophilic mice with replacement therapy (factor 

IX or bypass agents) just prior to wounding, did not restore wound healing potential.18 In 

another mouse model of hemophilia B, macrophage infiltration in skin wounds was delayed 

compared to controls (1-5 days versus 10 days), suggesting a role for FIX in macrophage-

related inflammation.19 Similar findings were found in factor IX knockout mice which 

demonstrated defective joint healing after episodes of hemarthrosis.20 Use of glycopegylated 

factor IX preparation, resulted in improved synovial healing and preserved osteochondral 

architecture.20 Low tissue factor mice also displayed defective wound healing.18,21 Gao et 

al. evaluated cutaneous wound healing in Factor VIII deleted mice and found that they 

exhibited decreased wound contraction and delayed rate of wound healing compared to wild 

type and heterozygous mice.22 While no studies have addressed the contribution of Factor 

XI (FXI) to cutaneous wound healing, combined deficiency in FXI and Plasminogen (Pg), 

resulted in progressively worse fibrin deposition and increased lung inflammation compared 

to plasminogen deficient only mice.23 It will be important to investigate if increased fibrin 

deposition, itself accounts for this proinflammatory phenotype or whether FXI directly 

influences the inflammatory response. To test directly the effect of fibrinogen deficiency on 

cutaneous tissue repair, fibrinogen deficient mice and control mice were investigated using 

incisional and excisional wounds.24 The time required to overtly heal wounds was similar in 

fibrinogen deficient and control mice, but histologic evaluation revealed distinct differences 

in the repair process, including an altered pattern of epithelial cell migration and increased 

epithelial hyperplasia.24 Furthermore, granulation tissue in fibrinogen deficient mice failed 

to adequately close the wound gap, resulting in persistent open wounds or partially covered 

sinus tracts. The tensile strength of these wounds was also reduced compared with control 

mice. These studies show that reepithelialization, granulation tissue formation, including the 

establishment of neovasculature, and the formation of fibrotic scar tissue can proceed in the 

absence of fibrin(ogen) and all of its proteolytic derivatives. However, fibrin (ogen) is 

important for appropriate cellular migration and organization within wound fields and in 

initially establishing wound strength and stability.25 Similarly, in a murine model of Factor 

XIII deficiency, wound healing was delayed and histologic analysis of wounds showed 

decreased reepithelialization and necrotic fissures. Recombinant factor XIII replacement, 

restored wound healing potential.26

In summary, platelets and the formation of a fibrin clot serve as important pools of cytokines 

and growth factors that “jump start” the wound closure process: they provide chemotactic 

cues to inflammatory cells, initiate cell movements of re-epithelialization and connective 

tissue contraction, and stimulate the wound angiogenic response.

Recruitment of inflammatory cells to the wound site

The inflammatory phase is the second phase of wound healing. It is characterized by 

migration of neutrophils and monocytes into wound sites. The presence of inflammatory 

cells into the wound microenvironment, primarily helps in clearing bacteria and debris. It 

also lays the background for keratinocyte proliferation to restore skin architecture. 

Neutrophils arrive into wounds within minutes of injury and form the major inflammatory 
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cell type during the first day of wound healing.27 Neutrophils are attracted into wounds by a 

variety of mediators including fibrinopeptides, fibrin degradation products, neutrophil 

activating peptide-2 (NAP-2), growth-related oncogene a (GROα), and interleukin-8 (IL-8).
27–30 Neutrophil interactions with endothelial cells and platelets occur via P- and E- 

selectins and facilitate further inflammatory cell recruitment.31 On arrival, neutrophils 

release chemoattractants [leukotriene B4 (LTB4) and CXCL8] and begin the process of 

clearing microbes and devitalized tissues.32 The armamentarium of neutrophils is rich and 

diverse. Antimicrobial activity is executed by free radical-dependent and -independent 

mechanisms.33,34 The former include intracellular killing of pathogens (phagocytosis) and 

the latter includes formation of neutrophil extracellular traps (NETs).35,36 NETs are web-

like structures composed of DNA material (citrullinated histones) decorated with 

antimicrobial granular contents such as neutrophil elastase (NE) and myeloperoxidase 

