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Abstract

A large number of studies have attempted to use neuroimaging tools to aid in treatment prediction 

models for major depressive disorder (MDD). Most such studies have reported on only one 

dimension of function and prediction at a time. In this study, we used three different tasks across 

domains of function (emotion processing, reward anticipation, and cognitive control, plus resting 

state connectivity completed prior to start of medication to predict treatment response in 13-36 

adults with MDD. For each experiment, adults with MDD were prescribed only label duloxetine 

(all experiments), whereas another subset were prescribed escitalopram. We used a KeyNet (both 

Task derived masks and Key intrinsic Network derived masks) approach to targeting brain systems 

in a specific match to tasks. The most robust predictors were (1) positive response to anger and (2) 

negative response to fear within relevant anger and fear TaskNets and Salience and Emotion 

KeyNet (3) cognitive control (correct rejections) within Inhibition TaskNet (negative) and 

Cognitive Control KeyNet (positive). Resting state analyses were most robust for Cognitive 

control Network (positive) and Salience and Emotion Network (negative). Results differed by 

whether an -fwhm or -acf (more conservative) adjustment for multiple comparisons was used. 

Together, these results implicate the importance of future studies with larger sample sizes, 

multidimensional predictive models, and the importance of using empirically derived masks for 

search areas.
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Introduction

A rapidly growing literature implicates the use of neuroimaging markers in the prediction of 

response to standard treatments for those with mood and anxiety disorders (1–11). These 

studies have, by and large, highlighted the challenges in understanding probability of 

treatment response. For example, there are differences in task probes, relevance to individual 

patients, heterogeneity of depression, and specificity of prediction. In addition, these studies 

tend to have small sample sizes, variable analytic techniques, and different thresholding 

strategies. Within analytic techniques, one challenge in these studies is that there are four 

classes of studies, a priori region of interest (ROI) based, exploratory whole-brain based 

(WB), and prediction based upon regions identified as critical for task completion (e.g., 

goal-directed activity) (TaskNet) or between group (BetGroup) differences (i.e., regions 

implicated in psychiatric illness). As a result, a meta-analysis would fail to adequately 

represent the entirety of data prediction or variance in algorithms in these studies. These 

studies and other reviews have strongly suggested that the mechanisms in which people 

attain wellness are multifactorial and heterogeneous in nature (12). In a recent review, we 

reported on task-based fMRI studies of treatment prediction in mood disorders and 

highlighted the cognitive control network (CCN) and salience and emotion networks (SEN) 

as critical for predicting treatment response in mood disorders (3). In addition, we reviewed 

well-known regions and networks, such as the amygdala, insula, dorsal and dorsal anterior 

cingulate, but also less expected regions like occipital cortex and cerebellum that have been 

implicated in predicting treatment response. In light of that review, there is still a need to 

synthesize previous findings in order to provide a better framework for how to conceptualize 

brain-based prediction models of clinical outcomes, or neuroprediction. Do key region 

(KeyReg, BetGroup) or network (TaskNet, KeyNet) models best predict treatment response? 

More specifically, does a Reward network or a Salience and Emotion intrinsic network best 

represent nodes that are relevant for prospective prediction of treatment response? Moreover, 

does the task probe matter as much as the TaskNet or KeyNet?

More recently, investigations have evaluated the role of intrinsic network connectivity (e.g., 

KeyNet) in the prediction of treatment response in mood and related disorders (13–19). 

There are several advantages of the resting state-fMRI approach. Group and individual 

differences in effort and performance capabilities are not confounds for this approach. In 

addition, by looking at temporal cross-correlations of these nodes, it is possible to better 

address convergence across multiple nodes within a network and across and between 

networks (20). One of the main challenges is the need for a very large adjustment for 

significance, as there as hundreds of thousands of bidirectional connectivities, which is only 

aided slightly by the fact that in-network nodes tend to correlate moderately with each other. 

By using a KeyNet or ROI approach, investigators have dramatically reduced the number of 

comparisons, but the possibility remains that the best predictive connections (e.g., Intrinsic 

Networks, or CrossNetwork seed to node connections) are omitted from these models. 

Reducing the number of comparisons by restricting the search space could allow for a more 

balanced approach to type I and II error.