(MPO).35,36 The process of releasing NETs is termed NETosis and can result in cell death 

(suicidal NETosis) or preservation of neutrophils (vital NETosis).37 Whereas suicidal 

NETosis requires hours of stimulation and oxidant production, vital NETosis takes place 

within minutes of stimulation of neutrophils with bacteria or bacterial products, Toll-Like 

Receptor (TLR) 4-activated platelets, or complement proteins.38 NETosis was initially 

described as an additional mechanism through which neutrophils help catch and kill 

bacteria. However, increasing evidence suggests that this process might also occur in 

noninfectious, sterile inflammation. In such settings, aberrant suicidal NETosis over time 

can be harmful to the host and lead to the development of chronic, non-healing wounds. This 

will be discussed in detail elsewhere in this review. In addition to their antimicrobial role, 

neutrophils are also a source of pro-inflammatory cytokines that serve some of the earliest 

signals to activate local fibroblasts and keratinocytes.39,40,41,42 Among them are the 

members of the matrix metalloproteinases (MMP) family, each of which cleaves a specific 

subset of matrix proteins.39 Matrix metalloproteinase 8 (MMP-8) is a collagenase secreted 

early from neutrophils. Its primary role is to remove damaged type I collagen and wound 

debris.40,41 MMP-9 is another important gelatinase secreted at later stages of wound healing, 

usually by days 2-4 post-wounding.41 MMP-9 can cut basal lamina collagen (type IV) and 

fibril collagen (type VII) and is thought to be responsible for releasing keratinocytes from 

their tethers to the basal lamina.42 Ultimately, neutrophils pave the way for subsequent 

macrophage entry into wound sites through release of interleukin (IL) – 4, IL-1, IL-6 and 

tumor necrosis factor α (TNF-α).43,44 Macrophage influx starts approximately 24 – 48 

hours from the time of injury.45

Macrophages are the most abundant hematopoietic cells in intact skin but the majority of 

macrophages involved in wound healing are derived from blood monocytes.46 Thrombin and 

PF4 produced by platelets act as chemokines for monocytes, enhance monocyte recruitment,
47 promote monocyte differentiation into macrophages and help in the differentiation of 

monocytes into dendritic cells.9,48,47,49,50,51 On arrival at the site of injury, macrophages 

develop into two distinct phenotypes namely, the M1 and M2 subtypes.52 The M1 subtype 

promotes inflammation and plays an important part in host defense against infection. In 

contrast, the M2 subtype suppresses inflammation and helps in wound repair by producing 

growth factors. In the early phase, under the influence of TNF-alpha, macrophages are 

mainly of the M1 subtype.53 Later in wound healing, M1 macrophages induce apoptosis of 
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neutrophils and phagocytose expended neutrophils.54 The process of neutrophil 

phagocytosis initiates a cascade of events during which cytokine production is turned off and 

macrophages transition to the M2 or tissue reparative phenotype where they release 

transforming growth factor - β1 (TGF-β1), a key regulator of myofibroblast differentiation 

and wound contraction.55 This process ensures timely resolution of inflammation and 

transition to the proliferative phase of wound healing.