Three networks have been identified as particularly reliable intrinsic connectivity networks 

(21–23), which may be relevant to the prediction of treatment response in MDD (15), the 
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default mode network (DMN); the salience and emotional network (SEN); and the cognitive 

control network (CCN). The DMN is active during rest and shows corresponding decreases 

in activation during cognitively demanding tasks (24–27). In contrast, the SEN is active in 

response to stimuli that are perceived to be relevant to current goals and involves limbic 

regions and ventral attention subnetworks. Finally, the CCN involves frontoparietal and 

dorsal attention network regions and is thought to be critical for problem-solving and 

executive functioning (28). Examining individual differences in connectivity within these 

networks during rest can provide useful information about the integrity and efficiency of 

these networks (23, 28). For example, prior work has suggested that attenuated connectivity 

within the CCN may have utility as a biomarker for individual differences in cognitive 

control performance and cognitive vulnerabilities for depression (e.g., (20, 29). In contrast, 

enhanced connectivity within the DMN often is seen in current depression and is related to 

elevated rumination and depression symptoms (30–34)

In this paper, we propose TaskNet and KeyNet approaches to identify treatment predictors 

using several small samples for illustration, balanced with our proposed whole brain 

uncorrected threshold strategy that could facilitate future meta-analyses (3). We aim to 

provide a ‘proof of principle’ framework for how data from smaller samples could be 

published, minimizing type I error with TaskNet and KeyNet masks using more conservative 

thresholds, and decreasing type II error by including WB data with effect sizes in 

supplemental tables and a moderately adjusted thresholded (3). We present four 

experiments, each using a different task that probes one of 4 subdomains of the Research 

Domain Criteria (RDoC), highlighting recent work suggesting specific subtypes by 

subdomain in MDD (35–37). 1) We use a well-published emotion face matching task 

(Negative Valence) (38–40), 2) a monetary incentive delay task (41–43), 3) a parametric 

Go/No-go task (44, 45), and 4) resting state fMRI (46, 47), all collected from an overlapping 

set of samples from our group.

General methods

The participants for all four experiments were recruited at the University of Michigan and 

surrounding area using postings in community settings and online forums. Inclusion criteria 

were diagnosis of Major Depressive Disorder (MDD), a Hamilton Depression Rating Score 

(HDRS, 17 item) greater than 13 (also completed every two weeks and at completion of the 

treatment) and age between 18 and 55. Those with comorbid anxiety disorders were also 

allowed into the study. Exclusion criteria included IQ below 75, use of psychotropic 

medications in the last 3 months, prior or current evidence of mania or psychosis, evidence 

of substance abuse (including nicotine) in the past six months, or of substance dependence in 

the last two years, and suicidal intent, plan, or attempt in the last six months. Participants 

completed informed consent in accordance with the Declaration of Helsinki.

Participants were compensated for their participation. Diagnosis was obtained with 

Structured Clinical Interview for DSM-IV-TR by psychologists or social workers. Imaging 

experiments were performed prior to initiation of treatment. Participants for all experiments 

were treated with duloxetine (with 1-week placebo lead-in, 30-90 mg) for 12 weeks. There 

were too few individuals to evaluate the effects of placebo (only for duloxetine trial) 
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independent of the effects of medication. No individuals were excluded because of placebo 

response, and prior work by our group suggests that placebo responders and medication 

responders may show similar neural changes (12). In experiment 3, 22 additional 

participants were recruited and treated with escitalopram (5-10 mg and no placebo lead-in, 

plus the 14 who had already completed the placebo lead in study with duloxetine). If there 

were side effects or sleep problems, augmentation with trazadone was permitted for those in 

the duloxetine trial (n=2). Treatment was provided by a board-certified psychiatrist (J-K.Z. 

or B.J.M.). A psychologist, psychiatrist, or social worker administered the HDRS every two 

weeks and at completion of the treatment. Those who completed at least seven weeks and up 

to 12 weeks of treatment were included in the present analyses. Last measurement was 

carried forward in those instances where 12 weeks of treatment was not completed. Clinical 

and demographic information across all experiments is presented in Table 2. The dependent 

variable in all four experiments was percent change in HDRS score, calculated as 

((HDRSpre − HDRSpost)/HDRSpre). Moreover, treatment response was defined as at least 

50% reduction in HDRS score from baseline to post-treatment.

Defining TaskNets and KeyNets

We used an empirical approach of defining TaskNets and KeyNets for each probe. KeyNets 

were based upon the parcellation provided by the 1000 individuals recruited from the greater 

Boston area (49). For the sake of simplicity, we have taken this seven network parcellation, 

excluded visual and somatomotor networks. We have also integrated dorsal attention and 

executive networks based upon work of others (23, 28), to make one Cognitive Control 

Network (CCN), Ventral Attention (or Salience) network was integrated with the limbic 

network and several subcortical regions that were excluded in the prior work of Yeo and 

colleagues, to create a Salience and Emotion Network (49). TaskNets were created by using 

the Neurosynth website http://neurosynth.org , which is an online repository of imaging 

results in healthy individuals. Studies are organized by constructs, and we used anger and 

fear for Experiment 1 (Figure 1), reward anticipation for Experiment 2 (Figure 1), Errors and 

inhibition for Experiment 3 (Figure 2). There were no relevant TaskNets for Experiment 4 – 

rest only. We used a forward inference model, which looks only at what is active, and not at 

what is specific or unique to the particular construct. Masks thresholded based upon the 

aggregate set of results (p < .01) were then downloaded and used for focused analyses to 

reduce type I error by reducing the relevant field of view.

Statistical Models and Thresholding for Neuroprediction

Each of the four experiments included models that were comprised of whole brain first level 

models for each individual (brain contrast or model), with change in HDRS as the predictive 

marker. Sex, pretreatment symptoms, movement deviation values for x, y, z translation, and 

age were used as covariates of no interest. To adjust for multiple comparisons, we performed 

clusterwise adjustment as determined with 3dClustSim where 3dFWHMx was used to 

estimate the spatial smoothness of the residuals with analyses using the -fwhm and -acf 

options separately (10,000 iterations; updated and ‘newer method’ on December 2015 and 

based upon subsequent commentary and papers in April and October of 2017). Moreover, 

and consistent with our recent synopsis of the need to balance type I and type II error, we 
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provide partially adjusted correction values in supplemental tables that can be used for the 

purpose of meta-analyses (p < .005, mm3 > 80).

We add an example of the effect of masking upon adjustments for multiple comparisons. In 

WB analyses for Anger (EFAT), the mask consists of 510,340 voxels, and the -acf adjusted 

threshold would be 1473 contiguous voxels (57 for -fwhm threshold), resulting in the 

defacto exclusion of most subcortical regions from the models. With the neurosynth mask 

(TaskNet), there are 4563 voxels and the -acf adjusted threshold drops to 59 contiguous 

voxels (17 for -fwhm). For the SEN mask, the -acf threshold is 256 contiguous voxels (33 

for -fwhm) in a mask that includes 30,532 voxels. Thus, TaskNet and KetNet approaches 

enable a search within a relevant network, and result in adjusted thresholds that can 

accommodate activation foci within smaller subcortical structures.

Acute Threat in the Negative Valence Domain with the Emotion Faces Matching Task 
(Experiment 1)

In the Emotion Faces Matching Task (EFMT) participants must match harsh faces (i.e., 

angry and fearful) to a correct same-emotion, instead of a non-matching distractor. Here, the 

comparison condition are shapes or happy face matching (38–40). The task has been used 

extensively in mood, anxiety and other disorders, and extant results have illustrated key 

regions and networks implicated in internalizing disorders. Regions engaged by this task 

include amygdala, anterior insula, and dorsal anterior cingulate. These regions tend to 

overlap with regions reported in our prior review as critical regions implicated in prediction 

of treatment response in MDD (3). These predictive studies also suggest that the Cognitive 

Control Network is included in important predictive regions. It is unclear if the role of the 

Cognitive Control Network is related to the task demands (choice between emotion in 

discrimination), or if it might reflect capacity for implicit emotion regulation. The KeyNet 

(Salience and Emotion Network, plus subgenual ACC, amygdala, and nucleus accumbens) 

and TaskNet models (fear, anger, from Neurosynth) are represented in Figure 11 including 

overlap.

Experiment 1 Methods—The sample is comprised of 13 individuals with MDD who 

completed treatment with duloxetine. We modeled activation in KeyNet and TaskNet regions 

to predict degree of change in HDRS after treatment. The demographic and clinical variables 

are reported in Table 2.

Data were collected with a 3T GE scanner at the University of Michigan. The task was 

previously validated for use with fMRI BOLD (38, 40, 50). Angry, fearful and happy faces 

were selected from the Gur emotional faces set (51). There were 3 angry, 3 fearful and 3 

happy blocks of trials, interspersed with shape-matching blocks. Each block lasted 20 s and 

consisted of 4 back-to-back 5-s trials. Shapes were used as control stimuli instead of neutral 

faces, because they may provide a more truly neutral baseline for comparison, particularly 

when using a patient sample (52). Data were analyzed using SPM8 (with despiking in AFNI 

1These masks are intrinsic resting state networks derived from Yeo and colleagues (2011), including an adaptation by our group to 
condense the maps into three distinct networks based upon work of Menon and colleagues (2009). We also add subcortical regions to 
the SEN mask, as these were excluded in the work of Yeo and colleagues).
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and realignment in FSL) based upon prior studies in our group (48, 53). All models included 

movement detection and movement estimates built into first and second level models.

Experiment 1 Results—The majority of these depressed subjects responded to 

duloxetine treatment (Table 2). Within the TaskNet mask for Anger (Neurosynth, FDR .01, 

forward inference), 6 regions significantly predicted treatment response (Table 3), with 

clusterwise adjustment to significance using the -fwhm correction in 3dClustSim (p < .005, 

k > 17 for anger, k > 25 for fear). For Fear TaskNet mask (Neurosynth, FDR .01, forward 

inference), right inferior frontal gyrus activation was inversely correlated with eventual 

degree of treatment response. No clusters were significant after the -acf clusterwise 

adjustment for Fear TaskNet (k > 102), whereas right amygdala was significant after -acf 

clusterwise adjustment for anger TaskNet mask (k > 59).