Timely ‘phasing out’ of the neutrophil component in wounds, is key to efficient wound 

healing. In fact, it has previously been reported that depletion of neutrophils accelerates the 

rate of re-epithelialization in sterile, non-diabetic and diabetic murine wounds.56 Similar 

studies with the PU.1 null mouse, which lacks cells of the myeloid lineage (neutrophils, 

macrophages, mast cells, eosinophils) and B cells showed that despite little inflammation at 

the wound site, healing occurred at a similar rate to wild-type siblings and repair progressed 

normally.57 In a study of cathepsin G deficient mice, a higher neutrophil recruitment was 

noted and impaired wound healing was observed, suggesting that persistent inflammation 

can be deleterious to the healing wound.58

In contrast to the aforementioned studies, macrophages are indispensable to the healing 

process; if macrophage infiltration is prevented, then healing is severely impaired.59 Studies 

using transgenic mice where macrophages could be eliminated during wound healing 

showed that macrophage depletion leads to impaired reepithelization, decreased collagen 

deposition and impaired angiogenesis.60,61 Similarly, eliminating all neutrophil entry into 

wound sites such as reported in CD18 deficient mice, has the potential to deprive 

macrophages of their main stimulus to release TGF-β1 and was shown to lead to impaired 

wound contraction.61

Fibrinolytic protease expression, reepithelialization and angiogenesis

Once the inflammatory phase subsides, the reepithelialization phase is geared towards 

closing the excisional skin wound. This stage overlaps with angiogenesis leading to the 

formation of healthy and vascularized granulation tissue. In this phase, keratinocytes at the 

wound edge and epithelial cells from hair follicles in the vicinity, migrate and proliferate. 

Signals that promote keratinocyte proliferation include EGF, TGF-α, heparin binding 

epidermal growth factor and fibroblast growth factor secreted from platelets, macrophages 

and dermal fibroblasts.3 Activated protein C (APC) also facilitates proliferation via cleavage 

of protease activated receptor-1 (PAR-1) and by binding to PAR-2, both of which are 

expressed on keratinocytes.62,63 Similar to TGF-β, PAR2 agonists inhibit proliferation or 

differentiation of human neonatal keratinocytes, whereas PAR-1 agonists stimulate 

proliferation.64 In contrast, agonists of both PAR-2 and PAR-1 are mitogenic for endothelial 

cells.65 Moreover, PAR-2 regulates expression of cell adhesion molecules in primary 

cultures of human endothelial cells and cell lines.66,67 Finally, PAR-2 appears to play a role 

in the regulation of leukocyte-endothelial interactions in humans and mice in vivo, as shown 

for atopic dermatitis or experimentally induced contact dermatitis.67,68

Keratinocyte migration is triggered by the loss of physical tension at points of cell 

attachment to the basal lamina. In order to pass through the fibrin clot, leading–edge 

keratinocytes have to dissolve the fibrin barrier ahead of them. Plasmin, the chief fibrinolytic 
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enzyme, is derived from plasminogen (Pg) within the clot and can be activated by tissue-

type plasminogen activator (tPA) or urokinase-type plasminogen activator (uPA).69 While 

tPA is found in the circulation and plays a key role in intravascular fibrinolysis, uPA is 

essential in extracellular proteolysis, wound healing and tissue remodeling. Both uPA and its 

receptor uPAR are up-regulated in migrating edge keratinocytes.70 In these cells, uPA 

binding to uPAR and other transmembrane receptors such as integrins and epidermal growth 

factor receptor (EGFR) affects cell migration, adhesion, differentiation and proliferation via 

intracellular signaling.71 Generated plasmin degrades fibrin and other matrix glycoproteins 

(peri-cellular proteolysis), facilitates keratinocyte migration during reepithelialization, 

regulates growth factor production and release, and activates matrix metalloproteinases 

which assist in ECM degradation and tissue remodeling.72,73,74 Plasmin also mediates a 

negative feedback loop by activating transforming growth factor-β (TGF-β) which in turn, 

stimulates plasminogen activator inhibitor-1 (PAI-1) to turn off fibrinolysis.75,76 Expression 

of MMPs namely MMP-1 (collagenase) and MMP-9 (gelatinase B) is also increased in 

wound edge keratinocytes, both of which cut through matrix proteins and aid in cell 

migration.3

It is important to note that uPA and uPAR have differential roles in the wound 

microenvironment. Both uPA and its receptor are not only expressed in keratinocytes but 

they are also abundantly upregulated in inflammatory cells (neutrophils and macrophages) 

where they promote cell influx into inflamed areas.77,78 Moreover, recent data show that 

uPAR on the neutrophil surface serves as the receptor for zymogen factor XII (FXII). The 

FXII-uPAR interaction upregulates neutrophil functions including adhesion, migration, 

chemotaxis and NET formation. The sum of these activities results in persistent 

inflammation and delayed wound healing.79

Preclinical studies reinforce the importance of components of the fibrinolytic system in 

wound repair. In a study of plasminogen deficient mice, wound healing was disrupted when 

compared to wild type mice.80 In another study, wounds of plasminogen deficient mice 

exhibited increased fibrin deposition and sustained inflammation several months after re-

epithelialization, suggesting a role for plasminogen in inflammation modulation.81 

Plasminogen treatment of wild type mice with burn wounds or diabetic mice, accelerated 

wound healing.82 There have been conflicting reports on the wound healing potential of 

uPAR knockout mice.83,85 Bugge and Connolly show that loss of uPA, but not uPAR, delays 

wound healing.84,85 Importantly, abrogating the uPA-uPAR interaction has no effect on 

wound healing.85 The authors conclude that uPA promotes wound repair independent of 

binding to its receptor.85 It was previously shown that uPA not only binds uPAR but also 

extracellular matrix proteins.86 This may well explain why uPA is not functionally redundant 

in wound repair.

Angiogenesis is induced by Fibroblast Growth Factor (FGF) secreted by macrophages and 

damaged endothelial cells whereas, VEGF is primarily produced by keratinocytes and 

wound-resident macrophages.87 These pro-angiogenic factors allow endothelial cells from 

exiting blood vessels to establish sprouts within the wound. In endothelial cells, zymogen 

FXII binds to a multi-receptor complex that consists of uPAR, EGFR and β1 integrin to 

promote phosphor-AktS473 leading to cell proliferation and post-natal angiogenesis.88,89 A 
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direct role for von Willebrand factor (vWF) in wound healing has not been clearly 

established but a recent observational study found that various angiogenic mediators 

including angiopoietin 1 and 2, VEGF and galectin-3, are significantly different between 

types of vW disease.90

Tissue remodeling

The tissue remodeling phase is characterized by wound contraction to ease epithelialization 

and scar formation. Fibroblasts migrate into wounds on day 3 to 4 and start depositing a 

collagen-rich matrix.3 Fibroblast proliferation and migration occurs in response to cytokines 

and growth factors released from platelets and macrophages [PDGF, TGF-β and FGF].91,92 

TGF-β also induces differentiation of fibroblasts to myofibroblasts, a critical step for wound 

contraction.92,93 Scar formation occurs with replacement of collagen III by collagen I that 

exhibits higher tensile strength. Besides the role of macrophages, no other blood cells or 

coagulation system components are implicated in this phase of wound healing.

Chronic non-healing wounds, current therapeutic targets

With increasing age, both the morphology and functions of the skin change, due to intrinsic 

(e.g., hormone levels) and extrinsic factors (e.g., sun exposure). The age-related alterations 

in the skin result in delayed, but not defective wound healing.94 In the hemostasis phase, 

aggregation and degranulation of platelets are enhanced in the elderly.95 During the 

inflammatory phase, increased neutrophil response and delayed monocyte infiltration in 

wounds have been observed in the aged compared with young controls.96 Moreover, 

phagocytic activity of wound macrophages in aged mice is decreased compared to young 

mice, which may account for the increased production of proinflammatory cytokines 

including IL-1, IL-6, TNF-α, and decreased secretion of VEGF.95,97,98 These responses lead 

to delayed reepithelialization, angiogenesis and granulation tissue formation in the elderly. 