Within the KeyNet mask (Salience and Emotion Network, plus subgenual ACC, amygdala, 

and nucleus accumbens, hereafter SEN), 11 anger regions (see Table 3, Figure 3) 

significantly predicted treatment response, with clusterwise adjustment to significance using 

the -fwhm correction in 3dClustSim (Dec 2015, p < .005, k > 33 for anger, k > 25 for fear, 

Table 3, Figure 3). For fear with SEN KeyNet mask, right inferior frontal, subcallosal, and 

fusiform gyrus activation was inversely correlated with eventual degree of treatment 

response (also Table 3). With the -acf clusterwise adjustment for fear (k > 182), subcallosal/

subgenual anterior cingulate activation was significantly negatively correlated with treatment 

response. For anger (-acf clusterwise, k >256), right inferior parietal activation was a 

significant positive correlate of later treatment response.

The WB results are included in Supplemental Table 1 for purposes of meta-analyses, with 

the threshold of significance set at .005 and k > 15 contiguous clusters, resulting in a 

minimum effect size to minimize type II error (note that for WB analyses, -acf cluster size is 

k > 1474 for anger and k > 767 for fear). Performance for fear accuracy was not a significant 

predictor of treatment response (B = .34, t = 1.07, p = .31, R2 = .11). Anger accuracy was 

not a significant predictor of treatment response (B = −.32, t = −1.00, p = .34, R2 = .10).

Reward Anticipation in the Positive Valence Domain with the titrated Monetary Incentive 
Delay Task (Experiment 2)

Emerging literature suggests that reward anticipation may be a core domain of dysfunction 

in MDD. Although there are only a handful of imaging and performance studies using 

reward functioning to predict clinical outcomes in MDD (42, 54–59), most of which are ROI 

only, there is a strong conceptual basis for why reward anticipation might be dynamically 

related to probability of treatment response in MDD. Diminished reward anticipation would 

reduce pursuit of goals, rewards, and social interactions, thereby eliminating any positive 

feedback that could have been derived from these activities. The likely mechanism of 

behavioral activation (also part of cognitive behavioral therapy), interpersonal therapy, and 

exercise therapy, which are all effective therapies for depression, is increasing engagement 

and effectiveness of the reward and motor systems in the brain (1, 60, 61). Other work 

suggests that pharmacotherapy may also be helpful in increasing behavioral activity and 

activation. We used the Monetary Incentive Delay task (MID; Knutson et al., 2008) to probe 
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brain activation during reward anticipation. We predicted that diminished activation during 

reward anticipation would predict decreased treatment response for patients MDD.

Experiment 2 Methods—The sample used for prediction with the MID task was 

overlapping with that investigated for Experiment 1 and the task has been described in 

previous work (42). Our version of the task, which we have described in previous work (42), 

includes an individualized titration of the task response window to give each participant 

about a 65% chance of being able to successfully win and avoid losing money on each trial. 

In the present sample, this titration resulted in adaptive performance in the HC group, but 

not in the MDD group, particularly MDD with low trait reward responsiveness (42). Data 

were collected with MID using a fixed hemodynamic response model to compare win 

anticipation trials relative to neutral anticipation trials and processed as above for 

Experiment 1.

The treatment and the demographic and clinical variables are reported in Table 2.

Experiment 2 Results—Using the TaskNet for Neurosynth for reward anticipation, 

activation in left rostral anterior cingulate (−2, 32, 16, Z = 3.40, p < .0003, k = 20, BA 24) 

was inversely correlated with treatment response in MDD after adjustment (with -fwhm (k > 

20), but not after acf adjustment for multiple comparisons).

Using the SEN KeyNet mask, right inferior frontal gyrus (52, 16, −2, Z = 3.53, p = .0004, k 

= 34, BA 47) was negatively associated with treatment response in MDD after adjustment 

(for -fwhm (k > 33), but not for -acf adjustment for multiple comparisons).

The WB results are included in Supplemental Table 2 for purposes of meta-analyses, with 

the threshold of significance set at .005 and k > 15 contiguous clusters, resulting in a 

minimum effect size to reduce type II error. For performance, total amount of money won 

was not associated with degree of treatment response (B = −.32, t = −0.88, p = .42, R2 = .

09).

Experiment 3: Cognitive Control and the Parametric Go/No-go Test

At the behavioral level, executive functioning and cognitive control tests are well-replicated 

predictors of treatment response in MDD (62). However, cognitive control is relatively 

understudied in fMRI task-based studies (63, 64). In a recently published study, we 

illustrated how use of complementary analytic strategies with the Parametric Go/No-go test 

was able to predict treatment response probability with 89% accuracy (65). The study used 

independent components analysis, performance, and traditional hemodynamic response 

function analyses in an integrated, multimodal model. In our recent review, we determined 

that activation within the cognitive control network, regardless of task type, was often 

predictive of treatment response. This was true even for emotion perception tasks (3).

Experiment 3 Methods—The individuals used in this predictive model of 

pharmacological treatment response have been reported in a prior study (N=36, (48)). Over 

65% of these depressed subjects responded to SSRI treatment (Table 2). The Parametric 

Go/No-go Test is a well-validated test that includes measures of attention and inhibition 
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errors. Data were collected with a 3T GE scanner at the University of Michigan. Data were 

analyzed using SPM8 based upon prior studies in our group (48, 53). We evaluated network 

activation during commissions (error TaskNet mask) and correct rejections (inhibition 

TaskNetmask).

Experiment 3 Results—Within the TaskNet mask for Errors, there were no regions for 

the Commissions model (Figure 3) that positively or negatively predicted treatment response 

(for either -fwhm (k > 27) or -acf adjustment for multiple comparisons (k>96)).

For the Inhibition Task Net mask, activation for Correct Rejections in left (−32, 30, −6, Z = 

3.62, k = 43, BA 47/13) and right inferior frontal gyrus/insula (42, 30, −14, Z = 3.51, k = 43, 

BA 47/13, Fig3, Pan B) and right putamen (28, 6, 6, Z = 3.53, k = 29) were inversely 

associated with treatment response (significant with -fwhm clusterwise adjustment (k > 28), 

but not with -acf adjustment (k > 121).

Within the KeyNet mask (CCN from (20)), there were no regions that significantly predicted 

treatment response, either positive or negative, for Commissions (neither -fwhm or -acf 

adjustment for multiple comparisons with 3dClustSim).

For Rejections within the CCN KeyNet, activation within left middle frontal gyrus was 

positively correlated with treatment response (−36, 42, 24, Z = 3.39, k = 42, BA 10) 

significant with -fwhm adjusted (k > 29), but not with -acf adjusted threshold (k > 77)).

Activation in a number of regions for both errors and rejections was predictive of treatment 

response at the WB level (Supplemental Table 3). The adjusted threshold with significance 

of .005 and k > 15 contiguous clusters was used, in order to reduce type II error. For 

performance data, Percent Correct Inhibition was not a significant predictor of treatment 

response (B = −.33, t = −2.00, p = .06, R2 = .29).

Resting State fMRI with SEN and CCN (Experiment 4)

Recent investigations have evaluated the role of intrinsic networks as potential biomarkers of 

treatment response (15) given that these intrinsic networks are relevant to a variety of 

psychological functions. The recent review by Dichter and colleagues documented several 

studies that identified increased connectivity between CCN and SEN regions in association 

with superior response to antidepressant medication treatment, potentially representing that 

patients with better inhibitory control over emotional stimuli are more able to benefit from 

treatment with antidepressants (15). In addition, treatment-sensitive patients with MDD may 

have higher connectivity within the CCN (perhaps representing superior executive 

functioning abilities) and lower connectivity within the DMN (perhaps representing less 

tendency to ruminate), relative to treatment-resistant patients. Furthermore, a large study that 

used intrinsic networks to identify subtypes of MDD found that patients who responded to 

repetitive transcranial magnetic stimulation (rTMS) for MDD tended to have reduced 

connectivity in fronto-amygdala networks (i.e., reduced connectivity between CCN and 

SEN), as well as reduced connectivity in cingulate and orbitofrontal areas supporting 

motivation and salience evaluation (66).
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Experiment 4 Methods—The sample used for prediction with the MID task was 

overlapping with that investigated for Experiments 1 and 2. The treatment and the 

demographic and clinical variables are reported in Table 1, with over 71% improvement in 

HDRS symptoms (Experiment 4).

Rs-fMRI data collection and analysis steps have been described in detail in prior studies (34, 

67, 68). Briefly, we used a key seed approach for each of three networks, CCN, SEN, and 

default mode network (DMN, Figure 4). As the SEN is most heterogeneous relative to the 

CCN and DMN, we used two seeds for SEN (Left amygdala and left subgenual anterior 

cingulate). We generally use left-sided seeds (excepting right DLPFC) due to accumulating 

evidence that left hemisphere dysfunction is more pertinent in MDD (69). As there is no 

relevant TaskNet, we only use the resting state intrinsic KeyNets (Figure 4).

Experiment 4 Results

SEN KeyNet Results: For left Amygdala, bilateral orbital frontal cortex connectivity were 

significant negative predictors of treatment response in MDD (Table 4, k > 25 -fwhm 

adjustment). For left SGAC, left middle temporal gyrus connectivity was positively 

correlated with treatment response, whereas left orbital frontal cortex connectivity was 

negatively predictive of treatment response in MDD (none were significant with -acf 

adjustment (k > 155) after multiple comparisons.

CCN KeyNet Results: Connectivity of five regions within the CCN KeyNet right DLPFC 

was predictive of later treatment response in MDD (See Table 4), including bilateral middle 

frontal, inferior parietal regions (-fwhm (k > 27), but not -acf (k > 155) adjustment for 

multiple comparisons).