In addition to these age-related alterations in the skin, factors associated with aging, e.g., 

reduced sex steroid hormones, immobilization, malnutrition, medications and comorbidities 

(diabetes, venous insufficiency, peripheral artery disease), increase susceptibility to chronic 

wounds. Chronic, non-healing wounds represent a major health care burden, costing 25 

billion dollars annually in US health care costs and are associated with high mortality.99 

Current treatments for impaired wound healing focus mainly on optimization of controllable 

healing factors, e.g., mechanical protection, nutritional support and clearance of infections.
100 Several approaches have also been studied for local delivery of therapeutic agents to 

wound sites. Sub-atmospheric pressure dressings are very costly.101 Similarly, hyperbaric 

oxygen therapy was shown to be efficacious in the treatment of burn wounds but its use is 

limited by low availability and high cost.102 Tissue-engineered human skin equivalents are 

ultimately rejected, so their primary task appears to be a transient restoration of the dermis.
103 Autologous skin transplantation requires a viable and well-perfused wound site to be 

successful.104,105 Alternative strategies include the topical use of recombinant growth 

factors such as platelet-derived growth factor (rPDGF). Clinically, rPDGF has demonstrated 

only modest improvements in healing diabetic and pressure ulcers and recent data reported 

an increased cancer risk in connection with its use.106,107 Platelet rich plasma (PRP) has also 

been used for difficult-to-treat wounds. Driver et al. carried out the first reported prospective, 

randomized, controlled multicenter trial in the U.S. regarding the use of autologous PRP for 
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the treatment of diabetic foot ulcers.108 In this study, investigators compared the 

effectiveness of autologous PRP gel to that of normal saline gel for 12 weeks. The primary 

objective of this study was to evaluate the safety of PRP and the incidence of complete 

wound closure, defined as 100 percent re-epithelialization when compared to control 

treatment, a secondary objective was rate of wound closure. The study found that 68.4 

percent (13/19) of patients in the PRP group and 42.9 percent (9/21) in the control group had 

wounds that healed. Wounds in the PRP group healed after a mean of 42.9 days (SD 18.3) 

vs. 47.4 days (SD 22.0) in the control group. This study was limited somewhat because it 

excluded ulcers with “challenging presentations” such as mild to moderate vascular disease 

and exposed tendon or bone, in addition to patients with hyperglycemia and/or inadequate 

nutritional status.108 In contrast to findings by Driver et al., another randomized prospective 

double-blind placebo-controlled study by Krupski et al. investigated the use of autologous 

platelet-derived wound healing formula (PDWHF), a mixture of growth factors including 

PDGF, PF-4, TGF-β, platelet-derived epidermal growth factor (PDEGF), and platelet-

derived angiogenesis factor (PDAF).109 PDWHF was investigated in 18 patients with 26 

lower extremity wounds of at least eight weeks duration. Only 78 percent of the patients 

were diabetic and all were men ranging from 57 to 75 years old. Over the 12-week study 

period, the investigators did not find any improvement in wound healing with the use of 

PDWHF. Three (33 percent) wounds healed in two patients in the control group, and four 

(24 percent) wounds healed in three patients in the PDWHF group (p > 0.05). While this 

study was limited by a small sample size, its results suggested that treatment of chronic 

wounds with PDWHF is no better than traditional therapy. Human studies also failed to 

confirm a beneficial role for aspirin in the management of chronic venous leg ulcers.110,111 

Lastly, tranexamic acid has been shown to improve the tensile strength of wounds in murine 

models however, this effect was thought to be independent of its antifibrinolytic activity.112 

Currently, there are no human studies examining the use of tranexamic acid for treatment of 

chronic wounds.