KeyNet Results: There were no regions of significant connectivity with left PCC that were 

significant positive or negative predictors of subsequent treatment response for MDD (for 

either DMN -fwhm or -acf adjustment for multiple comparisons).

Supplemental Table 4 lists predictive results with p < .005 and k > 15 for all four seeds.

General Discussion

Treatment prediction studies in MDD continue to struggle with pathways for how they can 

be disseminated into clinical and research advances, as results are difficult to translate to 

individual prediction models. The present report illustrated a way of providing supporting 

information for meta-analytic studies that could drive these breakthroughs. In the present 

experiments, emotional reactivity (to angry faces), regulation (cognitive control), and resting 

state networks (CCN, SEN) produced regions that were predictive of treatment response. 

Surprisingly, resting state connectivity of a key DMN node, the posterior cingulate, was not 

predictive of treatment response.

As might be expected, increased activation for angry faces (Table 2) in a number of regions 

included in the salience and emotion network was predictive of treatment response, 

highlighting that excessive neural response to threat is an important treatment target. It may 
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also reflect the high degree of comorbidity with anxiety in this sample, which is typical for 

depression. Indeed, SSRIs and SNRIs are thought to modulate excessive responsivity of the 

salience and emotion network nodes, including amygdala, insula, fusiform and ventromedial 

and orbital frontal cortex, but also less studied regions like inferior parietal lobule and 

precuneus (3). These regions also tend to be closely associated with anxiety in response to 

fear, which may reflect the degree of comorbidity in this sample (70). In contrast, activation 

to fearful faces was inversely associated with treatment response, if in fewer areas.

Notably, activation within right inferior frontal gyrus and insula was a predictor for both 

anger and correct rejections, but in the opposite direction. Increased activation within this 

SEN node is expected for anger and is possibly reflective of excessive reactivity to threat 

that can be modulated by SSRIs and SNRIs. In contrast, excessive activation here when one 

has been successful in avoiding an error may reflect the decreased capacity for correct 

interaction between key CCN nodes and SEN nodes when regulation is required. Regulation 

was successful, yet activation in a node more reflective of errors was observed in those who 

are likely to be poor responders to treatment.

These results for fear as a predictor are more in line with a recent review, where increased 

activation in subgenual cingulate was a predictor of poorer treatment outcome (7). In most 

prior reviews, responses to different emotional faces are collapsed together, so we are not 

certain whether differential responses to fearful and angry faces in this sample is of any 

substantive meaning. Moreover, sad faces are studied most often in MDD, so fearful and 

angry faces may be understudied. The broader pattern is of excessive activation to negative 

stimuli in MDD relative to HC (71).

There were also regions from Cognitive Control and Salience and Emotion Networks that 

were predictive of treatment response using resting state analyses. Resting-state fMRI has 

great promise for parsing the diagnostic heterogeneity in depression (66), and may also aid 

in defining treatment targets, by matching treatments based on patients’ patterns of intrinsic 

network activity and unique symptom dimensions (66). Some excitement exists about the 

value of modulation of CCN circuits, and the number of foci evident in this sample suggests 

that there may be some reason for that excitement. The present results suggest that those 

with less disruption in CCN intrinsic connectivity are more likely to respond to standard 

pharmacological treatments (e.g., SSRI or SNRI). It is possible that those with decreased 

CCN connectivity might benefit from rTMS, which targets a left frontal node within the 

CCN. rTMS may enhance network plasticity and revert CCN functioning to normal levels. 

Indeed, rTMS to the dlPFC tends to enhance connectivity within the CCN (72). rTMS to the 

left dlPFC also has been shown to decrease DMN hyperconnectivity and to normalize CCN-

DMN anticorrelations (73). Other treatment approaches may alleviate symptoms and 

increase wellbeing via normalization of intrinsic networks. For example, SSRIs reduced 

DMN hyperactivity (74); and decreased connectivity between the DMN (posterior cingulate) 

and CCN (inferior frontal gyrus) was associated with decreased rumination after treatment 

with rumination-focused CBT (68). Cognitive remediation is another pathway to improve 

CCN function and efficiency to facilitate and maintain wellbeing.
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There were also some null results with resting state connectivity within the DMN. Notably, 

there were not any results within DMN connectivity patterns that met the adjusted criteria 

for significance. The small sample size may implicate a type II error in prediction. For 

reward, there were results in rostral cingulate (positive) and ventral frontal areas (inverse), 

aligning with TaskNet and KeyNet approaches. This approach illustrates how focused 

network analysis approaches might reveal activation that would not survive whole brain 

adjustments for significance. It is possible that reward is a newer area of inquiry in the 

context of treatment outcome in depression, and that more studies will be emerging in due 

time. The notable absence of whole brain predictive models of treatment response in the 

published literature may also indicate a potential ‘file drawer” effect.

There are a number of limitations to consider for this study. First, the small sample size for 

experiments 1, 2, and 4 could have, and most likely did lead to some type II errors. The 

small sample size also increases the likelihood of type I error. In addition, the order of 

administration for the study probes was fixed. This order could have led to some fatigue in 

participants (1.5 hours of scanning), or order effects that obscured or confounded some of 

the results. In addition, the study recruited unmedicated participants could result in 

recruitment of more mildly ill individuals. Indeed, about 70% change in clinical outcome 

(and > 75% responders if defined by traditional standard of greater than 50% reduction in 

symptoms) is well above what would be expected in a clinical trial, so these results may not 

reflect those with MDD in the general community. Importantly, we cannot infer that the 

achievement of treatment response in this study was secondary to pharmacotherapy, as it was 

an open-label, one arm study. The effects could as easily represent placebo effects or a 

natural return to wellness (12). The placebo lead in was used only in the duloxetine sample, 

and there were insufficient number of completers to dissociate placebo and medication 

effects. Finally, the use of TaskNet and KeyNet approaches here has limitations. While they 

may reduce the amount of adjustment needed for multiple comparisons, there is an 

assumption of network unilateral function embedded within this approach. For an emotion 

task, the salience and emotion network may be relevant (as it was for anger and to a lesser 

extent, fear), but it is also the case that activation in primary visual networks or cognitive 

control network might be just as relevant, or even more so (75). Future studies with more 

well-powered samples can better address these alternative network models, or even 

interactions between networks.

Moreover, we did not have a large enough sample to ask the questions posed in the 

introduction about the value of KeyNet and TaskNet approaches relative to KeyReg and 

BetGroup approaches. KeyReg approaches would have potentially “missed” relevant 

activations in cortical regions. For example, in the TaskNet anger regression, there were 4 of 

6 regions identified that were in cortical regions and not in insula or amygdala, and 6 of 7 

regions in KeyNet mask were outside these ROIs. For connectivity, the results are more 

mixed, with about half of the regions that might be considered as significant ROIs vs not.

In summary, the present study highlights that excessive responsivity to anger and diminished 

reactivity to regulation challenge and connectivity for cognitive control network are most 

relevant in the prediction of treatment response. Prediction models with integrated, 

multimodal imaging techniques might provide unique, additive variance in treatment 
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prediction. This is a likely byproduct of the heterogeneous nature of depression and the need 

for more personalized identification for the causes and systems involved in MDD. 

Multidimensional approaches can aid in addressing heterogeneity in the disease and 

relevance to different treatments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Salience and Emotion Network Intrinsic mask (green), with overlays of TaskNet for Anger 

(top row, red), Fear (middle row, yellow), and Reward Anticipation (bottom row, blue) 

derived from Neurosynth (http://neurosynth.org).
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Figure 2. 
Cognitive Control Network Intrinsic mask (cyan), with overlays of TaskNet for Errors (top 

row, red) and Inhibition/Rejections (middle row, yellow) derived from Neurosynth masks 

(http://neurosynth.org).
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Figure 3. 
Panel A. Significant Activation Prediction Models from Experiments 1 and 3. Red = Anger 

positive prediction for either Anger TaskNet or SEN KeyNet. Orange is overlap of 

significant predictors within Anger TaskNet and SEN KeyNey for anger positive prediction. 

Purple is prediction for fear with Fear TaskNet or SEN KeyNet in a negative direction. 

Yellow is prediction of treatment response with the Inhibition TaskNet mask for PGNG 

Rejections in an inverse direction (see Panel B for relationship between activation in right 
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IFG/insula and treatment response), and green is significant prediction in the positive 

direction for the CCN KeyNet mask for Rejections. Image is radiological format.
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Figure 4. 
KeyNet Intrinsic masks for DMN (red), CCN (green) and SEN (blue) used in the respective 

rs-fMRI analyses.
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Figure 5. 
Regions of resting state networks with significant seed to node connectivity that is predictive 

of treatment response in MDD (Experiment 4). Left Amygdala connectivity for SEN KeyNet 

is in purple, with negative prediction. Red illustrates positive prediction with left subgenual 

cingulate seed and uncus, and orange is negative connectivity prediction with left subgenual 

cingulate. Yellow displays the regions of positive connectivity with right DLPFC that are 

predictive of treatment response within the CCN KeyNet. Image is in radiological format.
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Table 1.

Strategies for reducing the field of view for treatment prediction models

KeyReg Region of interest that is theoretically or empirically related to the research question

KeyNet Intrinsic network that is theoretically or empirically related to the research question

TaskNet A network or extended subset of regions that are typically engaged in a task or task contrast.

BetGroup Region or set of regions that differ between groups, thought the implicate disease processes (e.g., interference, but may also 
implicate compensatory responses)
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Table 2.

Clinical and Demographic Information for Participants from Experiments 1–4.