Future prospects for the management of chronic wounds

Despite their heterogeneity, most non-healing wounds fail to progress through the normal 

phases of wound repair, but instead remain in a chronic inflammatory state.113 Indeed, 

continued recruitment, or buildup of active neutrophils, can prolong inflammation and 

contribute to the development of chronic wounds. Animal models show that excess 

neutrophil influx into wound sites impairs keratinocyte migration and proliferation.114 The 

persistence of neutrophils in wounds leads to unrestricted proteolytic activity mediated by 

neutrophil granular enzymes that are considered the final executor of a pathogenic chain 

leading to matrix disruption and proteolysis of growth factors and their receptors.115 

Neutrophil elastase was previously shown to be markedly increased in the exudate of non-

healing human wounds and is thought to reflect a chronic, inflammatory, tissue-destructive 

microenvironment.116 In contrast, high levels of alpha1-antitrypsin, an in vivo neutrophil 

elastase inhibitor, are a biomarker of successful wound healing.115 Neutrophil Elastase 

associates with NETs and is critical to their function.35 Recent studies show that circulating 

neutrophils from diabetic humans are primed to produce NETs and NETosis delayed 

diabetic wound healing in mice and humans.117,118 The involvement of NETs was 

corroborated by showing that DNase I treatment enhanced wound healing in wild type 
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diabetic mice.117 Altogether, these data support that limiting the activity of neutrophils may 

be beneficial for the treatment of recalcitrant wounds. Future studies are needed to establish 

the benefit from an array of compounds designed to specifically inhibit peptidylarginine 

deiminase 4 (PAD4), an essential enzyme in the formation of NETs. Interestingly, the first 

generation PAD inhibitor, Cl-amidine, does not effectively block NETosis in human 

neutrophils,119 but new specific PAD4 inhibitors have been developed to inhibit both NET 

formation and histone citrullination.120

Concluding remarks

In summary, the healing of an adult skin wound is a complex process requiring the 

collaborative efforts of different tissues, cell lineages and soluble pro- and anti-inflammatory 

mediators. Components of the hemostatic and fibrinolytic systems play an indispensable role 

in the wound healing process. Besides their immediate contribution to the formation of a 

barrier ‘clot’ against blood loss and pathogens, their cross talk with inflammatory cells lays 

the ground for antimicrobial activity, ECM degradation, keratinocyte migration and 

proliferation and wound contraction. Our understanding of wound healing mechanisms has 

progressed considerably in recent years. Part of the difficulty in unraveling tissue repair 

mechanisms is a consequence of redundancy and cross-talk in the system. Most wound 

signals probably control more than one cell activity, and most cell activities are responses to 

cocktails of signals. Experimental mouse models have been particularly useful in answering 

open questions, because of our ability to manipulate the genetic, systemic, and wound 

environment. Although only a handful of knockout mice have been wounded so far, there 

have been some surprisingly normal healing phenotypes reported. Reports have raised 

questions on the validity of the essential prerequisite of inflammation for efficient tissue 

repair. Indeed, in experimental models of repair, inflammation has been shown to delay 

healing and to result in increased scarring. In this framework, the next few years in wound 

healing research will be exciting as we improve on our current understanding of the 

mechanisms controlling wound repair and test novel therapeutic targets to improve 

pathological would healing.
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Highlights

• Platelets, coagulation and fibrinolytic factors influence cutaneous wound 

healing.

• There is extensive crosstalk between the hemostatic system and the wound 

milieu.

• Timely resolution of each phase of wound healing is critical for wound repair.

• Buildup of active neutrophils, contributes to the development of chronic 

wounds.
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Figure 1. Phases of wound healing.
Timeline depicting the sequential yet overlapping phases of wound healing namely, 

hemostasis (red), inflammation (yellow), keratinocyte proliferation, angiogenesis (green) 

and tissue remodeling (brown).
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Figure 2. Contribution of hematopoietic cells to wound healing.
The phases of wound healing are pictorially described here. During the hemostatic phase of 

wound healing, platelets secrete growth factors and chemokines that facilitate recruitment of 

inflammatory cells. The inflammatory phase is characterized by early neutrophil responses 

followed subsequently, by monocyte and macrophage recruitment. MMPs from neutrophils 

and the fibrinolytic system clear the extracellular matrix and fibrin clot leading to 

keratinocyte migration and proliferation for wound closure. TGF-β from platelets and 

macrophages facilitates Myofibroblast differentiation and proliferation thus enabling wound 

contraction and scar formation. CXCL4=CXC chemokine ligand 4; ECM=extracellular 

matrix; EGF=epidermal growth factor; FGF=fibroblast growth factor; IL=interleukin; 