EFAT (Exp 1)
n=13

MID (Exp 2)
n=10 PGNG

^
 (Exp 3)

n=36

rs-fMRI (Exp 4)
n=14

Age 31.23 (11.26) 28.10 (9.86) 35.89 (11.71) 28.93 (8.40)

Gender (M/F) 5/8 6/5 14/22 6/8

Education 15.54 (1.66) 16.10 (1.97) 15.14 (2.15) 15.57 (1.74)

Pre-treatment HDRS 20.00 (3.46) 21.00 (4.57) 19.22 (3.46) 19.64 (3.49)

Post-treatment HDRS 6.67 (10.92) 10.40 (14.00) 7.43 (6.93) 6.67 (10.92)

Treatment Response (HDRS % change) 70.46 (27.82) 64.57 (42.72) 65.94 (25.99) 71.36 (28.91)

Comorbid Anxiety 84.6% 53.8% 63.6% 76.9%

Medications (Escitalopram/Duloxetine) 0/13 0/10 22/14 0/14

Refusals/Dropouts/Data* 3/4/4 3/4/7 7/5/1 3/4/3

Note. Values are means and standard deviations unless otherwise noted;

^
16 subjects were included in Langenecker et al., 2007, and 36 were included in Crane et al., 2017 (8, 48). 11 participants overlap across all 

experiments 1–4.

*
Data exclusions are because of invalid performance data or invalid imaging data, typically due to movement, and do not overlap across paradigms.
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Table 3.

Emotion Faces Affect Task Activation Prediction of Treatment Response in MDD

Mask/Emotion Region BA MNI Peak Z Cluster k

x y z

Positive HDRS Change

TaskNet Mask

Anger Inferior Frontal 45 56 28 2 3.94 25

Insula 47 38 24 2 3.34 46

Gyrus Rectus 11 0 40 −18 2.79 22

Amygdala 28 16 0 −22 3.07
66

^

Superior Temporal 22 60 −26 10 4.47 18

Inferior Occipital 37 46 −56 −22 3.61 25

Fear n/a

KeyNet Mask

Anger Medial Frontal 11 2 44 −18 2.89 118

Superior Frontal 6 10 −2 72 3.26 44

Subcallosal 11 10 26 −18 3.03 100

Insula 48 32 12 10 3.68 173

Uncus 36 24 10 −32 3.21 90

Inferior Temporal 20 44 −12 −28 3.64 237

Inferior Parietal 40 −56 −36 40 3.50 55

2 62 −28 44 4.20 632^

Mid-Cingulate 23 −12 −30 36 4.48 218

Fusiform −30 −14 −40 3.06 37

Fusiform/Hippocampus 37 −36 −36 −20 5.52 183

Fear n/a

Negative HDRS Change

TaskNet Mask

Anger n/a

Fear Inferior Frontal 44 56 14 16 3.66 29

KeyNet Mask

Anger n/a

Fear Inferior Frontal 6 54 10 18 3.75 58

Subcallosal/Subgenual 25 4 6 −16 3.36 229^

Fusiform 20 42 −26 −26 3.10 35

Note. TaskNet mask has an adjusted threshold of p = .005 and k > 17 contiguous voxels (-fwhm 3dClustSim, April 2017), whereas KeyNet mask 
uses an adjusted threshold of p = .005 and k > 33 contiguous voxels (-fwhm 3dClustSim, April 2017).

Significance after using the -acf adjustment is noted with ^.

Conversion from k to mm3 is *8.
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Table 4.

Resting State functional MRI Results in Prediction of Treatment Response in MDD

Mask/Emotion Region BA
MNI Peak Z Cluster k

x y z

Positive HDRS Change

CCN KeyNet Mask

 Right DLPFC Middle Frontal 10 −28 54 6 3.75 91

Middle Frontal 46/9 −48 20 36 3.49 63

Precentral 6 −46 −2 34 3.03 33

Inferior Parietal 40 −28 −54 46 3.83 71

Inferior Parietal 40 22 −58 48 3.07 24

Inferior Occipital 37 46 −56 −22 3.61 25

SEN KeyNet Mask

 Left Amygdala n/a

 Left Subgenual AC Middle Temporal 20 −48 −24 −26 3.83 40

DMN KeyNet Mask

n/a

Negative HDRS Change

CCN KeyNet Mask

n/a

DMN KeyNet Mask

n/a

SEN KeyNet Mask

 Left Amygdala Inferior Frontal 47 −10 34 −20 4.51
195

^

Inferior Frontal 47 22 30 −16 3.5 39

 Left Subgenual AC Uncus 47 −32 2 −20 3.69 47

Note. KeyNet mask uses an adjusted threshold of p = .005 and k > 27 contiguous voxels (-fwhm 3dClustSim, April 2017, same threshold applies to 
each of three KeyNet masks, SEN, DMN, and CCN).

Significance after using the -acf adjustment is noted with ^.

Conversion from k to mm3 is *8.
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