MMP=matrix metalloproteinase; PDGF=platelet derived growth factor; PF4=platelet factor 

4; TGF-β= transforming growth factor-β; TNF-α=tumor necrosis factor-α; uPAR=urokinase 

plasminogen activator receptor; VEGF=vascular endothelial growth factor.
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Table 1.
Hematopoietic cells, their functions and mediators released in tissue repair. This table also 
summarizes genetic mouse models of inflammation and cutaneous wound healing.

CXCL-4=CXC chemokine ligand 4; ECM=extracellular matrix; EGF=epidermal growth factor; MMP=matrix 

metalloproteinase; NETs=neutrophil extracellular traps; PDGF=platelet derived growth factor; PF4=platelet 

factor 4; Pg=plasminogen; TGF-β= transforming growth factor-β, uPA= urokinase plasminogen activator, 

uPAR= urokinase plasminogen activator receptor.

Phase Coagulation factor/Blood component Growth factor, Mediator Effect

Mechanistic 
insight from 

murine 
knockouts 
(reference)

Hemostasis Platelets PDGF Chemotaxis of 
macrophages, fibroblast 
mitogen

EGF Keratinocyte proliferation

CXCL-4 PF4 Recruitment of 
inflammatory cells

Factor IX Early and late wound 
healing (cutaneous and 
joint), macrophage 
inflammation

Hemophilia B 
mice: Delayed 
dermal wound 
healing with 
bleeding into 
granulation tissue 
(63); delayed 
macrophage 
infiltration (64); 
defective joint 
healing (65)

Factor XIII Re-epithelialization and 
wound closure

FXIII deficient 
mice: Delayed re-
epithelialization 
compared to 
controls (67)

Inflammation Neutrophils Serine proteases; NETs Antimicrobial activity Cathepsin G 
deficient mice: 
increased 
neutrophilic 
inflammation, 
delayed wound 
healing (76)

MMPs ECM degradation, cell 
migration

PU.1 null mouse: 
normal wound 
healing as wild 
type mice (77)

Macrophages Inflammation, 
angiogenesis M1: host 
defense M2: wound 
repair

Prevention of 
macrophage 
infiltration: 
defective wound 
healing (78)

Transgenic mice 
with macrophage 
elimination: 
Impaired re-
epithelialization, 
collagen 
deposition and 
angiogenesis (79)
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Phase Coagulation factor/Blood component Growth factor, Mediator Effect

Mechanistic 
insight from 

murine 
knockouts 
(reference)

Protease 
expression, re-
epithelialization 
and angiogenesis

Plasminogen Extracellular proteolysis Pg deficient 
mice: Delayed 
wound healing 
and prolonged 
inflammation 
(69, 70)

uPA Extracellular proteolysis 
(via Pg activation)

uPA knockout 
mice: Impaired 
wound healing 
(73)

uPAR

Extracellular proteolysis, 
inflammation (via FXII)

uPAR knockout 
(Plaur−/−)mice: 
no defects in 
wound healing 
(73)

Plau(GFDhu/
GFDhu) mice: 
selective 
abrogation of 
uPA-uPAR 
interaction: no 
disruption of 
wound healing 
(74)

Tissue remodeling Platelets

TGF-β

Wound contraction CD18 deficient 
mice: defective 
wound 
contraction (80)Macrophages Macrophages Wound contraction
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